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(Accepted at the 9th Meeting, held on December 20, 2024)
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1. Introduction and preliminaries

Discrete fractional calculus and discrete fractional equations are rapidly grow-

ing fields of research of many authors. For more details about these subjects, we

refer the reader to the research monographs [1, 2, 3, 7] and the doctoral dissertation

of M. T. Holm [8]; cf. also the research monograph [6] by M. I. Gil for the abstract

difference equations with integer-order derivatives. Concerning the Volterra differ-

ence equations and their applications, we can warmly recommend [4, 5, 10, 16, 17];

cf. also references cited therein.

The asymptotically almost periodic type solutions of the abstract multi–term

discrete abstract Cauchy problem

Bu(v) = f(v) +

n!

i=1

Ai

"
ai ∗0 u

#
(v + vi), v ∈ N0,

as well as the well-posedness and the existence and uniqueness of almost periodic

type solutions of the following abstract multi-term Volterra difference equation

Bu(v) = A1

v+v1!

l=−∞
a1(v+ v1 − l)u(l) + · · ·+An

v+vn!

l=−∞
an(v+ vn − l)u(l), v ∈ Z,

where B, A1, . . . , An are closed linear operator on a complex Banach space X and

v1, . . . , vn ∈ N0, have recently been analyzed in [14]; for more details about almost

periodic functions, almost automorphic functions and their applications, we refer

the reader to the research monograph [11] and the list of references quoted therein.

The main aim of this research article is to report how a great number of results

established in [14] can be extended to the multi-dimensional setting. The proofs

of results clarified here are very similar to the proofs of the corresponding results

established in [14] and therefore omitted.

1.1. Notation and terminology

In the sequel, we will always assume that m, n ∈ N, (X, $ · $) is a complex

Banach space, L(X) is the Banach space of all bounded linear operators on X and

C ∈ L(X). If A is a closed linear operator on X, then [D(A)] denotes the Banach

space D(A) equipped with the graph norm. Set Nk := {1, . . . ., k} for k ∈ N. If

j = (j1, . . . , jn) ∈ Nn
0 and k = (k1, . . . , kn) ∈ Nn

0 , then we write j ≤ k if and only

if jm ≤ km for all 1 ≤ m ≤ n. If the sequences (ak)k∈Nn
0

and (bk)k∈Nn
0

are given,

then we define (a ∗0 b)(·) by

(a ∗0 b)(k) :=
!

j∈Nn
0 ;j≤k

ak−jbj , k ∈ Nn
0 .
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It can be simply proved that the convolution product ∗0 is commutative and asso-

ciative. If the sequences (ak)k∈Nn
0

and (bk)k∈Zn are given, then we define the Weyl

convolution product (a ◦ b)(·) by

(a ◦ b)(v) :=
!

l∈Zn;l≤v

a(v − l)b(l), v ∈ Zn
.

Under certain assumptions, the following equalities hold true:

"
f ∗0 g

#
◦ h = g ◦ (f ◦ h) = f ◦ (g ◦ h);

cf. [9, Theorem 3.12(ii)-(iii)] for more details given in the one-dimensional setting.

2. Multi-dimensional (k, C,B, (Ai)1≤i≤n, (vi)1≤i≤n)-solution
operator families

We have recently analyzed various classes of discrete (A, k,B)-regularized C-

solution operator families for the abstract Volterra non-scalar difference equation

B(v)u(v) = f(v) +

v!

j=0

A(v − j)u(j), v ∈ N0,

where B(k) is a closed linear operator acting in X (k ∈ N0) and A : N0 →
L(Y,X); here, Y is any Banach space which is continuously embedded into X

([14]). We can similarly analyze the well-posedness of the abstract Volterra non-

scalar difference equation

B(v)u(v) = f(v) +
!

j∈Nn
0 ;j≤v

A(v − j)u(j), v ∈ Nn
0 , (2.1)

where B(k) is a closed linear operator acting in X (k ∈ Nn
0 ) and A : Nn

0 →
L(Y,X). The notion of a discrete (weak) (A, k,B)-regularized C-resolvent family

for (2.1) and the notion of a discrete (A, k,B)-regularized C-uniqueness family for

(2.1) can be introduced in the same way as in the one-dimensional setting (cf. [14,

Definition 2.1]). After that, we can simply transfer the statements of [14, Proposi-

tion 2.2, Proposition 2.3, Theorem 2.4] to the higher-dimensional setting. It is also

worth noting that the notion introduced in [13, Definition 2.1] and [15, Definition

2.3] can be reconsidered in the multi-dimensional setting; all details can be left to

the interested readers.

The main purpose of this section is to analyze some classes of the discrete

(k, C,B, (Ai)1≤i≤m, (vi)1≤i≤m)-solution operator families in the multi-dimensional

setting as well as to provide certain applications of the introduced notion to the ab-

stract non-scalar Volterra difference equations of several variables. The following

notion plays an essential role in our study:
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Definition 2.1. Suppose that B, A1, . . . , Am are closed linear operators on X ,

C ∈ L(X), v1, . . . , vm ∈ Nn
0 , I ⊆ Nm, k : Nn

0 → C and k ∕= 0. Then we say that

the operator family (S(v))v∈Nn
0
⊆ L(X) is a discrete:

(i) (k, C,B, (Ai)1≤i≤m, (vi)1≤i≤m)-existence family if and only if the mapping

x *→ Ai

"
ai ∗0 S

#
(v + vi)x, x ∈ X belongs to L(X) for v ∈ Nn

0 , 1 ≤ i ≤ m

and

BS(v)x = k(v)Cx+

m!

i=1

Ai

"
ai ∗0 S

#
(v + vi)x, v ∈ Nn

0 , x ∈ X.

(ii) (k, C,B, (Ai)1≤i≤m, (vi)1≤i≤m, I)-existence family if and only if (S(v))v∈Nn
0

is (k, C,B, (Ai)1≤i≤m, (vi)1≤i≤m)-existence family and S(v)Ai ⊆ AiS(v)
for all v ∈ Nn

0 and i ∈ Nm \ I.

If v1 = v2 = . . . = vm = 0, then we omit the term “(vi)1≤i≤m” from the

notation. The proofs of the following results can be given as in the one-dimensional

setting (cf. [14, Proposition 3.2, Theorem 3.3]):

Proposition 2.1. Suppose that B, A1, . . . , Am are closed linear operators on
X , C ∈ L(X), v1, . . . , vm ∈ Nn

0 , k : Nn
0 → C, k ∕= 0, 1 ≤ i ≤ m, ai(0) ∕= 0

and (S(v))v∈Nn
0
⊆ L(X) is a discrete (k, C,B, (Ai)1≤i≤m, (vi)1≤i≤m)-existence

family. If x ∈ X and vi = 0, then S(v)x ∈ D(Ai) for all v ∈ Nn
0 ; the same holds

provided that S(j)x ∈ D(Ai) for all j ∈ Nn
0 \ (vi + Nn

0 ).

Theorem 2.1. Suppose that B, A1, . . . , Am are closed linear operators on X ,
C ∈ L(X) is injective, k : Nn

0 → C, k(0) ∕= 0 and ai(0) ∕= 0 for 1 ≤ i ≤ m.

(i) Suppose, further, that (S(v))v∈Nn
0
⊆ L(X) is a discrete (k, C,B, (Ai)1≤i≤m)-

existence family such that S(0)Bx = BS(0)x and S(0)Aix = AiS(0)x for
all x ∈ D(B) ∩ D(A1) ∩ . . . ∩ D(Am). Then (B −

$m
i=0 ai(0)Ai)

−1
C ∈

L(X), S(0) = k(0)(B −
$m

i=0 ai(0)Ai)
−1

C,

S(v)x =

%
B −

m!

i=0

ai(0)Ai

&−1

×
'
k(v)Cx+

m!

i=1

Ai

!

j∈Av

ai(v − j)S(j)x

(
, v ∈ Nn

0 \ {0}, x ∈ X,

(2.2)

where
Av :=

)
j ∈ Nn

0 : j ≤ v, j ∕= v
*
, v ∈ Nn

0 \ {0},

and AiS(v) ∈ L(X) for all i ∈ Nm and v ∈ Nn
0 .
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(ii) Suppose that C ∈ L(X) is injective, (B −
$m

i=0 ai(0)Ai)
−1

C ∈ L(X) and,
for every l ∈ N and for every choice of integers aj ∈ Nm for 1 ≤ j ≤ l, we
have

'
l+

j=1

%
B −

m!

i=0

ai(0)Ai

&−1

Aaj

(
·
%
B −

m!

i=0

ai(0)Ai

&−1

C ∈ L(X).

Define S(0) := k(0)(B −
$m

i=0 ai(0)Ai)
−1

C and S(v), v ∈ Nn
0 \ {0},

recursively by (2.2). Then (S(v))v∈Nn
0
⊆ L(X) is well-defined, AiS(v) ∈

L(X) for all i ∈ Nm, v ∈ Nn
0 and (S(v))v∈Nn

0
is a unique discrete

(k, C,B, (Ai)1≤i≤m)-existence family. Furthermore, if I ⊆ Nm and

CB ⊆ BC, CAi ⊆ AiC for all i ∈ Nm \ I,
"
∀i ∈ Nm \ I

# "
∀x ∈ D(Ai) ∩D(B)

#
Bx ∈ D(Ai),

Aix ∈ D(B) and AiBx = BAix,"
∀i ∈ Nm \ I

#"
∀j ∈ Nn

# "
∀x ∈ D(Ai) ∩D(Aj)

#

Ajx ∈ D(Ai), Aix ∈ D(Aj) and AiAjx = AjAix,

(2.3)

respectively, there exist a closed linear operator A and the complex poly-
nomials PB( · ), P1( · ), . . ., Pm( · ), such that CA ⊆ AC and B =
PB(A), A1 = P1(A), . . ., Am = Pm(A), then (S(v))v∈Nn

0
is a dis-

crete (k, C,B, (Ai)1≤i≤m, I)-existence family, respectively (S(v))v∈Nn
0

is a
discrete (k, C,B, (Ai)1≤i≤m, ∅)-existence family.

(iii) Suppose that C = I,
,

-B −
m!

j=0

aj(0)Aj

.

/
−1

∈ L(X),
!

v∈Nn
0 \{0}

|ai(v)| < +∞

for 1 ≤ i ≤ m,
$

v∈Nn
0
|k(v)| < +∞, and (a) or (b) holds, where:

(a) Ai ∈ L(X) for 1 ≤ i ≤ m and

1 >

m!

i=1

!

v∈Nn
0 \{0}

|ai(v)| ·

00000

%
B −

m!

j=0

aj(0)Aj

&−1

Ai

00000.

(b) Suppose that C = I, (2.3) holds or there exist a closed linear operator
A and the complex polynomials PB(·), P1(·), . . . , Pm(·) such that B =
PB(A), A1 = P1(A), . . . , Am = Pm(A), and

1 >

m!

i=1

!

v∈Nn
0 \{0}

|ai(v)| ·

00000Ai

%
B −

m!

j=0

aj(0)Aj

&−100000.



24 M. Kostić

Then the requirements in (ii) hold and we have

!

v∈Nn
0

$S(v)$ < +∞ and
!

v∈Nn
0

000Ai

"
ai ∗0 S

#
(v)

000 < +∞ (1 ≤ i ≤ m),

(2.4)

provided that (a) holds, resp. we have (2.4) and
!

v∈Nn
0

$AiS(v)$ < +∞ (1 ≤ i ≤ m),

provided that (b) holds.

Unfortunately, the statement of [14, Theorem 3.5] cannot be so straightfor-

wardly transferred to the higher-dimensional setting. The extension is straightfor-

ward only in the case that there exists a tuple vi =: vmax ∈ Nn
0 , for some i ∈ Nm,

such that vi;j ≥ vl;j for all l ∈ Nm and j ∈ Nn, with the meaning clear; in this case,

we define M ⊆ Nm as a set of all indexes i ∈ Nm with the above property. Then

the result of of [14, Theorem 3.5] can be simply extended to the higher-dimensional

setting with almost the same notation used; for example, in part (i) of this result, we

have to assume that the compatibility condition

BS(0)x = k(0)Cx+

m!

i=1

Ai

1
ai(vi)S(0)x+ . . .+ ai(0)S(vi)x

2
, x ∈ X

holds, so that the value of S(v) will be uniquely determined for any v ∈ (vmax +
Nn
0 ) \ {vmax}. This always happens if m = 1; all other details can be left to the

interested readers.

If there does not exist a tuple vi ∈ Nn
0 with the above described property, then

there is no easy way to generalize [14, Theorem 3.5] to the higher-dimensional

setting; the main problem lies in the fact that the partial order relation ∼⊆ Nn
0×Nn

0 ,

defined by

v =
"
v1, . . . , vn

#
∼ v′ =

"
v
′
1, . . . , v

′
n

#
⇔ vi ≤ v

′
i, i ∈ Nn,

is not a total order if n ≥ 2.
We continue by providing some useful observations about the abstract multi-

term Volterra difference equation:

Bu(v) = f(v) +

m!

i=1

Ai

"
ai ∗0 u

#
(v + vi), v ∈ Nn

0 , (2.5)

where v1, . . . , vm ∈ Nn
0 :
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Remark 2.1. In [14, Subsection 3.1], we have analyzed the well-posedness,

the existence and uniqueness of asymptotically almost periodic type solutions of

(2.5). All established results about the well-posedness of problem (2.5) continue

to hold in the multi-dimensional setting; concerning the existence and uniqueness

of asymptotically almost periodic type solutions of (2.5) and similar problems, we

would like to note that we must require some additional conditions on the solution

operator family (S(v))v∈Nn
0
, besides its uniform integrability, in order to see that the

sequence u(v) := (g ∗0 S)(v), v ∈ Nn
0 is D-asymptotically almost periodic (in the

sense that there exist an almost periodic sequence H : Zn → X and a continuous

function Q : Nn
0 → X such that u = H+Q on Nn

0 and lim|v|→+∞;v∈D $Q(v)$ = 0,
where D is a certain non-empty subset of Nn

0 ), provided that the function g(·) is D-

asymptotically almost periodic. In the multi-dimensional setting, the main problem

is the D-asymptotical vanishing of the function

v *→
!

j≤v;¬(0≤j)

S(v − j)h(j), v ∈ Nn
0

as |v| → +∞, where h(·) is the almost periodic part of g(·).

The following results can be proved in the same way as in the corresponding

parts of the proofs of [14, Theorem 4.1, Theorem 4.3, Theorem 4.5]:

Theorem 2.2. (i) Suppose that v1 ∈ Nn
0 , . . . , vm ∈ Nn

0 , (S(v))v∈Nn
0
⊆ L(X)

is a discrete (k, C,B, (Ai)1≤i≤m, (vi)1≤i≤m)-existence family,
$

v∈Nn
0
$S(v)$ <

+∞ and the following holds:

(a) f : Zn → X is a bounded sequence, k ∈ l
1(Nn

0 : Y ) and
$

v∈Nn
0
|ai(v)| <

+∞ for 1 ≤ i ≤ m, or

(b) f ∈ l
1(Zn : X), k : Nn

0 → X is a bounded sequence and ai : Zn → C is a
bounded sequence for 1 ≤ i ≤ m.

Define
u(v) :=

!

l∈Zn;l≤v

S(v − l)f(l), v ∈ Zn
(2.6)

and

g(v) := A1

%
!

l≤v+v1

−
!

l≤v

&
"
a1 ∗0 S

#
(v + v1 − l)f(l) + · · ·

+Am

%
!

l≤v+vm

−
!

l≤v

&
"
am ∗0 S

#
(v + vm − l)f(l), v ∈ Zn

. (2.7)
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Then u(·) is bounded if (a) holds, u ∈ l
1(Zn : X) if (b) holds, and we have

Bu(v) = A1

!

l∈Zn;l≤v+v1

a1(v + v1 − l)u(l) + · · ·

+Am

!

l∈Zn;l≤v+vm

a1(v + vm − l)u(l) + g(v), v ∈ Zn
.

(ii) Suppose that v1 ∈ Nn
0 , . . . , vm ∈ Nn

0 , I ⊆ Nm, (S(v))v∈Nn
0
⊆ L(X) is a

discrete (k, C,B, (Ai)1≤i≤m, (vi)1≤i≤m, I)-existence family,
!

v∈Nn
0

$S(v)$ < +∞,

!

v∈Nn
0

$Ai

"
ai ∗0 S

#
(v + vi)$ < +∞

for i ∈ I and the following holds:

(a) f : Zn → X is a bounded sequence, k ∈ l
1(Nn

0 : X) and
$

v∈Nn
0
|ai(v)| <

+∞ for i ∈ I or

(b) f ∈ l
1(Zn : X), k : Nn

0 → X is a bounded sequence and ai : Zn → C \ {0}
is a bounded sequence for i ∈ I

as well as

(c) Aif : Zn → X is a bounded sequence,
$

v∈Nn
0
|ai(v)| < +∞ for i ∈ Nm \I

and (S(v))v∈N0 ⊆ L(X) is a discrete

(k, C,B, (Ai)1≤i≤m, (vi)1≤i≤m, I)− existence family, or

(d) f ∈ l
1(Zn : X),

$
v∈Nn

0
$AiS(v)$ < +∞ for all i ∈ Nm \ I and ai : Nn

0 →
C \ {0} is a bounded sequence for i ∈ Nm \ I, or

(e) f ∈ l
1(Zn : [D(Ai)]) for all i ∈ Nm \ I, ai : Nn

0 → C \ {0} is a
bounded sequence for i ∈ Nm \ I and (S(v))v∈Nn

0
⊆ L(X) is a discrete

(k, C,B, (Ai)1≤i≤m, (vi)1≤i≤m, I)-existence family.

Define u(·) and g(·) in the same way as in part (i). Then we have:

Bu(v) =
!

i∈I
Ai

!

l∈Zn;l≤v+vi

ai(v + vi − l)u(l)

+
!

i∈Nm\I

!

l∈Zn;l≤v+vi

ai(v + vi − l)Aiu(l) + (k ◦ Cf)(v) + g(v), v ∈ Zn
.

(iii) Suppose that ω > 0, v1 ∈ Nn
0 , . . . , vm ∈ Nn

0 , I ⊆ Nm, (S(v))v∈Nn
0
⊆

L(X) is a discrete (k, C,B, (Ai)1≤i≤m, (vi)1≤i≤m, I)-existence family,$
v∈Nn

0
$e−ω[v1+...+vn]S(v)$ < +∞,

$
v∈Nn

0
$Ai

"
e
−ω[(·1−vi;1)+...+(·n−vi;n)]ai ∗0 [e−ω[·1+...+·n]S]

#
(v + vi)$ < +∞ for

i ∈ I and the following holds:
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(a) e
−ω[·1+...+·n]f : Zn → X is a bounded sequence, e−ω[·1+...+·n]k ∈ l

1(Nn
0 :

X) and
$

v∈Nn
0
|e−ω[(v1−vi;1)+...+(vn−vi;n)]ai(v)| < +∞ for i ∈ I or

(b) e
−ω[·1+...+·n]f ∈ l

1(Zn : X), e−ω[·1+...+·n]k : Nn
0 → X is a bounded se-

quence and e
−ω[(·1−vi;1)+...+(·n−vi;n)]ai : Zn → C \ {0} is a bounded se-

quence for i ∈ I,

as well as

(c) e
−ω[·1+...+·n]Aif : Zn → X is a bounded sequence,$
v∈Nn

0
|e−ω[(v1−vi;1)+...+(vn−vi;n)]ai(v)| < +∞ for i ∈ Nm \ I and

(S(v))v∈N0 ⊆ L(X) is a discrete (k, C,B, (Ai)1≤i≤m, (vi)1≤i≤m, I)-existence
family, or

(d) e
−ω[·1+...+·n]f ∈ l

1(Zn : X),
$

v∈Nn
0
$e−ω[v1+...+vn]AiS(v)$ < +∞ for all

i ∈ Nm \ I and e
−ω[(·1−vi;1)+...+(·n−vi;n)]ai : Nn

0 → C \ {0} is a bounded
sequence for i ∈ Nm \ I, or

(e) e
−ω[·1+...+·n]f ∈ l

1(Zn : [D(Ai)]) ∀i ∈ Nm\I, e−ω[(·1−vi;1)+...+(·n−vi;n)]ai :
Nn
0 → C\{0} is a bounded sequence for i ∈ Nm\I and (S(v))v∈N0 ⊆ L(X)

is a discrete (k, C,B, (Ai)1≤i≤m, (vi)1≤i≤m, I)-existence family.

Define

u(v) := e
ω[v1+...+vn]

×
!

l∈Zn;l≤v

1
e
−ω[(v1−l1)+···+(vn−ln)]S(v − l)

21
e
−ω[l1+···+ln]f(l)

2
, (2.8)

for any v ∈ Zn and gω(·) in the same way as in part (i), with the operator fam-
ily S(·), the kernels ai(·) and the function f(·) replaced therein with the operator
family e−ω[·1+...+·n]S(·), the kernels e−ω[(·1−vi;1)+...+(·n−vi;n)]ai(·) and the function
e
−ω[·1+...+·n]f(·), respectively (1 ≤ i ≤ m). Then we have:

Bu(v) =
!

i∈I
Ai

!

l∈Zn;l≤v+vi

ai(v + vi − l)u(l)

+
!

i∈Nm\I

!

l∈Zn;l≤v+vi

ai(v + vi − l)Aiu(l)

+ e
−ω[v1+...+vn](k ◦ Cf)(v) + gω(v), (2.9)

for any v ∈ Zn.

Keeping in mind the representation formulae (2.6) and (2.8), we are in a position

to consider the existence and uniqueness of almost periodic and almost automorphic
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type solutions to the abstract multi-term problems (2.7) and (2.9), respectively. For

example, in the concrete siutation of Theorem 2.2(i), the almost periodicity of the

inhomogeneity of f(·) implies the almost periodicity of the solution u(·); cf. the

forthcoming research monograph [12] for the notion and more details about this

problematic.
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