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A b s t r a c t. Band theory of crystals, essentially Bloch theory of periodic systems
combined with single-particle approximation, is a scene of detailed and essential analysis of
the band topology by means of application of full crystal group symmetry and combinatorial
graph theoretical methods, eventually yielding topological classification of gapped band
structures. Here we give an introduction to the field by summarizing the symmetry based
techniques used in the band topology considerations.
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1. Introduction

Over the past decade the research of topological and quantum phases of matter is
the most propulsive field of solid state physics. This text is a reminder on the physics
of crystals with concepts rooted in the translational symmetry, firstly extended to pe-
riodic groups, and then the combinatorial methods of the vector bundles, homotopy
theory and K-theory are used in classification of Hamiltonian spectra.

The focus is on the parallel exposition of two dual concepts in the theory of
periodic subgroups of Euclidean group E(3), both related to induction of the group
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representations [1, 2, 3]. The first ingredient assumes group action on the repre-
sentation torus of the translational invariant subgroup, its stratification and con-
struction of the stabilizers’ irreducible (ray) representations, being induced into the
irreducible representations of the group. Analogously, the (geometrical) action in
R3 invokes stratification of this space, with the corresponding stabilizers and their
irreducible representations, which are induced into the band representations [4]. Fi-
nally, decomposition of the band representations over the irreducible ones makes
the framework for topological analyses, starting with contraction of the strata to
vertices, and exploitation of a homotopy of the energy band structure with the graph
obtained.

If G is a group with subgroup F , then the coset decomposition (Lagrange the-
orem) enables to choose a transverzal Z = {z1, . . . , z|G|/|F |}, such that G is a
disjoint union of the cosets ziF . Then for arbitrary group element g and every zi,
gzi belongs to some coset, represented by zj , meaning that there is unique subgroup
element f(h, i) such that gzi = zgif(g, i). Thus, each element g defines the ac-
tion of the group on the transverzal, as well as a mapping of the transverzal into
subgroup. The action on the transverzal can be reperesented in the matrix form: if
Ep

q is standard matrix basis (see Appendix for notation), then |G|/|F |-dimensional
matrix corresponding to g is E(g) =

󰁓
pE

gp
p . This is a permutational matrix (its

elements are zeros except for a single unit in each column and each row). As this
is the group action, these matrices form the ground representation of the group as-
sociated to arbitrary subgroup. Ground representation is a prototypic example of
the induced representation, and the basic ingredient in the construction of arbitrary
induced representation. In fact, if d(F ) is representation of the subgroup F , the
induced representation D(G) = d(F ) ↑ G is defined by:

D(g) =

|G|/|F |󰁛

q=1

EGq
q ⊗ d(f(g, zq)). (1)

A manifestation of the Frobenius theorems is the modified group projector expres-
sion [5] for frequencies fµ

D of the irreducible representations D(µ)(G) in D(G):

fµ
D = 1

|F |Tr
󰁛

f∈F
d(f)D(µ)∗(f). (2)

For the symmetry groups of crystals, i.e. for the periodic groups, the induction
from the translational invariant subgroup is a way to get the irreducible representa-
tions (as explained in Section 2.), the elementary building blocks of all the group
representations (here, only unitary representations are used). On the other hand,
induction from stabilizers of the points in Euclidean space give band representa-
tions (Section 3.), and in particular elementary band representations [6], as basic
ingredients of all the band representations.
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Quantum mechanical description of crystals in the single particle model as-
sumes a Hilbert state space carrying a band representation of the symmetry group,
while the dynamics of the system is described by Hamiltonian, hermitian operator
of energy. Commutation of these two has strong impact on the energy eigenvalues
of the Hamiltonian. Namely, the spectrum is organized in bands, making a real
vector bundle over the (Brillouin zone) torus counting irreducible representations of
translations. Additional symmetry enables further Brillouin zone reduction to irre-
ducible domain. With the help of homotopy (contraction) the band structures can be
transformed into graphs (Section 4.), the analyzes which gives insight to the band
topology characteristics, and eventually get the topological classification of matter.

The discussion and the notation are given at the end of the text.

2. Irreducible representations of periodic groups

Crystals are studied for many centuries, and their symmetry is among the first
observed characteristics. After giving definition of these symmetry groups, the pe-
riodic groups, the construction of their irreducible representations will be reviewed.

2.1. Translations and periodic groups

We consider real vector spaceRN and its Euclidean group E(N) with elements
g = (G |g ) (with G ∈ O(N) and g ∈ RN ) defined by the action gr = Gr + g.
A subgroup G < E(N) is called ℘-periodic if there is a set A = {a1, . . . ,a℘}
of independent vectors from RN generating abelian invariant subgroup (lattice)
T (A) = T (a1) ⊗ · · · ⊗ (a℘) of translations. The factor group G/T (A) = P
is called isogonal point group, and it is naturally isomorphic to a point group (sub-
group of O(N)) obtained by setting g = 0 in all group elements (G |g ). Clearly,
℘ ≤ N , and for ℘ < N the groups G are called subperiodic. It will be assumed
that N = 3, as this is the only interesting case in the solid state physics; then, for
℘ = 1, 2, 3 the corresponding periodic groups are known as line, layer and space
groups. Note that T (ai) is infinite cyclic group generated by (1 |ai ). Only in the
case of the line groups we allow also helical group, generated by (R |a ), where
R(φ) is a rotation for φ around the a-axis; in fact, for π/φ irrational, the helical
group does not contain translations, and it is called incommensurate (in this sense
such a group is not crystallographic). The helical group can be treated in the same
way as the translations, and in the following text there will be no more reference to
this subtlety.

Beside these, purely geometrical groups, also their extensions to the spin-half
spaces (essentially double covering of the subgroup SO(3) to spin group SU(2)) and
groups constructed by inclusion of the time reversal transformation (grey and black-
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and-white) are considered too. In quantum mechanical applications of symmetry
only norm preserving operators are important, and by Wigner’s theorem this means
that the unitary representations of ordinary (single and double) groups, as well as
unitary co-representations (with antiunitary coset action) of grey and black-and-
white groups are looked for. Therefore all (co-)representations can be decomposed
into irreducible components, and the first task is to find them.

2.2. Irreducible representations

Since T is product of (infinite) cyclic groups, its irreducible representations
are ∆(k)( 1 | t ) = eikt with momentum vector k from Brillouin zone ✵(A) =
(−π,π]×℘ (torus T℘). Then, it should be noted that conjugation g(1 | a )g−1 of
the translations by arbitrary group element g = (G | g ) gives, via g-conjugation
of irreducible representations of T (A), the group action on ✵ as ℘-dimensional
polar-vector representation u(G) = G℘ (reduction of G in the subspace spanned by
A):

∆(k)
g (1 |t) = ∆(k)(g(1 |t)g−1) = ∆(gk)(1 |t) = ∆(G℘k)(1 |t).

This action stratifies Brillouin zone: orbit of k is called star, denoted as k∗, and
representatives of all the stars form the irreducible domain ✵G. Strata ✵K

G are sub-
domains with conjugated stabilizers, and their intersection with irreducible domain
will be called ID-strata (making partition of ID). According to the basic topological
theorem [7], the interior (dense in ✵G) ✵i

G is generic stratum, which is surrounded
by the boundary ✵b

G, consisted of the special planes and lines and isolated spe-
cial points. Obviously, the translations fix arbitrary k; hence, each stabilizer (little
group) F k has the translational invariant subgroup (it is also a ℘-periodic group; the
properties to be discussed refer both to strata and to ID-strata, unless specified other-
wise). Since it is fixed (up to the conjugation along the orbit) for the whole stratum,
it will be denoted as FK ; consequently, the factor group PK = FK/T (sometimes
called small stabilizer) is a subgroup of P and a supergroup of the generic stratum
small stabilizer P i. Thus |k∗| = |G|/|FK | = |P |/|PK |, and elements of stabilizer
FK (fixing k = k∗

1) are fk∗
= (P |p), with P from PK .

Irreducible representations of G are obtained by induction procedure, using this
stratification. The symmetry group G decomposes into the cosets of FK , with
the transverzal ZK = {zKq = ( ZK

q | zK
q ) | q = 1, . . . , |k∗|} (conventionally

(Z1 |z1 ) = (1 |0)): Zk∗
q maps k = k1 into kq = Zk∗

q k, and the group permutes
the elements of the star: relation kGq = Gkq(= gkq) associates to q the Gq-th star
point, and the corresponding permutational matrices form |k∗|-dimensional ground
representation E(P ) of the isogonal group (also of the whole group E(G)) over
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k∗. An irreducible representation is then obtained by induction [8]:

D(Kkκ)(g) =

|k∗|󰁛

q=1

EGq
q ⊗ d(kκ)(fK(g, zKq )) =

|k∗|󰁛

q=1

EGq
q ⊗∆(k)(1 |pq )d

(κ)(Pq)

=

|k∗|󰁛

q=1

EGq
q ⊗ eiGk·(Gzq+g−zGq)d(κ)(Pq). (3)

Here, the orbit representative zKGq = zKgq (since q stands for kq, and in Brillouin
zone gk = Gk) and the little group elements fK(g, zKq ) = (Pq |pq ) are defined by
gzKq = zKgqf

K(g, zKq ):

Pq = Z−1
GqGzq ∈ P k, pq = Z−1

Gq (Gzq + g − zGq). (4)

Further, d(Kkκ)(P |p) = ∆(k)(1|p)d(Kκ)(P ), is irreducible representation of FK ,
obviously allowed (subduces |κ|∆(k)(T )). In fact, this is provided by condition

d(κ)(P )d(κ)(P ′) = c(P, P ′)d(κ)(PP ′), c(P, P ′) = eik·(Pp′−p′), (5)

giving the algorithm of its construction: d(Kκ)(P k) is a projective irreducible rep-
resentation of PK , with factor system c(P, P ′), and it is extended to the (allowed)
representation d(Kkκ)(FK).

Note that the phase eik·(Pp′−p′) is independent of κ, and only specifies the point
in Brillouin zone, thus it is the same for all irreducible representations associated
to k∗. In fact, since P is from P k, this phase is trivial (and the irreducible repre-
sentation d(κ)(P k) is linear) whenever k is in the interior of ✵: relation Pp′ ∼ p′

allows Pp′ ∕= p′ only at the boundary (and only for nonsymorphic groups). For
each point k of ✵K

G complete set (counted by κ) of the nonequivalent irreducible
projective representations of P k with the factor system (5) defines the set of asso-
ciated irreducible representations (3) of G; collection of these over ✵G is complete
set of nonequivalent unitary irreducible representations of G, with finite dimen-
sion |D(Kkκ)| = |κ||G|/|F k|. Further, since the (small) stabilizer is common for
the whole stratum, the (projective) representation d(Kκ)(PK) is the same along the
strata, and each stratum K defines the set of associated irreducible representations
D(Kkκ)(G), such that for fixed κ a series parameterized by k has the matrices of
the same form (differing in the k-value only).

Taking all the representations (3) for each stratum K, each k from the ID-strata
K and the corresponding nonequivalent irreducible (ray) representations of the
small stabilizer, one gets complete set of irreducible representations of G. Thus, ir-
reducible representations of G are parameterized by quantum numbers µ = (Kkκ):
k is quasi-momentum vector k from Brillouin zone (and the representation involves
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the whole star), while κ comprises the isogonal group quantum numbers (angular
momentum and/or parities originating in O(3)), counting representations (5) of the
small stabilizer P k. Precisely, for each k, there is a choice κk of the compatible
orthogonal quantum numbers. The representations associated to the same stratum
✵K
G are κ-series differing in k (with the same κ): in Γ-point (k = 0) these are

representations of P Γ = P ; for generic stratum with trivial P i (in all space and
layer groups without horizontal mirror symmetry), there is single series with unit
representation of the small stabilizer.

2.3. Decomposition of representations

Any representation D(G) (in the space S) decomposes into the irreducible com-
ponents with frequency numbers fKkκ

D :

D(G) =
󰁛

Kkκ

fKkκ
D D(Kkκ)(G). (6)

Then the symmetry adapted basis (with standard basis {|κa〉} of d(κ)(P k))

{|(k,κ), tKk
κ , (p, a)〉 | k ∈ ✵K

G; tKk
κ = 1, fKkκ

D ; p = 1, |k∗|; a = 1, |κ|} (7)

consists of the multiplets {|(k,κ), tKk
κ , (1, a)〉 | p = 1, |k∗|; a = 1, . . . , |κ|}, and

in the view of (3), the basis transformation rule is:

D(g) |(k,κ), tKk
κ , (p, a)〉 =

󰁛

a′

eikgpd
(κ)
a′a(Gp) |(k,κ), tKk

κ , (Gp, a′)〉. (8)

The space Sk (Bloch space introduced in Subsection 3.) corresponding to the point
k includes only k-parts (fixed p) of a multiplet associated to Kk; the rest is from
the spaces of the other points in the star. Hence Sk is not invariant for G, but the
invariant space is the sum over k∗.

In particular, stabilizer elements f = (P |p) act as

D(f) |(k,κ), tKk
κ , (1, a)〉 =

󰁛

a′

eikpd
(κ)
a′a(P ) |(k,κ), tKk

κ , (1, a′)〉.

With notation accommodated to the counters Kk = k∗ and q = kq of stars and star
points, (3) provides the form

D(g) =
󰁛

Kk

EKk,gq
Kk,q ⊗ dk(fk(g, q)) dk(f) =

󰁛

κ

fKkκ󰁛

tKk
κ =1

d(Kκ)(f). (9)

This manifests once again that the subspace invariant under the whole group join
star of the point fibres. This also justifies that irreducible domain generates all the
irreducible representations.
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3. Band theory

Hamiltonian, as quantum mechanical represent of energy, governs the dynamics
of any system. In crystalline matter it has special spectral properties imprinted by
symmetry.

3.1. State space and Bloch theory

In a single particle problem the state space is infinite dimensional separable
Hilbert’s space S , with Lebesgue’s space L(R3) as its coordinate representation.
This space is tensor product of three spaces L(R). Each irreducible representation
∆(k)(T ) of the full translational subgroup of the Euclidean group appears once in
this space, with symmetry adapted basis |k〉 (eigenbasis of the momentum operator).
For ℘-periodic discrete translational group T (A) the representations ∆(k)(T (A))
are from Brillouin zone ✵(A), and the vectors | k〉 differing for a vector K of
inverse lattice (spanned by basis ai such that (ai,aj) = 2πδij) transform according
to the same representation. Hence, each representation occurs infinitely many times,
and the vectors can be relabeled: | k,K〉 =| k +K〉 (k ∈ ✵(A), K =

󰁓
zia

i,
zi ∈ Z); with fixed k, these vectors are basis of infinite-dimensional isotypic space
Sk. Generalizing, the action of ℘-periodic discrete translational group T (A) in the
space S introduces natural decomposition L(R3) = L(R℘) ⊗ L(R3−℘) into the
space over the periodic coordinates, and the complementary space. Taking arbitrary
basis | i〉 in the second factor, the symmetry adapted basis gets form |k,K〉⊗ | i〉,
where k is from Brillouin zone ✵(A) and K counted by Z℘. Hence, the isotypic
spaces Sk are infinite-dimensional, with basis containing symmetry adapted vectors
with fixed k.

It is of utmost importance that the irreducible representations of T (A) are
equally populated in the single particle state space: the frequency number fk =
|Sk| = |Z℘||L(R3−℘)|, though infinite, is k-independent, i.e. the isotypic spaces
Sk are of the same dimension |Sk| = |S0|. This gives rise to the natural, k-
dependent isomorphism between S0 (space of invariants under T (A)) and Sk, re-
alized by Bloch theorem: Sk = eikS0. Hence, S becomes a fiber bundle with
base manifold ✵(A) and fibre S0. Hamiltonian H , commuting with translations is
reduced in each of the spaces Sk into h(k), and natural isomorphism gives Bloch
Hamiltonians H(k) = e−ikh(k)eik acting in S0; they make operator field over
✵(A).

3.2. Inductive models

In the effective physical models, the approximate single particle spaces are con-
structed as a sum of the mutually equivalent subspaces associated to elementary
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cells: S = ⊕tSt, where St (with a basis {| ti〉 | i = 1, |S0|} of ”orbitals”) is as-
sociated to the cell t = (t1, . . . , t℘). The only translation fixing the cell is identity
(stabilizer is trivial {e}). Hence, the state space carries the representation induced
from the |S0|-dimensional unit representation 1S0 of (trivial) stabilizer. Expression
(2), after substituting d(F ) = 1S0 , becomes fk

D = |S0|. This result justifies that
the inductive state space preserves the full state space fiber bundle picture; only the
fiber Sk is finite dimensional with symmetry adapted basis |ki〉 =

󰁓
eikt |ti〉.

Concerning total symmetry group, it has been shown that only the star spaces
Sk∗

= ⊕k∈k∗Sk are invariant for G, since group maps k into the whole star k∗.
Hence, the irreducible domain, with single k from each star, with corresponding
fibres completely define the whole state space, also inheriting the bundle structure.
Note further, that in this case dk(F k) defined in (9) is of the fixed (k-independent)
dimension d = |Sk|, although the stabilizer depends of k; it is called Bloch repre-
sentation.

3.3. The Bloch Hamiltonian – bands

Hamiltonian, the quantum mechanical operator H associated to energy, by def-
inition commutes with the symmetry group G, meaning that it commutes with all
representative operators D(G). In particular, commutation D(T (A))H
= HD(T (A)) with translational subgroup implies that H reduces in the spaces
Sk into Bloch Hamiltonians h(k) = hkk:

H =
󰁛

k∈✵
Ek

k ⊗ h(k). (10)

Commutation, with help of (9), shows that Bloch Hamiltonians within a star are
related by Bloch space representation of stabilizer dk(F k) (sum of the allowed
components associated to k):

h(gk) = dk(fk(g,k))h(k)dk
−1

(fk(g,k)) (11)

it is assumed that k∗ is generated by k = k∗
1 from irreducible domain. In particular,

in two cases, when g is from F k, and when it is a transverzal element, one obtains:

h(k) = dk(fk)h(k)dk
−1

(fk), (12)

h(kp) = dk(fk(zp,k))h(k)d
k−1

(fk(xp,k)) = h(zpk). (13)
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4. Band graphs and band topology

Due to the reduction of H in Bloch spaces Sk, the eigenvalues of Bloch Hamil-
tonians form energy bands: they are functions Ei(k) (i = 1, d) over Brillouin zone,
in accordance with (10). Topological properties of these bands are to a large extent
determined by symmetry. The first step in this direction is to represent the bands as
graphs, which will be classified afterwards. This is achieved by contraction of strata
and band-patches over them; contraction as a special type of homotopy, preserves
some of the topological properties of the band structures. Therefore, counting pos-
sible band-graphs is important to understand topology of energy bands, and this is
the main subject of the section. Precisely, possible diagrams of bands can be classi-
fied by symmetry, in the following procedure based on compatibility relations and
monodromies.

4.1. Irreducible domain graph

As it has been explained, the group action partitions Brillouin zone into strata.
Taking a single representative from each orbit, and grouping the equivalent orbits,
the irreducible domain is obtained, with strata (of representatives) of dimensions
varying from 0 to ℘. Among them there is a ℘-dimensional generic stratum (its sta-
bilizer is minimal, though not necessarily trivial), and the strata of lower dimension
and higher symmetry (larger stabilizers) are on its boundary. In fact, the strata of
lower dimension are at the boundary of the strata of gretaer dimension. Generally,
the strata are partially ordered set, following supergroup-subgroup relation of the
stabilizers. This order has important property: if stratum B is on the boundary of
stratum A, then the stabilizers are ordered as FA < FB . Just the last relation is
used to define ID-graph (graph of the irreducible domain): the vertices are different
strata (each contracted to a point); each vertex (stratum) is connected to the ver-
tex corresponding to its boundary strata, with edges oriented from higher to lower
symmetry, i.e. from boundary to the interior stratum.

4.2. Band graph

Further, it is intuitively clear that arbitrary band structure can be in the same way
contracted into a graph. Namely, each band is a surface over Brillouin zone, parti-
tioned into subbands corresponding to strata (patches over strata). Contracting the
patches along with the strata in irreducible domain, each band is converted to a band-
graph over (projected into) ID-graph. The vertices of band-graph are (associated to
stratum) irreducible representations assigning the patches over stratum, while the
edges of the band graph are projected into ID-graph edges, i.e., they connect, as
prescribed by compatibility relations, different irreducible representations assigned
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to the connected strata; in addition, monodromy can impose “vertical” edges, con-
necting representations associated to the same stratum (of the nonzero dimension).
Connections (crossings) of different bands are realized in the high symmetry strata
(with more dimensional allowed representations) via compatibility relations.

In other words, there is a bundle with ID-graph as a basis, and fibre in each ver-
tex (stratum) being set of the irreducible representations associated to the stratum.
Then band-graph is a sort of a section of this bundle: to a stratum K corresponds
an associated irreducible representation D(Kkκ)(G) (and allowed representations
δ(Kκ)(FK) of the stabilizer) assigning band patch. However, some of the bands
may be connected, and a band structure separated from other bands is in general
multivalued function (several sections) over ID-graph; still, recall that the that the
band degeneracy is constant, which gives restriction to possible sections.

4.2.1. Compatibility relations. The theorem that more symmetric strata are on
the boundary of the less symmetric ones enables to transfer partial order among
the subgroups to the neighboring strata: if the stratum B is on the boundary of
the stratum A (consequently FA < FB and for the factor groups PA < PB).
Therefore, allowed representations of FB can be subduced to FA:

d(Bβ)(FB ↓ FA) =
󰁛

α

fAα
Bβ (F

A)d(Aα)(FA). (14)

Compatibility relations are determined by the frequencies fAα
Bβ (F

A): a band patch
assigned by β (on B) is continued (and perhaps split) by all of the fAα

Bβ (F
A): band

patch(es) assigned by the irreducible representations α (associated to A). Note that
this, compatibility rule automatically preserves the degeneracy.

4.2.2. Monodromy. Induction of irreducible representations shows that non-
symmorphic elements of the group are represented by k-dependent matrices, with
matrix elements and eigenvalues depending on some fraction k/C of k. Thus,
these are subperiodic functions, which do not return to the initial value after change
of k for full range of Brillouin zone, but only after C turns around it. In fact,
periodic group G is an extension of (isogonal) point group P by translational group
T , meaning that T ✁ G and G/T ∼= P . Therefore, all symmorphic and non-
symmorphic groups with the same factors P and T are different extensions and they
are classified by the cohomology groups H2(P ,T ) and H3(P ,T ) (note analogy to
representations of double groups, i.e. of group extensions, e.g. SU(2) as a covering
of SO(3)). This is manifested by the energy bands: every turn of k around torus of
Brillouin zone gives another band connected with the previous, and after C turns
bands are returning to the initial value (energy). This is called monodromy (of the
nonsymmorphic) elements, and causes C-connectivity of the bands.

Full monodromy is found in generic stratum, while in the special strata it may
be reduced (and completely absent in special points). As some generic bands can
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be joined in the same band over special strata, the compatibility relations diminish
the number of bands linked only by monodromy in high symmetry strata.

For line groups, nosymmorphic elements (helical axes and glide planes) form
abelian invariant subgroup, which can be used instead of translations in the induc-
tion procedure. This results in ”helical” Brillouin zone (and quantum numbers),
which is C times greater than the standard one. It is clear that the band over ”he-
lical” Brillouin zone gives the connected C standard bands: therefore, with helical
Brillouin zone there is no monodromy, while it appears over linear Brillouin zone.
Analogous procedure can be performed for diperiodic groups, but it is less trans-
parent, since the groups generated by the nonsymmorphic generators may not be
abelian.

4.3. Elementary band representations

For each subgroup of Euclidean group there is a finite number of nonequiva-
lent strata in R3. These are classified according to the conjugation class of their
stabilizers FP . Band representation (BR) D(G) is any induced representation:

D(g) =
󰁛

P

DP (g), DP (g) =

󰀣
󰁛

p

EP,gp
Pp ⊗ δP (fP (g, p))

󰀤
. (15)

If D has not a band subrepresentation it is called elementary band representation
(EBR).

It is important to note that the stabilizers in the Euclidean space R3 have only
trivial translation, i.e. FP ∩ T (A) = {(1 |0)}. Therefore, (3) shows that reduction
of the induced representations (realized on the stabilizer by (2)) gives k-independent
frequencies of the representations in the series κ over stratum K. Thus, the reduc-
tion of band representation has the form:

D(G) =
󰁛

Kκ

fKκ
D

󰁛

k∈K
D(Kkκ)(G). (16)

Therefore, finite-dimensional vectors fD, with coefficients being nonnegative in-
tegers fKκ define different band representations. Thus, if each irreducible (ray)
representations of all strata (R denotes their total number) are taken as standard
vectors (absolute basis), then they span (representation) module ZR.

Several simple observations reduce classification of band representations.

1. Any representation (15) involving more than one orbit has subrepresentations
DP (G), which are BRs themselves. Hence, EBRs are induced from a single
stabilizer.
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2. If in (15) with single orbit (with stabilizer F ) a reducible

δ(F ) = δ1(F ) + δ2(F )

is used, then the representations induced from δ1 and δ2 are subrepresenta-
tions of BR induced from δ, and D is not elementary.

3. Due to transitivity of induction, if F > F ′, then the representation induced
from irreducible representation of F ′ can be seen as induced to F at first (this
is possibly not an irreducible representation of F ), and then to G from F .
Hence, each BR obtained from F ′ can be obtained from F (those being not
irreducible at the mid-step are a priori not elementary). This allows to con-
sider only maximal stabilizers. Namely, the stabilizers are not totally ordered:
maximal stabilizer is a stabilizer which is not a subgroup of any other stabi-
lizer. In the case of periodic groups, several maximal stabilizers may occur
since no R3 orbit is fixed by the whole group.

Accordingly, all EBRs form a subset in the set of BRs obtained as induced IRs of
all maximal stabilizers:

Eµ
M (G) = δ(µ)(M ↑ G) =

󰁛

Kkκ

fKkκ
Mµ D(Kkκ)(G). (17)

On the right, the decomposition into irreducible components is given. It should be
noted that there are exceptional cases when such a representation is not an EBR, i.e.
each irreducible representation of a maximal stabilizer gives an EBR, with some
exceptions (usually listed explicitly). In other words, the band representations form
abelian group (extended by Grothendieck’s construction from the semigroup of in-
duced representations) AI = ZA spanned by A independent induced irreducible
representations of maximal stabilizers. To apostrophize, these BRs may be depen-
dent, and if some of them is a combination of others, it is an exception.

While the induction procedure (maximal stabilizer and its irreducible represen-
tations) define the decomposition (17), it does not completely define EBR, in the
sense that the same induced representation, i.e. the same set of frequency numbers
may lead to different band topologies, each corresponding to a single EBR; these
topological variations are allowed by compatibility rules and monodromies.

4.4. Compatibility relations induced graphs – paths

Compatibility relations and monodromies sublimate local band connectivity,
and gathering these local requirements in consistent way gives one possible band
graph. Namely, assume that B is a stratum on the boundary of A, thus with FB

being a supergroup of FA. Compatibility relations (14) mean that a group of fAα
Bβ
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bands EAα
j (k) over the low symmetry stratum A joins at the boundary B (of higher

symmetry) into a single band-patch EBβ
i (k) assigned to δ(Bβ); the same, with an-

other group of A-bands, is valid for each i = 1, fBβ
D .

In general, provided the compatibility relations and monodromies, it remains to
start from the high symmetry strata B, and for each appearing irreducible represen-
tation associated to them, draw the possible continuations/splittings into bands over
all nearby lower-symmetry strata.

Consequently, if A is such a (lower symmetry) stratum, then its bands must
obey the compatibility relations for all the surrounding (higher symmetry) strata,
i.e. they are glued/split bands at all these boundaries. All of these split bands on
the boundaries of A are to be connected (identified) in all possible ways over A,
each possibility being an element of a different connectivity class. If there are even
less symmetric strata, A is in the boundary of some of them, and the process is
repeated (with A in the role of high symmetry stratum). This is continued down to
the generic stratum, giving possible connectivity graphs of the band structures with
representation D(G). When for each A all choices are made a path over whole
ID graph is obtained. This complements the information given by frequencies fKκ

in (17) (vertices) to a band-graph over ID-graph, which represents a possible band
structure.

This procedure can be performed for all EBRs. However, there are cases when
there are many possibilities, and the task become intractable even for computer tech-
niques (in layer groups there are seveal cases when the number of possibilities is of
the order of 1031). It can be observed that this number increases as a factoriel func-
tion with the frequencies of the representations associated to the generic stratum.
Anyway, the nonequivalent band-graphs are important to find typical topologies of
band structures. Two graphs are band-equivalent if they coincide when one of them
is subjected to a permutations of vertices within the groups of fKκ identical irre-
ducible representations.

4.5. Connectivity and symmetry indicators

In general, there are connected and unconnected EBRs [9, 10]. This refers to the
standard path-connectivity: in connected EBRs each two points are path connected.
In unconnected EBRs, there may be connected components which are EBRs them-
selves, but also some of them are not, i.e. at least one connected component is
not the EBR. However, this procedure assumes construction of all paths, decom-
position on the connected components, and attempt to find if all the components
are band-graph-equivalent to some other connected EBR. Due to number of paths,
the procedure may be intractable in this form, but there is a tractable ID-subgraph
which allows equivalent connectivity calculations with tractable reduction to band-
subgraphs.
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Since the connected components of subgraphs correspond to representations
which are not induced, but share the properties of constant degeneracy, satisfied
compatibility relations and monodromy based continuations, unconnected graphs
arouse more general treatment. In fact, these three properties can be written as
a system of homogeneous linear equations in frequencies fKκ: summing on the
boundaries, circular path around Brillouin zone and sum of the allowed representa-
tions’ dimensions in various k-points:

fAα
D =

󰁛

β

cAα
Bβf

Bβ
D , (18a)

fKκ
D = fKκK

D , (18b)

(∀K,K ′)
󰁛

κ

|dKκ|fKκ
D =

󰁛

κ′

|dK′κ′ |fK′κ′
D . (18c)

Frequency vectors, satisfying this system are in the null-space of the matrix of
the system. Therefore, if the dimension of this null-space is B, the abelian group
BS of band structures module of such representations (which are not necessarily
induced!) is abelian group with the same dimension A, but may have also some
finite factors (this is shown for all periodic groups by direct calculations). Therefore,
there is X such that SI = BS/AI = ZC1⊗ · · ·⊗ZCX

, where ZCi is cyclic group
of order Ci.

While the induced representations, by construction, describe systems with elec-
trons localized in particular Wyckoff positions, the components are topological,
with delocalized electrons. The same holds also for representations from the cosets
of SI . In some cases addition of trivial bands trivialize the whole band structure
(e.g. connected component with other components being EBRs); there are different
cases, when two or more connected components are not EBRs, or band represen-
tations is found independently as the coset representative of SI . This is the task
of K-theory, intensively developed in the field. As the group AI is with localised
electrons associated to particular atoms, in the limit of infinitely separated atoms
the band structure is essentially atomic spectrum, these band structures are called
atomic insulators, and the factor group over them of the band structures group BS
is called group of symmetry indicators [11].

5. Conclusions

A brief review of the actual analyses of the topology of the energy bands of crys-
tals is given. It is shown that symmetry alone suffices to give a list of possible band
graphs. Taking into account that these graphs are homotopy image of the energy
band structures, it becomes clear that homotopy preserved topological invariants
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can be found by the analysis of the obtained graphs.
Unfortunately, there are groups and band representations for which the combi-

natorial problem of construction of possible graphs is technically intractable. There-
fore, the problem of classification cannot be totaly resolved. In fact, for line groups
all graphs are found [12, 13]: there is no unconnected graphs, and all symmetry
indicator groups are trivial. For the layer groups, symmetry indicator groups show
that there are topologically nontrivial band structures; except for around fifty in-
tractable elementary band representations, all the graphs (more than twelve thou-
sands of them) are found.

Appendix: Notation

• Bold: Sets, groups (G, F , R, S), vectors of any dimension (r, s).

• Calligraphic: vector spaces (S , A).

• Absolute value has contextual meaning: the dimension of the vector space
(|S|), cardinality of sets (|G|, the order of the group G, |Z| for the order
of transversal), dimension of the matrices and representations (|µ|, |D(G)|,
|M |).

• 1: the identity operator with indices specifying the space (13, 1δ), or the unit
representation, 1(G).

• Ei
j is the matrix with elements (Ei

j)pq = δpiδjq.
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