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1. Introduction and outline

In mathematics, physics and computer sciences, Bernoulli and Euler polynomi-
als play an important role (see for example [17, §6.5 & §7.6]). They are defined by
the exponential generating functions (cf. [10, §1.14] and [25, §2.5])

T eTx

eT − 1
=



n≥0

Bn(x)
Tn

n!
and

2eTx

eT + 1
=



n≥0

En(x)
Tn

n!
.

The corresponding Bernoulli and Euler numbers are respectively given by

T

eT − 1
=



n≥0

Bn
Tn

n!
and

2eT

e2T + 1
=



n≥0

En
Tn

n!
.



30 W. Chu

Both polynomials can be written as binomial sums
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and admit the following binomial relations

Bn(x+ y) =
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n

k=0


n

k


Ek(x)y

n−k.

They satisfy differential equations

B′
n(x) = nBn−1(x) and E′

n(x) = nEn−1(x)

and also reciprocal relations

Bn(1− x) = (−1)nBn(x) and En(1− x) = (−1)nEn(x)

as well as difference equations

Bn(x)− (−1)nBn(−x) = −nxn−1 and En(x) + (−1)nEn(−x) = 2xn.

In addition, Euler polynomials can be expressed in terms of Bernoulli polyno-
mials

En(x) =
2

n+ 1


Bn+1(x)− 2n+1Bn+1(x/2)


.

There exist numerous formulae about Bernoulli and Euler numbers/polynomials
scattered in the literature (see [18, §50 & §51] and [1]–[3], [6]–[9], [12]). In par-
ticular in 1978, Miki [22] discovered a surprising identity on binomial and ordinary
convolutions of Bernoulli numbers
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where Hn stands for th harmonic numbers defined by

H0 = 0 and Hn =

n

k=1

1

k
for n ∈ N.

By making use of MATHEMATICA, Matiyasevich [21] found another similar for-
mula
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These elegant identities spurred several interesting further works. Different proofs
and extensions can be found in [11, 13, 14, 15, 16, 19, 20]. Especially, Pan and
sun [23, 24] made generalizations of these identities to Bernoulli and Euler polyno-
mials.

By employing the generating function approach, the author [4] made a system-
atic investigation on Miki–like identities about Bernoulli and Euler numbers/poly-
nomials. The main inspiration came from a useful reciprocity theorem on polyno-
mials (cf. Chu and Magli [5]). By introducing two weight factors, we shall examine
convolutions on the four principal summation formulae obtained in [4] (in next four
respective sections). Several reciprocal relations for general convolution sums will
be established with a few remarkable sample ones being highlighted.

In order to carry out the related computation on convolutions, it is necessary
to record some basic facts about the two binomial weight factors. They are briefly
reviewed below in the remaining part of this section.

1.1. Binomial sums with weight factor
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First, it is not difficult to evaluate the two binomial sums below:
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For τ,σ, γ ∈ N0, by introducing the binomial sum

Λγ [
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k,ℓ ] =

ℓ
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, (1.3)

which satisfies the reciprocal relation Λ1[
τ,σ
0,ℓ ] = (−1)ℓΛ1[

σ,τ
0,ℓ ], we can express fur-

ther four binomial sums
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For the sake of brevity, denote the binomial difference by
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Then we have two summation formulae:
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which contain the following limiting cases
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In particular, Λγ [ τ,σk,ℓ ] admits the following special values, that will be useful
afterwards in the remaining sections of this paper:
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Λ−1[
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1.2. Binomial sums with weight factor
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For two indeterminates p, q, it is routine to verify the binomial identities
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Then by defining the partial binomial sum
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press the four binomial sums
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Taking into account the binomial relation

θℓ[p, q] =

ℓ−1

n=0


ℓ

n+ 1


pnqℓ−n−1 =

(p+ q)ℓ − qℓ

p
, (1.25)

we can also determine the following particular values:

Θ0[
p,q
k,ℓ ] =


0, k < 0;

pkqℓ−k, k ≥ 0;
(1.26)
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qℓ, k = −1;

pℓ, k = ℓ;
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(1.27)
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k,ℓ ] =
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p+ q , k < 0;
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p+ q , k ≥ 0.

(1.28)

2. The first class of reciprocal convolutions

By making use of the binomial summation formulae presented in the introduc-
tion, we shall compute the weighted convolution for the reciprocal equality given
in the lemma below and show further reciprocal convolution formulae on Bernoulli
polynomials.
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Lemma 2.1 (Chu [4, Theorem 9]). We have
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. (2.1h)

2.1. Convolution sums with weight factor
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By multiplying across the equation in Lemma 2.1 by the factor

m+τ
τ


n+σ
σ


,

we are going to compute the convolution with respect to m + n = ℓ. For the sake
of brevity, denote by Φ(x) the expression labeled by “(x)”. Then we can proceed
with the following computations.

• First, replacing k by m − k in (2.1a), then interchanging the order of summa-
tion, and finally evaluating the inner sum by the binomial identity (1.1), we can
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manipulate the double sum as follows:

Φ(2.1a) =
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• For (2.1b), we can make analogous computation by making use of (1.2), so that
Φ(2.1b) becomes
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• The convolution for (2.1c) can be treated, by applying (1.4) as follows:
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• Instead, the convolution for (2.1d) can be done by employing (1.6), so that Φ(2.1d)
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becomes
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• The convolution for (2.1e) is easier to calculate by appealing to (1.9) and (1.10):

Φ(2.1e) = −
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+
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• The convolution for (2.1f) can be done as (2.1c) by invoking (1.5) as follows:
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• The convolution for (2.1g) can be done as (2.1d) by invoking (1.7) as follows:

Φ(2.1g) = −
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• Finally for (2.1h), the convolution is the same as that for (2.1e):

Φ(2.1h) = −
Bℓ+γ+1(y)

(ℓ+ 2)γ
λℓ+1[τ,σ]−

Bℓ+γ+1(x)

(ℓ+ 2)γ
λℓ+1[σ, τ ].



38 W. Chu

Now by equating the resulting expression

Φ(2.1a) + Φ(2.1b) = Φ(2.1f) + Φ(2.1g) + Φ(2.1h)

we find a general reciprocal relation about convolution sums of Bernoulli polyno-
mials as in the following theorem.

Theorem 2.1 (Reciprocal formula). We have

ℓ

k=0


τ + k

τ


ℓ+ τ + σ + 1

ℓ− k


Bk+1(x− y)Bℓ−k+γ(y)

(k + 1)(ℓ− k + 1)γ

−
ℓ

k=0

(−1)k

σ + k

σ


ℓ+ τ + σ + 1

ℓ− k


Bk+1(x− y)Bℓ−k+γ(x)

(k + 1)(ℓ− k + 1)γ

=

ℓ

k=−1

Bk+1(y)Bℓ−k+γ(x)

(k + 1)!(ℓ− k + γ)!
Λγ−1[

σ,τ
k,ℓ ]−

Bℓ+γ+1(x)

(ℓ+ 2)γ
λℓ+1[σ, τ ]

−
γ

k=1

Bγ−k(y)Bℓ+k+1(x− y)

(γ − k)!(ℓ+ k + 1)!
Λk[

σ,τ
0,ℓ ]−

Bℓ+γ+1(y)

(ℓ+ 2)γ
λℓ+1[τ,σ].

We remark that if considering the equality

Φ(2.1a) + Φ(2.1b) = Φ(2.1c) + Φ(2.1d) + Φ(2.1e),

then we would find another reciprocity formula, equivalent to the last one.

Theorem 2.2 (Reciprocal formula). We have

ℓ

k=0


τ + k

τ


ℓ+ τ + σ + 1

ℓ− k


Bk+1(x− y)Bℓ−k+γ(y)

(k + 1)(ℓ− k + 1)γ

−
ℓ

k=0

(−1)k

σ + k

σ


ℓ+ τ + σ + 1

ℓ− k


Bk+1(x− y)Bℓ−k+γ(x)

(k + 1)(ℓ− k + 1)γ

=

ℓ

k=−1

Bk+1(x)Bℓ−k+γ(y)

(k + 1)!(ℓ− k + γ)!
Λγ−1[

τ,σ
k,ℓ ]−

Bℓ+γ+1(x)

(ℓ+ 2)γ
λℓ+1[σ, τ ]

+

γ

k=1

(−1)ℓ−kBγ−k(x)Bℓ+k+1(x− y)

(γ − k)!(ℓ+ k + 1)!
Λk[

τ,σ
0,ℓ ]−

Bℓ+γ+1(y)

(ℓ+ 2)γ
λℓ+1[τ,σ].

Both Theorems 2.1 and 2.2 contain many interesting special cases. As a show
case, we limit to record the following two common special cases. First, letting
γ = 0 and then making replacements k → k − 1 and ℓ → ℓ − 1, we obtain, after
some routine simplifications, the following elegant formula.
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Proposition 2.1 (Theorems 2.1 or 2.2: γ = 0). We have

(τ + σ + ℓ)

ℓ

k=0


τ + k − 1

k


σ + ℓ− k − 1

ℓ− k


Bk(x)Bℓ−k(y)

= σ

ℓ

k=0


τ + k − 1

k


τ + σ + ℓ

ℓ− k


Bk(x− y)Bℓ−k(y)

+ τ

ℓ

k=0

(−1)k

σ + k − 1

k


τ + σ + ℓ

ℓ− k


Bk(x− y)Bℓ−k(x).

We point out that the special case σ = 1 of this formula has previously been
obtained by Sun and Pan [24, Eq. 1.5]. Next, letting γ = 1 and τ = σ = 0, we
recover another identity, whose particular case corresponding to x = 1/2 and y = 0
can be found in Donne [14].

Corollary 2.1 (Theorems 2.1 or 2.2: γ = 1 and τ = σ = 0). We have

ℓ+1

k=0


ℓ+ 1

k


Bk+1(x− y)

(k + 1)2

Bℓ−k+1(y)− (−1)kBℓ−k+1(x)



=

ℓ

k=0

Bk+1(x)Bℓ−k+1(y)

(k + 1)(ℓ− k + 1)
− Hℓ+1

ℓ+ 2


Bℓ+2(x) +Bℓ+2(y)


.

2.2. Convolution sums with weight factor

m+n
m


pmqn

Alternatively by multiplying across the equation in Lemma 2.1 by the weight
factor


m+n
m


pmqn, we can analogously calculate the convolution with respect to

m+ n = ℓ, where we use Ψ(x) to represent the expression labeled by “(x)”

• Starting by the replacement k → m − k in (2.1a), then exchanging the order of
summation, and at last, calculating the inner sum by the binomial identity (1.16),
we can reformulate the double sum as follows:

Ψ(2.1a) =


m+n=ℓ


m+ n

m


pmqn

m

k=0


m

k


Bk+1(x− y)Bℓ−k+γ(y)

(k + 1)(ℓ− k + 1)γ

=

ℓ

k=0

Bk+1(x− y)Bℓ−k+γ(y)

(k + 1)(ℓ− k + 1)γ



m+n=ℓ


m+ n

m


m

k


pmqn

=

ℓ

k=0


ℓ

k


Bk+1(x− y)Bℓ−k+γ(y)

(k + 1)(ℓ− k + 1)γ
pk(p+ q)ℓ−k.
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• Analogously, we can compute the convolution for (2.1b) by means of (1.17):

Ψ(2.1b) =


m+n=ℓ


m+ n

m


pmqn

n

k=0

(−1)k+1


n

k


Bk+1(x− y)Bℓ−k+γ(x)

(k + 1)(ℓ− k + 1)γ

=

ℓ

k=0

(−1)k+1Bk+1(x− y)Bℓ−k+γ(x)

(k + 1)(ℓ− k + 1)γ



m+n=ℓ


m+ n

m


n

k


pmqn

=

ℓ

k=0

(−1)k+1


ℓ

k


Bk+1(x− y)Bℓ−k+γ(x)

(k + 1)(ℓ− k + 1)γ
qk(p+ q)ℓ−k.

• By applying (1.21), we can deal with the convolution for (2.1c) as follows:

Ψ(2.1c) =


m+n=ℓ

m!n!


m+ n

m


pmqn

m

k=−1


1− γ

m− k


Bk+1(x)Bℓ−k+γ(y)

(k + 1)!(ℓ− k + γ)!

=

ℓ

k=−1

Bk+1(x)Bℓ−k+γ(y)

(k + 1)!(ℓ− k + γ)!



m+n=ℓ

m!n!


m+ n

m


1− γ

m− k


pmqn

= ℓ!

ℓ

k=−1

Bk+1(x)Bℓ−k+γ(y)

(k + 1)!(ℓ− k + γ)!
Θγ−1[

p,q
k,ℓ ].

• Instead, the convolution for (2.1d) can be done by applying (1.23), so that Ψ(2.1d)
becomes



m+n=ℓ

m!n!


m+ n

m


pmqn

γ

k=1

(−1)ℓ−k


−k

m


Bγ−k(x)Bℓ+k+1(x− y)

(γ − k)!(ℓ+ k + 1)!

=

γ

k=1

(−1)ℓ−kBγ−k(x)Bℓ+k+1(x− y)

(γ − k)!(ℓ+ k + 1)!



m+n=ℓ

m!n!


m+ n

m


−k

m


pmqn

= ℓ!

γ

k=1

(−1)ℓ−kBγ−k(x)Bℓ+k+1(x− y)

(γ − k)!(ℓ+ k + 1)!
Θk[

p,q
0,ℓ ].

• Now we turn to evaluate the convolution for (2.1e) by invoking (1.18) and (1.19):

Ψ(2.1e) = −


m+n=ℓ


m+ n

m


pmqn


Bℓ+γ+1(x)

(n+ 1)(ℓ+ 2)γ
+

Bℓ+γ+1(y)

(m+ 1)(ℓ+ 2)γ



= −
Bℓ+γ+1(x)

(ℓ+ 2)γ

(p+ q)ℓ+1 − pℓ+1

q(ℓ+ 1)
−

Bℓ+γ+1(y)

(ℓ+ 2)γ

(p+ q)ℓ+1 − qℓ+1

p(ℓ+ 1)
.
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• The convolution for (2.1f) can be treated as (2.1c) by applying (1.22) as follows:

Ψ(2.1f) =


m+n=ℓ

m!n!


m+ n

m


pmqn

n

k=−1


1− γ

n− k


Bk+1(y)Bℓ−k+γ(x)

(k + 1)!(ℓ− k + γ)!

=

ℓ

k=−1

Bk+1(y)Bℓ−k+γ(x)

(k + 1)!(ℓ− k + γ)!



m+n=ℓ

m!n!


m+ n

m


1− γ

n− k


pmqn

= ℓ!

ℓ

k=−1

Bk+1(y)Bℓ−k+γ(x)

(k + 1)!(ℓ− k + γ)!
Θγ−1[

q,p
k,ℓ ].

• The convolution for (2.1g) can be done as (2.1d) by employing (1.24) as follows:

Ψ(2.1g) = −


m+n=ℓ

m!n!


m+ n

m


pmqn

γ

k=1


−k

n


Bγ−k(y)Bℓ+k+1(x− y)

(γ − k)!(ℓ+ k + 1)!

= −
γ

k=1

Bγ−k(y)Bℓ+k+1(x− y)

(γ − k)!(ℓ+ k + 1)!



m+n=ℓ

m!n!


m+ n

m


−k

n


pmqn

= −ℓ!

γ

k=1

Bγ−k(y)Bℓ+k+1(x− y)

(γ − k)!(ℓ+ k + 1)!
Θk[

q,p
0,ℓ ].

• Finally, the convolution for (2.1h) is identical to that for (2.1e):

Ψ(2.1h) = −
Bℓ+γ+1(x)

(ℓ+ 2)γ

(p+ q)ℓ+1 − pℓ+1

q(ℓ+ 1)
−

Bℓ+γ+1(y)

(ℓ+ 2)γ

(p+ q)ℓ+1 − qℓ+1

p(ℓ+ 1)
.

According to the equality

Ψ(2.1a) +Ψ(2.1b) = Ψ(2.1f) +Ψ(2.1g) +Ψ(2.1h)

we establish the following reciprocal relation about convolution sums of Bernoulli
polynomials.
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Theorem 2.3 (Reciprocal formula). We have

ℓ

k=0

Bk+1(x− y)Bℓ−k+γ(y)

(k + 1)!(ℓ− k + γ)!
pk(p+ q)ℓ−k

−
ℓ

k=0

(−1)k
Bk+1(x− y)Bℓ−k+γ(x)

(k + 1)!(ℓ− k + γ)!
qk(p+ q)ℓ−k

=

ℓ

k=−1

Bk+1(y)Bℓ−k+γ(x)

(k + 1)!(ℓ− k + γ)!
Θγ−1[

q,p
k,ℓ ]−

Bℓ+γ+1(x)

(ℓ+ γ + 1)!
θℓ+1[q, p]

−
γ

k=1

Bγ−k(y)Bℓ+k+1(x− y)

(γ − k)!(ℓ+ k + 1)!
Θk[

q,p
0,ℓ ]−

Bℓ+γ+1(y)

(ℓ+ γ + 1)!
θℓ+1[p, q].

Alternatively, from the equality

Ψ(2.1a) +Ψ(2.1b) = Ψ(2.1c) +Ψ(2.1d) +Ψ(2.1e)

we derive another reciprocal relation, equivalent to the one displayed in Theo-
rem 2.3.

Theorem 2.4 (Reciprocal formula). We have

ℓ

k=0

Bk+1(x− y)Bℓ−k+γ(y)

(k + 1)!(ℓ− k + γ)!
pk(p+ q)ℓ−k

−
ℓ

k=0

(−1)k
Bk+1(x− y)Bℓ−k+γ(x)

(k + 1)!(ℓ− k + γ)!
qk(p+ q)ℓ−k

=

ℓ

k=−1

Bk+1(x)Bℓ−k+γ(y)

(k + 1)!(ℓ− k + γ)!
Θγ−1[

p,q
k,ℓ ]−

Bℓ+γ+1(x)

(ℓ+ γ + 1)!
θℓ+1[q, p]

+

γ

k=1

(−1)ℓ−kBγ−k(x)Bℓ+k+1(x− y)

(γ − k)!(ℓ+ k + 1)!
Θk[

p,q
0,ℓ ]−

Bℓ+γ+1(y)

(ℓ+ γ + 1)!
θℓ+1[p, q].

When γ = 0, we deduce from Theorems 2.3 and 2.4 the following common
reciprocal relation after having made replacements k → k − 1 and ℓ → ℓ− 1.
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Proposition 2.2 (Theorems 2.3 or 2.4: γ = 0). We have

(p+ q)

ℓ

k=0


ℓ

k


Bk(x)Bℓ−k(y)p

kqℓ−k

= q

ℓ

k=0


ℓ

k


Bk(x− y)Bℓ−k(y)p

k(p+ q)ℓ−k

+ p

ℓ

k=0

(−1)k

ℓ

k


Bk(x− y)Bℓ−k(x)q

k(p+ q)ℓ−k.

Henceforth, the same procedure will be carried out in the next three sections to
evaluate the convolutions and derive reciprocal formulae. The details will not be
produced since the computations involved are almost identical.

3. The second class of reciprocal convolutions

By computing the convolutions on the equality stated in the lemma below, we
shall illustrate two classes of reciprocal formulae and the related implications.

Lemma 3.1 (Chu [4, Theorem 23]). We have
m

k=0


m

k


Em−k(x− y)Bn+k+γ(y)

(n+ k + 1)γ

−
n

k=0

(−1)n−k


n

k


En−k(x− y)Bm+k+γ(x)

(m+ k + 1)γ

=− m!n!

2

m

k=0


1− γ

k


Em−k(x)En+k+γ−1(y)

(m− k)!(n+ k + γ − 1)!

+m!n!

γ

k=1

(−1)m+n+k


−k

m


Bγ−k(x)Em+n+k(x− y)

(γ − k)!(m+ n+ k)!

=− m!n!

2

n

k=0


1− γ

k


En−k(y)Em+k+γ−1(x)

(n− k)!(m+ k + γ − 1)!

−m!n!

γ

k=1


−k

n


Bγ−k(y)Em+n+k(x− y)

(γ − k)!(m+ n+ k)!
.

3.1. Convolution sums with weight factor

m+τ
τ


n+σ
σ



The main results are enunciated below by computing the convolution sums on
the above weight factor.
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Theorem 3.1 (Reciprocal formulae). We have

ℓ

k=0

(−1)k

k + σ

k


ℓ+ τ + σ + 1

ℓ− k


Ek(x− y)Bℓ−k+γ(x)

(ℓ− k + 1)γ

−
ℓ

k=0


k + τ

k


ℓ+ τ + σ + 1

ℓ− k


Ek(x− y)Bℓ−k+γ(y)

(ℓ− k + 1)γ

=
1

2

ℓ

k=0

Ek(y)Eℓ−k+γ−1(x)

k!(ℓ− k + γ − 1)!
Λγ−1[

σ,τ
k,ℓ ] +

γ

k=1

Bγ−k(y)Eℓ+k(x− y)

(γ − k)!(ℓ+ k)!
Λk[

σ,τ
0,ℓ ]

=
1

2

ℓ

k=0

Ek(x)Eℓ−k+γ−1(y)

k!(ℓ− k + γ − 1)!
Λγ−1[

τ,σ
k,ℓ ]

−
γ

k=1

(−1)ℓ−kBγ−k(x)Eℓ+k(x− y)

(γ − k)!(ℓ+ k)!
Λk[

τ,σ
0,ℓ ].

Proposition 3.1 (Theorem 3.1: γ = 0). We have

τ + σ + ℓ+ 1

2

ℓ

k=1


τ + k − 1

k − 1


σ + ℓ− k

ℓ− k


Ek−1(x)Eℓ−k(y)

=

ℓ

k=0

(−1)k

σ + k

k


τ + σ + ℓ+ 1

ℓ− k


Ek(x− y)Bℓ−k(x)

−
ℓ

k=0


τ + k

k


τ + σ + ℓ+ 1

ℓ− k


Ek(x− y)Bℓ−k(y).

Corollary 3.1 (Theorem 3.1: γ = 1 and τ = σ = 0). We have

ℓ+1

k=0


ℓ+ 2

k + 1


Ek(x− y)


Bℓ−k+1(y)− (−1)kBℓ−k+1(x)



= −ℓ+ 2

2

ℓ

k=0

Ek(x)Eℓ−k(y).

3.2. Convolution sums with weight factor

m+n
m


pmqn

Another convolution sum on the above weight factor results in the following
theorem.
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Theorem 3.2 (Reciprocal formulae). We have

ℓ

k=0

(−1)k
Ek(x− y)Bℓ−k+γ(x)

k!(ℓ− k + γ)!
qk(p+ q)ℓ−k

−
ℓ

k=0

Ek(x− y)Bℓ−k+γ(y)

k!(ℓ− k + γ)!
pk(p+ q)ℓ−k

=
1

2

ℓ

k=0

Ek(y)Eℓ−k+γ−1(x)

k!(ℓ− k + γ − 1)!
Θγ−1[

q,p
k,ℓ ]

+

γ

k=1

Bγ−k(y)Eℓ+k(x− y)

(γ − k)!(ℓ+ k)!
Θk[

q,p
0,ℓ ]

=
1

2

ℓ

k=0

Ek(x)Eℓ−k+γ−1(y)

k!(ℓ− k + γ − 1)!
Θγ−1[

p,q
k,ℓ ]

−
γ

k=1

(−1)ℓ−kBγ−k(x)Eℓ+k(x− y)

(γ − k)!(ℓ+ k)!
Θk[

p,q
0,ℓ ].

Also, the following statement holds.

Proposition 3.2 (Theorem 3.2: γ = 0). We have

p+ q

2p

ℓ

k=1


ℓ

k


kEk−1(x)Eℓ−k(y) p

kqℓ−k

=

ℓ

k=0

(−1)k

ℓ

k


Ek(x− y)Bℓ−k(x) q

k(p+ q)ℓ−k

−
ℓ

k=0


ℓ

k


Ek(x− y)Bℓ−k(y) p

k(p+ q)ℓ−k.

4. The third class of reciprocal convolutions

The third convolution sums are examined in this section based on the lemma
below.
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Lemma 4.1 (Chu [4, Theorem 37]). We have

2

m

k=0


m

k


Bm−k+1(x− y)En+k+γ(y)

(m− k + 1)(n+ k + 1)γ

+

n

k=0

(−1)n−k


n

k


En−k(x− y)Em+k+γ(x)

(m+ k + 1)γ

= 2m!n!

m+1

k=0


−γ

k


Bm−k+1(x)En+k+γ(y)

(m− k + 1)!(n+ k + γ)!
− 2Em+n+γ+1(y)

(m+ 1)(m+ n+ 2)γ

−m!n!

γ

k=1

(−1)m+n+k


−k

m


Eγ−k(x)Em+n+k(x− y)

(γ − k)!(m+ n+ k)!

= 2m!n!

n

k=0


−γ

k


En−k(y)Bm+k+γ+1(x)

(n− k)!(m+ k + γ + 1)!
− 2Em+n+γ+1(y)

(m+ 1)(m+ n+ 2)γ

− 2m!n!

γ

k=1


−k

n


Eγ−k(y)Bm+n+k+1(x− y)

(γ − k)!(m+ n+ k + 1)!
.

4.1. Convolution sums with weight factor

m+τ
τ


n+σ
σ



We are going to highlight the main results derived by computing the convolutions
containing the above weight factor.

Theorem 4.1 (Reciprocal formulae). We have

2

ℓ

k=0


k + τ

k


ℓ+ τ + σ + 1

ℓ− k


Bk+1(x− y)Eℓ−k+γ(y)

(k + 1)(ℓ− k + 1)γ

+

ℓ

k=0

(−1)k

k + σ

k


ℓ+ τ + σ + 1

ℓ− k


Ek(x− y)Eℓ−k+γ(x)

(ℓ− k + 1)γ
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= 2

ℓ

k=0

Ek(y)Bℓ−k+γ+1(x)

k!(ℓ− k + γ + 1)!
Λγ [σ,τk,ℓ ]−

2Eℓ+γ+1(y)

(ℓ+ 2)γ
λℓ+1[τ,σ]

− 2

γ

k=1

Eγ−k(y)Bℓ+k+1(x− y)

(γ − k)!(ℓ+ k + 1)!
Λk[

σ,τ
0,ℓ ]

= 2

ℓ

k=−1

Bk+1(x)Eℓ−k+γ(y)

(k + 1)!(ℓ− k + γ)!
Λγ [ τ,σk,ℓ ]−

2Eℓ+γ+1(y)

(ℓ+ 2)γ
λℓ+1[τ,σ]

−
γ

k=1

(−1)ℓ−kEγ−k(x)Eℓ+k(x− y)

(γ − k)!(ℓ+ k)!
Λk[

τ,σ
0,ℓ ].

The first example is stated as in the proposition below.

Proposition 4.1 (Theorem 4.1: γ = 0). We have

2

ℓ

k=0


τ + k − 1

k


σ + ℓ− k

ℓ− k


Bk(x)Eℓ−k(y)

= 2

ℓ

k=0


τ + k − 1

k


τ + σ + ℓ

ℓ− k


Bk(x− y)Eℓ−k(y)

− τ

ℓ

k=1

(−1)k

σ + k − 1

k − 1


τ + σ + ℓ

ℓ− k


Ek−1(x− y)Eℓ−k(x).

The next example can be found in Pan–Sun [23, Eq. 2.6].

Corollary 4.1 (Theorem 4.1: γ = 1 and τ = σ = 0). We have

2

ℓ

k=0


ℓ+ 1

k + 1


Bk+1(x− y)Eℓ−k(y)

k + 1
−

ℓ

k=0


ℓ+ 1

k + 1


Ek(y − x)Eℓ−k(x)

= 2

ℓ

k=0

Bk+1(x)Eℓ−k(y)

k + 1
− 2

Eℓ+1(x)− Eℓ+1(y)

(x− y)
− 2Hℓ+1Eℓ+1(y).

4.2. Convolution sums with weight factor

m+n
m


pmqn

Instead, the convolutions with the above weight factor bring us to the theorem
and proposition below.
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Theorem 4.2 (Reciprocal formulae). We have

2

ℓ

k=0

Bk+1(x− y)Eℓ−k+γ(y)

(k + 1)!(ℓ− k + γ)!
pk(p+ q)ℓ−k

+

ℓ

k=0

(−1)k
Ek(x− y)Eℓ−k+γ(x)

k!(ℓ− k + γ)!
qk(p+ q)ℓ−k

= 2

ℓ

k=0

Ek(y)Bℓ−k+γ+1(x)

k!(ℓ− k + γ + 1)!
Θγ [ q,pk,ℓ ]− 2

Eℓ+γ+1(y)

(ℓ+ γ + 1)!
θℓ+1[p, q]

− 2

γ

k=1

Eγ−k(y)Bℓ+k+1(x− y)

(γ − k)!(ℓ+ k + 1)!
Θk[

q,p
0,ℓ ]

= 2

ℓ

k=−1

Bk+1(x)Eℓ−k+γ(y)

(k + 1)!(ℓ− k + γ)!
Θγ [p,qk,ℓ ]− 2

Eℓ+γ+1(y)

(ℓ+ γ + 1)!
θℓ+1[p, q]

−
γ

k=1

(−1)ℓ−kEγ−k(x)Eℓ+k(x− y)

(γ − k)!(ℓ+ k)!
Θk[

p,q
0,ℓ ].

Proposition 4.2 (Theorem 4.2: γ = 0). We have

2q

ℓ

k=0


ℓ

k


Bk(x)Eℓ−k(y) p

kqℓ−k

= 2q

ℓ

k=0


ℓ

k


Bk(x− y)Eℓ−k(y) p

k(p+ q)ℓ−k

− p

ℓ

k=1

(−1)k

ℓ

k


kEk−1(x− y)Eℓ−k(x) q

k(p+ q)ℓ−k.

5. The fourth class of reciprocal convolutions

Finally, we examine the convolution sums based on the lemma below.

Lemma 5.1 (Chu [4, Theorem 51]). We have

m

k=0


m

k


Em−k(x− y)En+k+γ(y)

(n+ k + 1)γ

+ 2

n

k=0

(−1)n−k


n

k


Bn−k+1(x− y)Em+k+γ(x)

(n− k + 1)(m+ k + 1)γ
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=−2m!n!

m

k=0


−γ

k


Em−k(x)Bn+k+γ+1(y)

(m− k)!(n+ k + γ + 1)!
+

2Em+n+γ+1(x)

(n+ 1)(m+ n+ 2)γ

− 2m!n!

γ

k=1

(−1)m+n+k


−k

m


Eγ−k(x)Bm+n+k+1(x− y)

(γ − k)!(m+ n+ k + 1)!

=−2m!n!

n+1

k=0


−γ

k


Bn−k+1(y)Em+k+γ(x)

(n− k + 1)!(m+ k + γ)!
+

2Em+n+γ+1(x)

(n+ 1)(m+ n+ 2)γ

−m!n!

γ

k=1


−k

n


Eγ−k(y)Em+n+k(x− y)

(γ − k)!(m+ n+ k)!
.

5.1. Convolution sums with weight factor

m+τ
τ


n+σ
σ



The main reciprocal formulae are given as in the theorem below.

Theorem 5.1 (Reciprocal formulae). We have

ℓ

k=0


k + τ

k


ℓ+ τ + σ + 1

ℓ− k


Ek(x− y)Eℓ−k+γ(y)

(ℓ− k + 1)γ

+ 2

ℓ

k=0

(−1)k

k + σ

k


ℓ+ τ + σ + 1

ℓ− k


Bk+1(x− y)Eℓ−k+γ(x)

(k + 1)(ℓ− k + 1)γ

=
2Eℓ+γ+1(x)

(ℓ+ 2)γ
λℓ+1[σ, τ ]− 2

ℓ

k=−1

Bk+1(y)Eℓ−k+γ(x)

(k + 1)!(ℓ− k + γ)!
Λγ [σ,τk,ℓ ]

−
γ

k=1

Eγ−k(y)Eℓ+k(x− y)

(γ − k)!(ℓ+ k)!
Λk[

σ,τ
0,ℓ ]

=
2Eℓ+γ+1(x)

(ℓ+ 2)γ
λℓ+1[σ, τ ]− 2

ℓ

k=0

Ek(x)Bℓ−k+γ+1(y)

k!(ℓ− k + γ + 1)!
Λγ [ τ,σk,ℓ ]

− 2

γ

k=1

(−1)ℓ−kEγ−k(x)Bℓ+k+1(x− y)

(γ − k)!(ℓ+ k + 1)!
Λk[

τ,σ
0,ℓ ].

Letting γ = 0 and then making some simplifications, we find the following
formula.



50 W. Chu

Proposition 5.1 (Theorem 5.1: γ = 0). We have

2

ℓ

k=0


τ + k

k


σ + ℓ− k − 1

ℓ− k


Ek(x)Bℓ−k(y)

= 2

ℓ

k=0

(−1)k

σ + k − 1

k


ℓ+ τ + σ

ℓ− k


Bk(x− y)Eℓ−k(x)

− σ

ℓ

k=1


τ + k − 1

k − 1


ℓ+ τ + σ

ℓ− k


Ek−1(x− y)Eℓ−k(y).

Instead, if considering the limiting case γ = τ = σ → 0 directly from The-
orem 5.1, we find another remarkable identity, which is not deducible by Proposi-
tion 5.1.

Corollary 5.1 (Theorem 5.1: γ = τ = σ = 0). We have

ℓ

k=0


ℓ+ 1

k + 1


Ek(x− y)Eℓ−k(y) + 2

ℓ

k=0

(−1)k

ℓ+ 1

k + 1


Bk+1(x− y)Eℓ−k(x)

k + 1

= 2Hℓ+1Eℓ+1(x)− 2

ℓ

k=0

Bk+1(y)Eℓ−k(x)

k + 1
.

5.2. Convolution sums with weight factor

m+n
m


pmqn

Alternatively, the convolutions based on this weight factor yield the following re-
ciprocal formulae.

Theorem 5.2 (Reciprocal formulae). We have

ℓ

k=0

Ek(x− y)Eℓ−k+γ(y)

k!(ℓ− k + γ)!
pk(p+ q)ℓ−k

+ 2

ℓ

k=0

(−1)k
Bk+1(x− y)Eℓ−k+γ(x)

(k + 1)!(ℓ− k + γ)!
qk(p+ q)ℓ−k
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= 2
Eℓ+γ+1(x)

(ℓ+ γ + 1)!
θℓ+1[q, p]− 2

ℓ

k=−1

Bk+1(y)Eℓ−k+γ(x)

(k + 1)!(ℓ− k + γ)!
Θγ [ q,pk,ℓ ]

−
γ

k=1

Eγ−k(y)Eℓ+k(x− y)

(γ − k)!(ℓ+ k)!
Θk[

q,p
0,ℓ ]

= 2
Eℓ+γ+1(x)

(ℓ+ γ + 1)!
θℓ+1[q, p]− 2

ℓ

k=0

Ek(x)Bℓ−k+γ+1(y)

k!(ℓ− k + γ + 1)!
Θγ [p,qk,ℓ ]

− 2

γ

k=1

(−1)ℓ−kEγ−k(x)Bℓ+k+1(x− y)

(γ − k)!(ℓ+ k + 1)!
Θk[

p,q
0,ℓ ].

Proposition 5.2 (Theorem 5.2: γ = 0). We have

2p

ℓ

k=0


ℓ

k


Ek(x)Bℓ−k(y) p

kqℓ−k

= 2p

ℓ

k=0

(−1)k

ℓ

k


Bk(x− y)Eℓ−k(x) q

k(p+ q)ℓ−k

− q

ℓ

k=1


ℓ

k


kEk−1(x− y)Eℓ−k(y) p

k(p+ q)ℓ−k.

Concluding comments

Based on the summation formulae obtained earlier by the author [4], we exam-
ined convolutions by introducing two weight factors. Several reciprocal convolu-
tion identities are illustrated. It is natural to investigate what would happen next if
considering different weight factors. The interested reader is encouraged to make
further explorations.
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