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1. Introduction

Phenomena involving bivariate random variables are frequent in fields like en-
gineering, health, finance and insurance, among others. In fact, a well-known and
useful model using a bivariate random variable (X,N) is

Y =

N󰁛

i=1

Xi, (1.1)
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assuming Y = 0 if N = 0, where N is a count random number and Xi, i = 1, 2,
. . . , are copies of the random variable X . This model can have different interpreta-
tions, such as the accumulation of losses due to failures of machines or the total of
incomes coming from different sources. Furthermore, a bivariate random variable
Ξ = (X,Y ) may concern only count random variables X and Y . For instance,
when count random variables observed in different times are compared each other.
Also, continuous random variables may be discretized because of convenience or
because their observed values do not have enough decimal places.

In this paper, we focus on discrete bivariate random variables Ξ = (X,Y ). We
start by presenting the following probability distribution (p.d.) that X and Y are
supposed to follow.

In a recent paper, Masjed-Jamei et al. [23] assume that the Taylor series ex-
pansion f(λ) =

󰁓∞
n=0 f

(n)(0)λn/n! converges for values λ ∈ A ⊆ (−∞,∞).
If f (n)(0) ≥ 0, ∀n ≥ 0 and f(λ) > 0, then the probability distribution (p.d.)
(pn(λ; f), n ≥ 0,λ ∈ A) generated by f is given by

P (X(λ; f) = n) = pn(λ; f) =
f (n)(0)

f(λ)

λn

n!
= Θn(λ; f)λ

n, n ≥ 0.

Probability distributions of this type are called power series distributions (p.s.ds).
They were studied among others in [15, 28] (see also [25]). The probability gener-
ating function (p.g.f.) of X(λ; f) is given by:

φX(λ;f)(z) = EzX(λ;f) =
f(zλ)

f(λ)
, λ ∈ A, zλ ∈ A. (1.2)

For the bivariate random variable Ξ, we consider a generalization of discrete
p.d.s that are generated by bivariate power series. The earliest references to this
kind of p.d.s go back to Guldberg [12], Khatri [18], and Shoukri et al. [34]. The
marginal p.ds of Ξ are p.s.ds, as shown below.

Furthermore, we are interested in p.d.s that can be computed from recursive
relations in order to provide them greater flexibility. In the univariate case, well-
known examples of these p.d.s are the Poisson, binomial and negative binomial
distributions, whose p.d.s satisfy the Panjer recursive relation, see [29]. These p.d.s
are p.s.ds. Extensions of this kind of relations in the univariate case have been given
in e.g. [24] and [23].

Under a bivariate setting, we propose Panjer-type recursive relations in order
to have more flexible p.d.s than those based on given models. The design of these
recursive relations is based on differential equations of the p.g.f. of Ξ. These equa-
tions use parametrized rational functions. Under this configuration, the bivariate
p.s.ds. are generalized, thus generating new discrete bivariate p.d.s.
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The previous procedure implies that the model for Ξ is not explicit. In fact, what
is explicit is its p.g.f. Hence, the maximum likelihood method cannot be applied
for estimating the parameters of these new models. To circumvent this problem, we
propose to use the empirical probability generating function (e.p.g.f.) for estimating
such parameters. Recall that if ξ1 = (x1, y1), . . . , ξτ = (xτ , yτ ) is a sample of Ξ,
its e.p.g.f. is, for z, t > 0,

󰁥φΞ,τ (z, t) =
1

τ

τ󰁛

i=1

zxityi . (1.3)

In a univariate setting, this is an unbiased estimator of the theoretical φΞ and has
the property, for all x > 0 where φΞ(x) < ∞, almost surely 󰁥φΞ,τ (x) → φΞ(x) as
τ → ∞. This convergence is uniform on closed and bounded intervals included in
(0, 1], see e.g. [30] and [9].

The idea is to minimize a distance between the p.g.f. and e.p.g.f. by varying the
parameters associated to Ξ, i.e. those parameters incorporated in its p.g.f. This pro-
cedure has been used as an alternative to the maximum likelihood method because
the latter is sensitive to outliers, see e.g. [17, 26, 7, 35] for univariate p.d.s, and e.g.
[27, 13] for multivariate p.d.s. Also, the p.g.f. and e.p.g.f. have been used to test
fits for discrete distributions, see [19] and e.g. [31, 5]. To the best of our knowl-
edge, this couple of functions has not been used before for estimating parameters in
a bivariate setting when the expressions of the d.f.s are unknown.

The new models are applied to real data sets in order to present a diversity of
modeling alternatives and assess their performance.

The rest of the paper is organized as follows. In the next section, our discrete
bivariate p.s.ds are presented. Section 3 shows a method for estimating the parame-
ters of these p.ds. Section 4 provides an estimation method analysis via simulation.
Section 5 presents numerical results when our models and competitors are applied
to two real data sets. The last section gives concluding remarks.

2. New discrete bivariate models

We begin this section presenting the conditions to formulate our discrete bivari-
ate probability distributions.

2.1 A bivariate power series distribution

Let f be a bivariate continuously differentiable function. More conditions on f
are given later.

The general expression for the Taylor series in two variables for f(x, y) may be
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written as

f(a+ λ, b+ ν) = f(a, b) +

∞󰁛

n=1

󰀫
1

n!

n󰁛

k=0

󰀕
n

k

󰀖
∂nf

∂kx∂n−ky
(a, b)× λkνn−k

󰀬

=

∞󰁛

n=0

n󰁛

k=0

1

k!(n− k)!

∂nf

∂kx∂n−ky
(a, b)× λkνn−k

=

∞󰁛

k=0

∞󰁛

n=k

1

k!(n− k)!

∂nf

∂kx∂n−ky
(a, b)× λkνn−k

=

∞󰁛

k=0

∞󰁛

n=k

1

k!m!

∂m+kf

∂kx∂my
(a, b)× λkνm.

Hence, we have

f(a+ λ, b+ ν) =
󰁛

n,m≥0

1

n!m!

∂n+mf

∂nx∂my
(a, b)× λnνm.

For simplicity and without loss of generality we take a = b = 0, so that

f(λ, ν) =
󰁛

n,m≥0

1

n!m!

∂n+mf

∂nx∂my
(0, 0)× λnνm.

Now we assume that f(λ, ν) > 0 and

∂n+mf

∂nx∂my
(0, 0) ≥ 0.

Then, we can define the following bivariate discrete probability distribution, also
called the bivariate power series distribution.

2.2. Definition

The p.d. generated by f and associated to the bivariate random variable (r.v.)
Ξ = (X(λ, ν; f), Y (λ, ν; f)) is given by,

pn,m(λ, ν; f) = P (X(λ, ν; f) = n, Y (λ, ν; f) = m)

=
1

f(λ, ν)

1

n!m!

∂n+mf(0, 0)

∂nx∂my
λnνm.

The joint p.g.f. of this p.d. is given by

E(zX(λ,ν;f)tY (λ,ν;f)) ≡ φΞ(z, t) =
f(λz, νt)

f(λ, ν)
.



New bivariate probability models based on Panjer-type relations 43

For further details, the reader is referred to among others [14]. For the marginals we
have

E(zX(λ,ν;f)) = φΞ(z, 1) =
f(λz, ν)

f(λ, ν)

E(tY (λ,ν;f)) = φΞ(1, t) =
f(λ, νt)

f(λ, ν)
.

Then, we deduce that the marginals of the p.d. pn,m(λ, ν; f) are univariate p.s.ds.

2.3. Remarks

1) Note that

ln pn,m(λ, ν; f) = ln

󰀕
∂n+mf(0, 0)

∂nx∂my

󰀖
−ln f(λ, ν)+n lnλ+m ln ν+ln

󰀕
1

n!m!

󰀖
.

Taking the derivative with respect to λ, we find

1

pn,m(λ, ν; f)

∂

∂λ
pn,m(λ, ν; f) =

n

λ
− 1

f(λ, ν)

∂

∂λ
f(λ, ν).

2) Also note that

pn+1,m(λ, ν; f) =
1

f(λ, ν)

1

(n+ 1)!m!

∂n+1+mf(0, 0)

∂n+1x∂my
λn+1νm

= pn,m(λ, ν; f)
λ

(n+ 1)

∂n+1+mf(0, 0)/∂n+1x∂my

∂n+mf(0, 0)/∂nx∂my
.

2.4. Example

For the exponential function f(λ, ν) = exp(αλ + βν), for some α, β ≥ 0, we
find that

f(λ, ν) =
󰁛

n≥0

󰁛

m≥0

1

n!m!
αnβmλnνm,

and

pn,m(λ, ν; f) =
1

n!m!
αnβmλnνme−αλ−βν

= P (X(α;λ) = n)P (X(β; ν) = m),

where X(α;λ) and X(β; ν) are independent Poisson random variables.



44 M. Cadena, M. Masjed-Jamei, E. Omey, R. Vesilo

2.5 Discrete bivariate probability distributions based on recursive relations

We consider (U, V ), (Ui, Vi), i = 1, 2, . . . i.i.d. random vectors independent
from (N,M) = (X(λ, ν; f), Y (λ, ν; f)), and let φ(U,V )(z, t) = EzU tV . Consider
the random sums S0 = T0 = 0 and for n,m ≥ 1,

(Sn, Tm) =

󰀳

󰁃
n󰁛

i=1

Ui,

m󰁛

j=1

Vj

󰀴

󰁄 .

Now, we study the vector of random sums (SN , TM ). Clearly, we have

E
󰀃
zSN tTM

󰀄
=

∞󰁛

n,m=0

E(zSntTm)pn,m

=

∞󰁛

n=0

∞󰁛

m=n+1

φn
(U,V )(z, t)φ

m−n
V (t)pn,m

+

∞󰁛

m=0

∞󰁛

n=m+1

φm
(U,V )(z, t)φ

n−m
U (z)pn,m +

∞󰁛

n=0

φn
(U,V )(z, t)pn,n.

Hence, we have

E
󰀃
zSN tTM

󰀄
=

∞󰁛

r=1

φr
V (t)

∞󰁛

n=0

φn
(U,V )(z, t)pn,n+r

+

∞󰁛

s=1

φs
U (z)

∞󰁛

m=0

φm
(U,V )(z, t)pm+s,m +

∞󰁛

n=0

φn
(U,V )(z, t)pn,n.

When the U and V are independent, we have

E
󰀃
zSN tTM

󰀄
=

∞󰁛

n,m=0

E(zSntTm)pn,m

=

∞󰁛

n,m=0

(E(zU ))n(E(tV ))mpn,m

=
f(λEzU , νEtV )

f(λ, ν)
. (2.1)

Lazarova and Minkova [20] analyzed (2.1) assuming that U and V follow geometric
distributions, i.e., EzU = (1− pU )z/(1− pUz) and EtV = (1− pV )t/(1− pV t).
Moreover, for various particular choices of f these authors determined detailed ex-
pressions for the p.d.f. of Ξ = (SN , TM ).
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Also, we set
φΞ(z, t) =

󰁛

i≥0

󰁛

j≥0

pi,jz
itj . (2.2)

If we assume that f(x, y) = exp(αx+ βy), we find that, by considering that U
and V are independent,

E(zSN tTM ) = exp(αλ(EzU − 1) + βν(EtV − 1))

or
φΞ(z, t) = exp(αλ(φU (z)− 1) + βν(φV (t)− 1)).

Taking derivatives with respect to z, we find that

∂φΞ

∂z
(z, t) = φΞ(z, t)× αλφ′

U (z), (2.3)

and, then, with respect to t,

∂2φΞ

∂z∂t
(z, t) = φΞ(z, t)× αλφ′

U (z)× βνφ′
V (t). (2.4)

Now, we assume that for i ∈ {U, V }, we have

φi(x) =
Ai +Bix

Ci +Dix+ Eix2
.

Note that φ′
i(x) is of the form

φ′
i(x) =

2󰁓
k=0

ai(k)x
k

4󰁓
k=0

bi(k)xk
, (2.5)

where the conditions bU (0) ∕= 0 and bV (0) ∕= 0, and bU (4) ∕= 0, bV (4) ∕= 0,
aU (2) ∕= 0 and aV (2) ∕= 0, are incorporated.

Special cases of φi(x) are as follows:

• Minkova [24] and Momeni [25] studied geometric random variables with
p.g.fs

φU (z) =
(1− p)z

1− pz
.

• Masjed-Jamei et al. [23] used a modified power distribution as follows:

φU (z) =
(1− α)z

1− αz

(1− β)z

1− βz
.



46 M. Cadena, M. Masjed-Jamei, E. Omey, R. Vesilo

• Gomez and Calderin-Ojeda [11] and Bakouch et al. [4] studied generating
functions of the form

φU (z) = β
1− p

1− pz
+ (1− β)

(1− p)2

(1− pz)2
.

• Sankaran [32] studied p.g.fs of the similar form with p = 1
󰀑
(1 + θ).

2.5.1 Remark. The previous special cases show us that not all the parameters
Ai, Bi, Ci, Di and Ei in the p.g.fs associated to U and V may be unknown. For
instance, if the p.d. of U is the geometric distribution, in a design as

φU (z) =
AU +BUx

CU +DUx+ EUx2
,

it is convenient to fix AU = 0, CU = 1 and EU = 0.

2.5.2 A recursion of Panjer type. The relations (2.4), (2.2) and (2.5) allow the
formulation of the following recursive relations. From these equations, we have

󰁛

i,j≥0

ijpi,jz
i−1tj−1 =

󰁛

i,j≥0

pi,jz
itj × αλ

2󰁛

k=0

aU (k)z
k

4󰁛

k=0

bU (k)z
k

× βν

2󰁛

l=0

aV (l)t
l

4󰁛

l=0

bV (l)t
l

. (2.6)

Then, it follows that

4󰁛

k,l=0

bV (l)bU (k)
󰁛

i,j≥1

ijpi,jz
i+k−1tj+l−1

= αλβν

2󰁛

k,l=0

aU (k)aV (l)
󰁛

i≥0

󰁛

j≥0

pi,jz
i+ktj+l,

so that

4󰁛

k,l=0

󰁛

n≥k

󰁛

m≥l

bU (k)bV (l)(n+ 1− k)(m+ 1− l)pn+1−k,m+1−lz
ntm

= αλβν

2󰁛

k,l=0

󰁛

n≥k

󰁛

m≥l

aU (k)aV (l)pn−k,m−lz
ntm. (2.7)
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The coefficients of zntm for n,m ≥ 4 are given by

4󰁛

k=0

4󰁛

l=0

bU (k)bV (l)(n+ 1− k)(m+ 1− l)pn+1−k,m+1−l

= αλβν

2󰁛

k=0

2󰁛

l=0

aU (k)aV (l)pn−k,m−l.

It follows that

bU (0)bV (0)(n+ 1)(m+ 1)pn+1,m+1

= αλβν

2󰁛

k=0

2󰁛

l=0

aU (k)aV (l)pn−k,m−l

−
4󰁛

k,l≥0,max(k,l)>0

bU (k)bV (l)(n+ 1− k)(m+ 1− l)pn+1−k,m+1−l.

Some straightforward calculations show that

bU (0)bV (0)(n+ 1)(m+ 1)pn+1,m+1

=

2󰁛

k,l=0

(αλβνaU (k)aV (l)− bU (k + 1)bV (l + 1)(n− k)(m− l))pn−k,m−l

−
3󰁛

l=0

bU (0)bV (l + 1)(n+ 1)(m− l)pn+1,m−l

−
3󰁛

k=0

bU (k + 1)bV (0)(n− k)(m+ 1)pn−k,m+1

−
3󰁛

k=0

bU (k + 1)bV (4)(n− k)(m− 3)pn−k,m−3

−
3󰁛

l=0

bU (4)bV (l + 1)(n− 3)(m− l)pn−3,m−l

= I − II − III − IV − V.

Now, we divide by bU (0)bV (0)(n + 1)(m + 1). For the result we denote the
terms on the right-hand side by I ′, II′, . . . , V ′. Denoting

ξi,j,k = bi(j + 1)

󰀕
1− j + 1

k + 1

󰀖
,
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we find

I ′ =
1

bU (0)bV (0)

2󰁛

k,l=0

󰀕
αλβνaU (k)aV (l)

(n+ 1)(m+ 1)
− ξU,k,nξV,l,m

󰀖
pn−k,m−l

II′ =
1

bV (0)

3󰁛

l=0

ξV,l,mpn+1,m−l

III′ =
1

bU (0)

3󰁛

k=0

ξU,k,npn−k,m+1

IV′ =
ξV,3,m

bU (0)bV (0)

3󰁛

k=0

ξU,k,npn−k,m−3 .

V ′ =
ξU,3,n

bU (0)bV (0)

3󰁛

l=0

ξV,l,mpn−3,m−l.

Hence, we have

pn+1,m+1 =

󰀻
󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰀽

αλβνaU (0)aV (0)
bU (0)bV (0)

p0,0 if n = 0 and m = 0,

VI if n = 0 and m ≥ 1,

VII if n ≥ 1 and m = 0,

VIII − IX −X − XI if 1 ≤ n ≤ 4 or 1 ≤ m ≤ 4,

I ′ − II ′ − III ′ − IV ′ − V ′ if n, m ≥ 4,
(2.8)

where

VI =
αλβνaU (0)

bU (0)bV (0)(m+ 1)

min(m,2)󰁛

l=0

aV (l)p0,m−l

− 1

bV (0)

min(m,4)−1󰁛

l=0

ξV,l,mp1,m−l,

VII =
αλβνaV (0)

bU (0)bV (0)(n+ 1)

min(n,2)󰁛

k=0

aU (l)pn−k,0

− 1

bU (0)

min(n,4)−1󰁛

k=0

ξU,k,npn−k,1,
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VIII =
αλβν

bU (0)bV (0)(n+ 1)(m+ 1)

min(n,2)󰁛

k=0

min(m,2)󰁛

l=0

aU (k)aV (l)pn−k,m−l,

IX =
1

bU (0)bV (0)

min(n,4)−1󰁛

k=0

min(m,4)−1󰁛

l=0

ξU,k,nξV,l,mpn−k,m−l,

X =
1

bV (0)

min(m,4)−1󰁛

l=0

ξV,l,mpn+1,m−l,

XI =
1

bU (0)

min(n,4)−1󰁛

k=0

ξU,k,npn−k,m+1.

The Panjer-type relations given by (2.8) are those that we propose to make cal-
culations recursively. These results are collected in the following theorem.

Theorem 2.1. Let Ξ = (U, V ) be a bivariate r.v. Assume that the p.g.f. of Ξ,
φΞ, is differentiable and satisfies, for some z, t > 0,

∂2φΞ

∂z∂t
(z, t) = κUκV QU (z)QV (t)φΞ(z, t), (2.9)

where κU = αλ and κV = βν, where α,λ,β, ν > 0, and, for η ∈ {U, V },

Qη(s) =

2󰁓
k=0

aη(k)s
k

4󰁓
k=0

bη(k)sk
,

with aη(0) ∕= 0, aη(2) ∕= 0, bη(0) ∕= 0, and bη(4) ∕= 0. Then, the p.d.f. of
Ξ = (U, V ), pi,j = P (U = i, V = j), satisfies (2.8), given p0,0, pi,0 for i ≥ 1 and
p0,j for j ≥ 1.

2.5.3 Remarks.
1) The recursive relation (2.8) needs to have p0,0 as given, and also pi,0 for i ≥ 1
and p0,j for j ≥ 1. This issue is circumvented in the following subsection.

2) For a fixed j ≥ 0 or i ≥ 0, we get univariate p.d.s from (2.8), by rescaling pi,j .

3) If the constraints bU (0) ∕= 0 and bV (0) ∕= 0, and bU (4) ∕= 0, bV (4) ∕= 0,
aU (2) ∕= 0 and aV (2) ∕= 0, are not satisfied, (2.8) need to be adapted to the new
conditions.

4) Our results have the following two advantages with respect to the ones provided
by Vernic [37]. First, all of them are the same in some situations. For instance,
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when we have aU (2) = aV (2) = bU (3) = bU (4) = bV (3) = bV (4) = 0. Second,
our results generalize the ones of Vernic when the previous equalities do not hold.

5) The relations where pn+1,m+1 is determined by previous terms of the sequence
are of Panjer type. Indeed, the terms multiplying the probabilities are like (a1 +
b1/n)(a2 + b2/m), where we found two factors because the bivariate setting.

6) The assumption of having φi, i ∈ {U, V }, as rational functions leads evidently
to have φ′

i, i ∈ {U, V }, as rational functions too. However, (2.8) is obtained from
(2.5). This fact implies that φi, i ∈ {U, V }, do not need to be rational functions.

2.5.4 An initialization of the previous Panjer-type relations. Following is the
description of a procedure to initialize the Panjer-type relations obtained in the pre-
vious subsection. This proposal allows overcoming the remarks presented in Sub-
section 2.5.3. In fact, by using this procedure, we go to prove that there is needed
no extra parameter.

Let us consider the case pi,0 for i ≥ 0. We aim to find Panjer-type relations
for these probabilities, but using the parameters involved in (2.8). Using (2.3) and
(2.5), we have

󰁛

i,j≥0

ipi,jz
i−1tj =

󰁛

i,j≥0

pi,jz
itj × αλ

2󰁓
k=0

aU (k)z
k

4󰁓
k=0

bU (k)zk
.

Then, equating the coefficients for t0 gives

󰁛

i≥0

ipi,0z
i−1 =

󰁛

i≥0

pi,0z
i × αλ

2󰁓
k=0

aU (k)z
k

4󰁓
k=0

bU (k)zk
, (2.10)

so that

4󰁛

k=0

bU (k)z
k ×

󰁛

i≥0

ipi,0z
i−1 = αλ

󰁛

i≥0

pi,0z
i ×

2󰁛

k=0

aU (k)z
k.

It follows that

4󰁛

k=0

󰁛

i≥0

bU (k)ipi,0z
i+k−1 = αλ

2󰁛

k=0

󰁛

i≥0

aU (k)pi,0z
i+k,
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i.e., we have

4󰁛

k=0

bU (k)
󰁛

i≥1

ipi,0z
i+k−1 = αλ

2󰁛

k=0

󰁛

i≥0

aU (k)pi,0z
i+k.

Equivalently, we need that

4󰁛

k=0

󰁛

m≥k

bU (k)(m+ 1− k)pm+1−k,0z
m = αλ

2󰁛

k=0

󰁛

m≥k

aU (k)pm−k,0z
m.

Equating the coefficients of zm for m ≥ 4, we find that

bU (0)(m+ 1)pm+1,0

+

4󰁛

k=1

bU (k)(m+ 1− k)pm+1−k,0 = αλ

2󰁛

k=0

aU (k)pm−k,0.

From here, it follows that, by using the notation ξi,j,k introduced above,

pm+1,0 =
1

bU (0)

2󰁛

k=0

󰀕
αλ

aU (k)

m+ 1
+ ξU,k,m

󰀖
pm−k,0 −

ξU,3,m
bU (0)

pm−3,0.

Hence, we have

pm+1,0 =

󰀻
󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰀽

αλaU (0)
bU (0)

p0,0 if m = 0,

1
2bU (0)

(αλaU (0)p0,0 + (αλaU (0)− bU (1))p1,0) if m = 1,

1
3bU (0)

󰀕
αλ

2󰁓
k=0

aU (k)p2−k,0 −
2󰁓

k=1

bU (k)(3− k)p3−k,0

󰀖
if m = 2,

1
4bU (0)

󰀕
αλ

2󰁓
k=0

aU (k)p3−k,0 −
3󰁓

k=1

bU (k)(4− k)p4−k,0

󰀖
if m = 3,

1
bU (0)

2󰁓
k=0

󰀕
αλ

aU (k)
m+ 1 + ξU,k,m

󰀖
pm−k,0 −

ξU,3,m
bU (0)

pm−3,0 if m ≥ 4.

(2.11)
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In a similar way, we get

p0,m+1 =

󰀻
󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰀽

βνaV (0)
bV (0)

p0,0 if m = 0,

1
2bV (0)

(βνaV (0)p0,0 + (βνaV (0)− bV (1))p0,1) if m = 1,

1
3bV (0)

󰀕
βν

2󰁓
l=0

aV (l)p0,2−l −
2󰁓

l=1

bV (l)(3− l)p0,3−l

󰀖
if m = 2,

1
4bV (0)

󰀕
βν

2󰁓
l=0

aV (l)p0,3−l −
3󰁓

l=1

bV (l)(4− l)p0,4−l

󰀖
if m = 3,

1
bV (0)

2󰁓
l=0

󰀓
βν aV (l)

m+1 + ξV,l,m

󰀔
p0,m−l −

ξV,3,m
bV (0)

p0,m−3 if m ≥ 4.

(2.12)

2.5.5 Remarks.

1) The recursive relations (2.11) and (2.12) are of Panjer type.

2) The recursive relations (2.11) and (2.12) depend on only p0,0, assumed that the
parameters ai and bi, i ∈ {U, V }, are given. Next, p0,0 is computed from the natural
condition

󰁓
i,j≥0 pi,j = 1.

3. Method for parameter estimation

Let Ξ = (U, V ) be a discrete bivariate random vector with d.f. as defined via the
recursive relations in Subsections 2.2.1 and 2.2.2. Such definitions do not provide
the explicit d.f. of this r.v., but its p.g.fs involving parameters are known. In this
section, we aim to estimate such parameters.

For what follows, without loss of generality we assume that U and V take non-
negative integer values. Let (u1, v1), . . . , (uτ , vτ ) be a sample of independent ob-
servations of (U, V ).

Assuming the hypotheses given in the previous section, we have the equation
(2.4). Denoting QU (z) = φ′

U (z) and QV (t) = φ′
V (t), all of them being rational

functions, this equation can be written as, for some constant κ > 0,

∂2φΞ

∂z∂t
(z, t) = κUκV QU (z)QV (t)φΞ(z, t).

Consequently, a solution of this equation is

φΞ(z, t) = exp

󰀕
−
󰀕
κU

󰁝 1

z
QU (s)ds+ κV

󰁝 1

t
QV (s)ds

󰀖󰀖
. (3.1)
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We denote by φΞ,θ the function φΞ when considering the parameters θ. We obtain
QU,θ and QV,θ correspondingly.

In order to estimate the parameters of the p.g.f. of Ξ given the sample provided
above, we use the p.g.f. and e.p.g.f. of this variable, see 󰁥φΞ,τ defined in (1.3).
The idea is to fit the e.p.g.f. of Ξ by using its p.g.f., φΞ,θ where θ is the vector of
parameters associated to this p.g.f. To this aim, we adopt the Hellinger type distance
(h.t.d.) for two dimensions

dτ (θ) =

󰁝 1

0

󰁝 1

0

󰀓
φα
θ,Ξ(z, t)− 󰁥φα

Ξ,τ (z, t)
󰀔2

dz dt

proposed in [27]. Note that dτ (θ) = 0 if and only if φα
Ξ,θ(z, t) =

󰁥φα
Ξ,τ (z, t), for all

α > 0 and z, t ∈ [0, 1]. Jiménez-Gamero and Batsidis [13] proposed variants for
this distance, by incorporating a function weight in the integral expression.

Let Θ be the set of parameters θ associated to Ξ through its p.g.f.

The minimum rational h.t.d. (m.r.h.t.d.) estimator of θ, 󰁥θτ = minθ∈Ω dτ (θ), is
a strongly consistent estimator, as proved in [27]. This property of 󰁥θτ is expressed
in the following adapted result.

Proposition 3.1 (Proposition 1 given in [27]). Fix θ, say θ0. Assume that the
parameter space Ω is compact. Then, almost surely

󰀏󰀏φα
Ξ,τ (z, t) − φα

Ξ,θ0
(z, t)

󰀏󰀏 → 0

implies that almost surely
󰀏󰀏󰁥θτ − θ0

󰀏󰀏 → 0 as τ → ∞.

An extra hypothesis included in Proposition 1 given in [27] is that φΞ,θ(z, t) is
differentiable with respect to θ under the integral sign. However, such an assump-
tion is obviously satisfied in our setting since φΞ,θ is based on rational functions.
Furthermore, we fix α = 1

󰀑
2 in order to facilitate computations. In this case, 󰁥θτ

satisfies other nice asymptotic properties because α < 1, see e.g. [13]. Some of
them are reviewed below.

In order to find nice properties for the m.r.h.t.d. estimator, we assume the fol-
lowing:

Assumption. The m.r.h.t.d. has a unique minimum at θ∗ ∈ Θ.

Besides this assumption, Jiménez-Gamero and Batsidis [13] assumed two more.
One to guarantee continuity of the m.r.h.t.d. as a function of θ, and another to guar-
antee twice continuously differentiability of φΞ,θ(z, t). Both of them are satisfied
by the m.r.h.t.d. and φΞ,θ(z, t) because of their construction based on continuously
differentiable functions. Then, these authors proved that the m.r.h.t.d. estimator
satisfies the following result.

Theorem 3.1 (Theorem 1 in [13]). Suppose that Assumption holds and that
P (Ξ = 0) > 0, then almost surely 󰁥θτ → θ∗ as τ → ∞.
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Furthermore, the following result also proved by these authors presents the con-
vergence rate of the previous limit.

Theorem 3.2 (Theorem 2 in [13]). Suppose that Assumption holds, then

√
τ
󰀃󰁥θτ − θ∗

󰀄
=

1√
τ

τ󰁛

i=1

ℓ((ui, vi),θ∗) + oP (1),

where ℓ((u, v),θ) = D−1(θ)h((u, v),θ),

D(θ) =
1

2

󰁝 1

0

󰁝 1

0

1

φΞ,θ(z, t)
∇θφΞ,θ(z, t)∇θφΞ,θ(z, t)

′ dtdz

+
1

2

󰁝 1

0

󰁝 1

0

φ
1/2
Ξ (z, t)− φ

1/2
Ξ,θ(z, t)

φ
3/2
Ξ,θ(z, t)

∇θφΞ,θ(z, t)∇θφΞ,θ(z, t)
′ dtdz

−
󰁝 1

0

󰁝 1

0

φ
1/2
Ξ (z, t)− φ

1/2
Ξ,θ(z, t)

φ
1/2
Ξ,θ(z, t)

∇θθφΞ,θ(z, t) dtdz,

and

h((u, v),θ) = −1

2

󰁝 1

0

󰁝 1

0

zutv − φΞ(z, t)

φ
1/2
Ξ (z, t)φ

1/2
Ξ,θ(z, t)

∇θφΞ,θ(z, t) dtdz.

4. Estimation method analysis via simulation

In this section, we assess the performance of the method proposed for estimating
parameters when the sample size varies and outliers are included in simulated data.
To this aim, we consider simulations of a r.v. Ξ = (X1, X2) following the bivariate
Poisson distribution (BPD) given by Xi = R0 +Ri, i ∈ {1, 2}, where R0, R1, and
R2 are independent r.v.s following Poisson distributions with parameters p0 = 0.1,
p1 = 1.0, and p2 = 1.0, respectively. Such simulations are performed using the
function rbp of the package bzinb available in the environment programming R.
Since the model of Ξ is known, its parameters are estimated by using the maximum
likelihood method implemented in the function bp also included in the package
indicated previously.

We analyze sample sizes from 50 to 500, increasing these sizes by 50 each time.
These data are also analyzed when 10 % of them are replaced by outliers. These
outliers are introducing by multiplying by 3 the last 10 % of data obtained randomly.
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Note that the p.g.f. associated with Ξ does not allow a representation like (2.9).
In order to have a r.v. close to Ξ, but allowing a representation like (2.9), we consider
Ξ′ = (R1, R2). The distribution associated to Ξ′ is denoted by BM0. For this
model, the following couple of one-parameter functions QU and QV are such that:

QU (x) = αU and QV (x) = αV ,

respectively. Furthermore, following the notations of Theorem 2.1, we find that
some constants of QU and QV are fixed. More precisely, we have

κU = 1, aU (0) = αU , bU (0) = 1, κV = 1, aV (0) = αU , bV (0) = 1.

Also, because the introduction of outliers can lead to the fitting of models that are
different from the one associated to Ξ, we consider the following two variants of our
bivariate models (BM). For the first model, BM1, its corresponding two-parameter
functions QU and QV are:

QU (x) = αU
1 + 0.5βUx

1− (βUx)2
and QV (x) = αV

1 + 0.5βV x

1− (βV x)2
, (4.1)

respectively. Note that QU and QV conform the conditions to generate the Panjer-
type relations like (2.8). However, clearly, the integrals of QU and QV are not
rational functions. Furthermore, following the notations of Theorem 2.1, we find
that some constants of QU and QV are fixed. More precisely, we have

κU = 1, aU (0) = αU , aU (1) = 0.5αUβU , bU (0) = 1, bU (1) = 0, bU (2) = −β2
U ,

and

κV = 1, aV (0) = αV , aV (1) = 0.5αV βV , bV (0) = 1, bV (1) = 0, bV (2) = −β2
V .

For the second model, BM2, its corresponding two-parameter functions QU and QV

are:

QU (x) = αU
1 + βUx+ (βUx)

2

1− 0.5(βUx)3
and QV (x) = αV

1 + βV x+ (βV x)
2

1− 0.5(βV x)3
,

(4.2)
respectively. In this case, QU and QV also conform the conditions to generate
the Panjer-type relations like (2.8). However, the integrals of QU and QV are not
rational functions. With respect to the notations of Theorem 2.1, some constants of
QU and QV are fixed as follows. κU = 1, aU (0) = αU , aU (1) = αUβU , aU (2) =
αUβ

2
U , bU (0) = 1, bU (1) = 0, bU (2) = −β3

U , and κV = 1, aV (0) = αV , aV (1) =
αV βV , aV (2) = αV β

2
V , bV (0) = 1, bV (1) = 0, bV (2) = −β3

V . For parameter
estimating of our models, we use suitable adaptations of the initial values given by
(2.11) and (2.12).
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We study goodness-of-fits of all models of simulated data. To this aim, the
Akaike criterion information (AIC), see [2], and the Bayesian criterion information
(BIC), see [36], are used. If ℓ is the log-likelihood of a model given a sample size τ ,
and q is the number of parameters estimated, these measures are defined by −2ℓ+2q
and −2ℓ+ q ln τ , respectively.

As the 3-parameter Poisson distribution is the right distribution for data without
outliers, we divide the AIC and BIC values by the ones of this distribution, respec-
tively. In this way, all those results are comparable through the diverse sample sizes
taken into account. Note that, the AIC and BIC values increase when the sample
size increases. Figure 1 presents those outputs. As expected, all models perform
worse than the 3-parameter Poisson distribution. However, all of them except BM1

tend to reach the AIC and BIC values of the 3-parameter Poisson distribution when
the sample size increases and data do not contain outliers. Considering that the
data contain outliers, all models tend to perform worse each time the sample size
increases.
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Figure 1: Goodness-of-fit of simulated data: AIC (left) and BIC (right)

In practice, where the presence of outliers is unknown, models giving better
goodness-of-fits would be favorite. Since in our simulation setting the model from
which simulated data are obtained is known, it would be still expected such a model
will be the favorite one. Considering data with outliers, Figure 2 shows results
of dividing the AIC and BIC values of the studied models by the ones of the 3-
parameter Poisson distribution, respectively. As expected again, the model from
which outliers come from is favorite. However, in this case, a different model may
be also favorite. It corresponds to the BM2, which shows a similar performance like
that of the 3-parameter Poisson distribution.
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Figure 2: Goodness-of-fit of simulated data with outliers: AIC (left) and BIC (right)

5. Numerical illustrations

In this section, we present two applications of our models to real data sets. These
data sets have already been used by scholars to assess other models. Considering
those results, comparisons with competitors are shown.

As alternatives to models studied by other authors, we consider BM1 and BM2

introduced in the previous section. For selecting models through all the models
taken into account, the AIC and BIC are used.

5.1 Number of motor vehicle accidents

Arbous and Kerrich [3] presented data on the number of accidents experienced by
122 shunters over two non-overlapping intervals of time, from 1937 to 1942 and
from 1943 to 1947, see also [1]. These data have attracted the attention of schol-
ars to assess new models. For instance, Famoye and Consul [10] proposed a six-
parameter correlated bivariate generalized Poisson distribution (BGPD) and Sellers
et al. [33] built the six-parameter bivariate ConwayMaxwellPoisson distribution
(BCOMPD). Bivariate Poisson distributions (BPD) have been also used for mod-
eling these data, for instance [3]. We take into account the three-parameter BPD
implemented in bivpois, which is a package used within the R statistical lan-
guage and environment. Details of this BPD are presented in e.g. [16]. Also, we
consider the results for the four-parameter bivariate negative binomial distribution
(BNBD) given in [33].

Estimates of the parameters of our models are presented in Table 1.
The maximum number of accidents observed were 6 during the first period and

7 during the second one. For presentation of results, we adopt the maximum of both
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Model αU βU αV βV

BM1 0.8580 0.4358 0.6456 0.4719
BM2 0.3415 0.8345 0.3786 0.6255

Table 1: Number of motor vehicle accidents: estimates for the parameters of the
models BM1 and BM2.

as usually done through those authors. Table 2 presents expected values obtained
from the models BM1 and BM2 when the data about numbers of accidents are fitted.

n \ m 0 1 2 3 4 5 6 7+ Total
0 Obs. 21.00 18.00 8.00 2.00 1.00 0.00 0.00 0.00 50.00

BM1 19.63 16.85 9.06 4.71 2.29 1.10 0.52 0.26 54.45
BM2 19.70 16.44 9.66 4.89 2.27 1.00 0.42 0.15 54.56

1 Obs. 13.00 14.00 10.00 1.00 4.00 1.00 0.00 0.00 43.00
BM1 12.67 10.88 7.77 3.81 1.96 0.92 0.44 0.17 38.67
BM2 12.32 10.28 8.06 4.08 1.90 0.88 0.38 0.09 38.02

2 Obs. 4.00 5.00 4.00 2.00 1.00 0.00 1.00 0.00 17.00
BM1 5.58 3.60 2.58 1.44 0.73 0.36 0.17 0.10 14.60
BM2 6.18 3.87 3.03 1.71 0.81 0.36 0.16 0.06 16.21

3 Obs. 2.00 1.00 3.00 2.00 0.00 1.00 0.00 0.00 9.00
BM1 2.78 2.00 1.32 0.71 0.36 0.18 0.08 0.05 7.52
BM2 2.85 1.78 1.28 0.72 0.35 0.16 0.07 0.03 7.27

4 Obs. 0.00 0.00 1.00 1.00 0.00 0.00 0.00 0.00 2.00
BM1 1.28 0.83 0.54 0.30 0.15 0.07 0.03 0.03 3.27
BM2 1.25 0.82 0.57 0.31 0.15 0.07 0.03 0.01 3.24

5 Obs. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
BM1 0.62 0.42 0.27 0.14 0.07 0.03 0.01 0.01 1.62
BM2 0.53 0.33 0.23 0.12 0.06 0.02 0.01 0.00 1.34

6 Obs. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
BM1 0.29 0.18 0.11 0.06 0.03 0.01 0.00 0.00 0.73
BM2 0.22 0.14 0.09 0.05 0.02 0.01 0.00 0.00 0.55

7+ Obs. 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00
BM1 0.45 0.38 0.15 0.07 0.03 0.01 0.00 0.00 1.12
BM2 0.29 0.27 0.11 0.05 0.02 0.00 0.00 0.00 0.76

Total Obs. 40.00 39.00 26.00 8.00 6.00 2.00 1.00 0.00 122.00
BM1 43.34 35.17 21.83 11.27 5.67 2.72 1.29 0.66 122.00
BM2 43.38 33.96 23.07 11.95 5.60 2.53 1.09 0.39 122.00

Table 2: Observed (Obs.) and expected, under the models BM1 and BM2, numbers
of accidents among 122 shunters.

Now, we assess all models considered. We present in Table 3 both AIC and
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BIC values of all those models. The values of ℓ are included, which were taken
from [33] for the models BPD, BNBD, BGPD, and BCOMPD. Lower AIC and BIC
values, better fit models. The lowest AIC and BIC values are highlighted. Therefore,
the BNBD is favored when considering both the AIC and BIC. With respect to our
models, BM1 performs better than BGPD and BCOMPD when considering the BIC,
and BM2 performs better than BGPD, BCOMPD and BM1 when considering the
BIC and also than BM1 when considering the AIC.

Statistic BPD BNBD BGPD BCOMPD BM1 BM2

AIC 697.2700 691.2200 695.0260 695.4080 700.0423 698.8119
BIC 705.6821 702.4361 711.8501 712.2321 711.2584 710.0280
ℓ −345.635 −341.610 −341.513 −341.704 −346.021 −345.406

Table 3: AIC and BIC: numbers of accidents among 122 shunters

5.2 Football scores

A number of authors have analyzed football scores by using statistical procedures,
see e.g. [22, 8, 6]. We consider the data set of the football scores between ACF
Fiorentina and Juventus from 1996 to 2011. These data were presented by Lee et
al. [21]. It consists of 26 matches, registering the goals scored by each team. In this
application, we aim to fit the scores of these matches by using our models BM1 and
BM2. Additionally, we retake the BPD indicated in the previous application.

Estimates of the parameters of our models are presented in Table 4.

Model αU βU αV βV

BM1 1.1806 −0.2443 1.8572 0.2545
BM2 1.0914 0.0251 1.7540 0.0000

Table 4: Football scores: estimates for the parameters of the models BM1 and BM2

The maximum number of accidents observed were 6 during the first period and
7 during the second one. For presentation of results, we adopt the maximum of both
maximum numbers of accidents observed as usually done through those authors.
Table 5 presents expected values obtained from the models BM1 and BM2 when the
data about numbers of accidents are fitted.

When all models considered are assessed, we find that BM1 performs better than
BPD and BM2 as for AIC as well for BIC, Table 6.
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n \ m 0 1 2 3+ Total
0 Obs. 1.00 5.00 0.00 0.00 6.00

BM1 1.28 2.38 2.06 0.37 6.11
BM2 1.34 2.36 2.07 1.21 7.00

1 Obs. 1.00 8.00 6.00 1.00 16.00
BM1 1.51 2.81 3.83 0.46 8.63
BM2 1.47 2.58 3.64 2.12 9.82

2 Obs. 0.00 0.00 0.00 0.00 0.00
BM1 0.80 0.94 1.29 0.38 3.43
BM2 0.82 0.89 1.26 1.17 4.16

3+ Obs. 1.00 0.00 1.00 2.00 4.00
BM1 1.86 3.41 1.91 0.62 7.81
BM2 0.31 0.34 0.30 0.28 1.25

Total Obs. 3.00 13.00 7.00 3.00 26.00
BM1 5.46 9.57 9.10 1.85 26.00
BM2 3.95 6.19 7.29 4.81 26.00

Table 5: Observed (Obs.) and expected, under the models BM1 and BM2, numbers
of goals among 26 matches

Statistic BPD BM1 BM2

AIC 135.8319 135.5629 136.7675
BIC 141.6856 140.5953 141.7998
ℓ −64.9159 −63.7814 −64.3837

Table 6: AIC and BIC: numbers of goals among 26 matches

6. Concluding Remarks

We developed a large family of discrete bivariate distributions whose probabil-
ity distribution functions satisfy relations of Panjer type. This family was built by
modeling differential equations of the probability generating functions (p.g.f.) of
their members. By incorporating parametrized rational functions in these differ-
ential equations, we facilitate the generation of a variety of bivariate distributions.
When these models are used to fit data sets, we propose the minimization of dis-
tances between p.g.fs and empirical p.g.f. for estimating parameters.

Two of these models were applied for modeling a couple of real data sets. These
results show that members of this new family of distributions may outperform com-
petitors.

Acknowledgment. The work of the second author has been supported by
the Alexander von Humboldt Foundation under the grant number: Ref. 3.4-IRN-
1128637-GF-E.



New bivariate probability models based on Panjer-type relations 61

REFERENCES

[1] A.M. Adelstein, Accident Proneness: A Criticism of the Concept Based Upon an
Analysis of Shunters’ Accidents, J. R. Stat. Soc. Ser. A Stat. Soc. 115 (3) (1952),
354–410.

[2] H. Akaike, A new look at the statistical model identification, IEEE Trans. Automat.
Contr., 19 (6) (1974), 716–723.

[3] A.G. Arbous, J.E. Kerrich, Accident Statistics and the Concept of Accident-Proneness,
Biometrics, 7 (4) (1951), 340–432.

[4] H.S. Bakouch, M. Aghababaei Jazi, S. Nadarajah, A new discrete distribution, Statis-
tics 48 (1) (2014), 200–240.

[5] L. Baringhaus, N. Henze, A goodness of fit test for the Poisson distribution based on
the empirical generating function, Stat. Probab. Lett., 13 (1992), 269–274.

[6] G. Boshnakov, T. Kharrata, I.G. McHale, A bivariate Weibull count model for fore-
casting association football scores, Int. J. Forecast., 33 (2) (2017), 458–466.

[7] L.G. Doray, S.M. Jiang, A. Luong, Some Simple Method of Estimation for the Param-
eters of the Discrete Stable Distribution with the Probability Generating Function,
Commun. Stat. - Simul. Comput., 38 (9) (2009), 2004–2017.

[8] L. Egidi, F. Pauli, N. Torelli, Combining historical data and bookmakers’ odds in
modelling football scores, Stat. Modelling, 18 (2018), 436–459.

[9] M.L. Esquivel, Some applications of probability generating function based methods
to statistical estimation, Discuss. Math. Probab. Stat., 29 (2009), 131–153.

[10] F. Famoye, P.C. Consul, Bivariate Generalized Poisson Distribution with Some Appli-
cations, Metrika, 42 (1995), 127–138.

[11] E. Gomez-Deniz, E. Calderin-Ojeda, The discrete Lindley distribution: properties and
applications, J. Stat. Comput. Simul. 81 (11) (2011), 1405–1416.

[12] A. Guldberg, On discontinuous frequency functions of two variables, Scand. Actuar.
J., 1 (1934), 89–117.
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