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1. Introduction

The notion of a topological direct sum of closed subspaces of a normed space
is well-known. The situation of a finite number of subspaces is presented in more
details in [2]. On the other hand, we did not find a systematic treatment of results
concerning the infinite sum of subspaces. Hence, we define and investigate the
infinite sum of subspaces of a normed space. It is well-known that decompositions
of a space induce decompositions of linear operators over the same space. For this
reason we investigate matrix decompositions of bounded linear operators induced
by infinite direct sums of subspaces.

In this paper all vector spaces will be over the field F which is equal to R or C.
I will be an arbitrary index set, X,Y will be normed spaces over F, and (Xi)i∈I
will be a family of vector subspaces of X .

We use L(X,Y ) and B(X,Y ), respectively, to denote the set of all linear and
the set of all bounded linear operators from X to Y . Shortly, L(X) = L(X,X) and
B(X) = B(X,X).
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In order to define infinite sum of subspaces, we recall the notion of summable
vectors in normed spaces (see [1, 3], for example).

Suppose that (xi)i∈I is a family of vectors in X . The family (xi)i∈I is summable
and its sum is equal to x =


i∈I

xi, provided that for every ε > 0 there exists a finite

subset Jε ⊂ I such that for every finite subset J satisfying Jε ⊂ J ⊂ I we have

x−



j∈J
xj


< ε.

If (xi)i∈I is summable, then the number of all xi such that xi ∕= 0, is at most count-
able. The family (xi)i∈I is absolutely summable, if (xi)i∈I is summable in R.
If X is a Banach space, then absolute summability of (xi)i implies its summability
([1, pp. 113–124], [3, pp. 45–47]).

First we investigate infinite sums of subspaces of normed spaces, and then we
investigate corresponding decompositions of bounded linear operators.

2. Infinite sums of subspaces

Consider the following sets:



i∈I
Xi =


x = (xi)i = Πxi : (∀i ∈ I)xi ∈ Xi


,

ΠI =


x = (xi)i ∈



i∈I
Xi : (xi)i is ordinary and absolutely summable


,

ΣI =


x =



i∈I
xi = Σxi : (∀i ∈ I) xi ∈ Xi,

(xi)i is ordinary and absolutely summable


.

It is elementary that

i∈I

Xi is a vector space, ΠI is a subspace of

i∈I

Xi, and ΣI

is a subspace of X .
We need the following elementary lemma.

Lemma 2.1. If (xi)i∈I is summable, then



i∈I
xi

 ≤


i∈I
xi.
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PROOF. Suppose that (xi)i∈I is summable and let x =

i∈I

xi. For an arbitrary

ε > 0 there exists finite Jε such that for every finite J , Jε ⊂ J ⊂ I we havex−

i∈J

xi

 < ε. It follows that

x ≤

x−


i∈J
xi

+




i∈J
xi

 ≤ ε+


i∈J
xi ≤ ε+



i∈I
xi.

Since ε > 0 is arbitrary, we conclude that


i∈I

xi

 ≤

i∈I

xi.

We have the following result.

Theorem 2.1. a) ΠI ≡ ΠI
1 is a normed space with respect to the norm

x1 =


i∈I
xi, x = Πxi ∈ ΠI .

If X is a Banach space and every Xi is closed in X , then ΠI
1 is a Banach space.

b) ΠI ≡ ΠI
∞ is a normed space with respect to the norm

x∞ = sup
i∈I

xi, x = Πxi ∈ ΠI .

PROOF. a) It is easy to verify that ΠI
1 is a normed space. Assume that X is a

Banach space and that every Xi is closed in X . Let (xm)m be a Cauchy sequence
in ΠI

1, where xm = (xmi )i ∈ ΠI
1. Take ε > 0. There exists some n0 ∈ N such that

for every m,n ≥ n0 we have

xm − xn1 =


i∈I
xmi − xni  < ε.

We get that for every i ∈ I we have xmi −xni  < ε. Then for every i ∈ I it follows
that (xmi )m is a Cauchy sequence in a Banach space Xi. Thus, for every i ∈ I there
exists xi = lim

m→∞
xmi ∈ Xi. Let x = Πxi. For given ε > 0, for all m,n ≥ n0 and

for every finite set J ⊂ I we have


i∈J
xmi − xni  < ε.

Taking m → ∞ we conclude


i∈J
xi − xni  ≤ ε
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and 

i∈J
xi ≤



i∈J
xni + ε ≤



i∈I
xni + ε = xn1 + ε.

Since J is an arbitrary finite subset of I , we conclude that x = (xi)i is absolutely
summable, x ∈ ΠI

1 and lim
n→∞

xn = x in ΠI
1.

b) It is easy to see that ΠI
∞ is a normed space with respect to the norm  · ∞.

Notice that ΠI
∞ is not a Banach space for the following reason: ℓ1 is contained in

ℓ∞, but the  · ∞-closure of ℓ1 is c0, so ℓ1 is not a  · ∞-closed subspace of ℓ∞.

If x ∈ ΠI , we see that x∞ ≤ x1. Thus,

B(ΠI
∞,ΣI) ⊂ B(ΠI

1,Σ
I) and B(ΣI ,ΠI

1) ⊂ B(ΣI ,ΠI
∞).

If A ∈ L(ΠI ,ΣI), then we can ask if A is bounded with respect to any one of
the norm  · 1 or  · ∞. For the same A we use corresponding norms A1 and
A∞, knowing that A∞ ≤ A1. The similar situation is when we consider
B ∈ L(ΣI ,ΠI), where B1 ≤ B∞.

Consider the natural mapping Φ : ΠI −→ ΣI defined as follows:

Φ(Πxi) = Σxi, Πxi ∈ ΠI .

We have the following result.

Theorem 2.2. Φ ∈ B(ΠI
1,Σ

I) and Φ is onto.

PROOF. For x = Πxi ∈ ΠI
1 we have

Φ(x) = Σxi ≤


i∈I
xi = x1,

implying that Φ1 ≤ 1. Obviously, Φ is onto.

Following [2, Definition 2.3], we introduce the notion of the infinite topological
sum of subspaces.

Definition 2.1. a) ΣI is a topological direct sum (TDS) of (Xi)i∈I , denoted as

ΣI =


i∈I
Xi,

if Φ ∈ B(ΠI
1,Σ

I) is bijective and Φ−1 ∈ B(ΣI ,ΠI
1).

b) ΣI is an ∞-topological direct sum (∞-TDS) of (Xi)i∈I , denoted as

ΣI =

∞

i∈I
Xi,

if Φ ∈ B(ΠI
∞,ΣI) is bijective and Φ−1 ∈ B(ΣI ,ΠI

∞).
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Once we know that Φ is a bounded linear epimorphism, we continue with the
following results.

Theorem 2.3. If Φ is bijective, then Xj ∩Xk = {0} for j ∕= k. In this case the
operator Pj : Σ

I → Xj ⊂ ΣI is well-defined by Pj(Σxi) = xj for every j ∈ I , Pj

is linear, P 2
j = Pj , and the image of Pj is equal to Xj . Moreover,


i∈I Pix = x,

for all x ∈ ΣI , and PiPj = 0 for i ∕= j.

PROOF. Suppose that Φ is bijective, z ∈ Xj∩Xk and j ∕= k. Let x = Πxi ∈ ΠI

such that

xi =


0, i ∕= j,

z, i = j,

and let y = Πyi ∈ ΠI with

yi =


0, i ∕= k,

z, i = k.

Then x ∕= y and Φ(x) = z = Φ(y). This contradicts to the fact that Φ is bijective.
Moreover, if x = Σxi ∈ ΣI , then x = Φ−1(x) = Πxi ∈ ΠI , so every xi ∈ Xi

is unique. Thus, Pj is well-defined as Pj(Σxi) = xj . Obviously, Pj is linear,
P 2
j = Pj ,


i∈I Pix = x for x ∈ ΣI , and PiPj = 0 for i ∕= j.

We need the following conditions on a family of linear operators.

Definition 2.2. A family (Ti)i∈I of operators in L(X,Y ) is:
a) Uniformly summable, if there exsists a constant M < ∞ such that for every

x ∈ X we have


i∈I Tix ≤ Mx.
b) Uniformly bounded, if there exists some constant M < ∞ such that for every

x ∈ X we have sup
i∈I

Tix ≤ Mx.

c) Strongly bounded, if there exists some constant M < ∞ such that for every
x ∈ X we have sup

i∈I
Tix ≤ M .

Corollary 2.1. a) If (Ti)i∈I is uniformly summable, then Ti is bounded for every
i ∈ I and (Ti)i∈I is bounded.

b) If (Ti)i∈I is uniformly bounded, then Ti is bounded for every i ∈ I , and
(Ti)i∈I is bounded.

c) If X is a Banach space, if every Ti is bounded, and if (Ti)i∈I is strongly
bounded, then (Ti)i∈I is bounded.

PROOF. a) Follows from

Tjx ≤


i∈I
Tix ≤ Mx
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and Tj ≤ M .

b) Follows from
Tjx ≤ sup

i∈I
Tix ≤ Mx

and Tj ≤ M .

c) This is the Banach-Steinhaus theorem.

Corollary 2.2. If Y is Banach space and a familly (Ti)i∈I of operators in
L(X,Y ) is uniformly summable then (Tix)i∈I is absolutely and ordinary summable
for every x ∈ X .

PROOF. If (Ti)i∈I is uniformly summable then there exists a constant M such
that


i∈I Tix ≤ Mx for every x ∈ X . Therefore (Tix)i∈I is absolutely

summable and hence summable because Y is Banach space.

Theorem 2.4. If Φ is bijective and Φ−1 ∈ B(ΣI ,ΠI
1), then (Pi)i∈I is uniformly

summable and Pj ≤ Φ−11 for every j ∈ J .

PROOF. Since Φ is bijective, projections Pj are well-defined. Let Φ−1 ∈ B(ΣI ,ΠI
1)

and x = Σxi ∈ ΣI . Then x = Πxi = ΠPix = Φ−1x ∈ ΠI
1. We have the following:

Pjx ≤


i∈I
Pix = x1 = Φ−1x1 ≤ Φ−11x.

Hence, (Pi)i∈I is uniformly summable and Pj ≤ Φ−1
1 1 for every j ∈ I .

Theorem 2.5. If Φ is bijective and Φ−1 ∈ B(ΣI ,ΠI
∞), then (Pi)i∈I is uni-

formly bounded and Pj ≤ Φ−1∞ for every j ∈ J .

PROOF. Let Φ−1 ∈ B(ΣI ,ΠI
∞) and x = Σxi ∈ ΣI . Then x = Πxi = ΠPix =

Φ−1x ∈ ΠI
∞, and we have the following:

Pjx ≤ sup
i∈I

Pix = x∞ = Φ−1x∞ ≤ Φ−1∞x.

Thus, (Pi)i∈I is uniformly bounded and Pj ≤ Φ−1∞ for every j ∈ I .

Theorem 2.6. Let Φ be bijective.
a) If (Pi)i∈I is uniformly summable, then Φ−1 ∈ B(ΣI ,ΠI

1).

b) If (Pi)i∈I is uniformly bounded, then Φ−1 ∈ B(ΣI ,ΠI
∞).

c) If ΣI is a Banach space, Pj ∈ B(ΣI) for every j ∈ I , and (Pi)i∈I is strongly
bounded, then Φ−1 ∈ B(ΣI ,ΠI

∞).
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PROOF. a) Take x = Πxi ∈ ΠI
1 and Φx = x = Σxi ∈ ΣI . We have the

following:

Φ−1x1 = Πxi1 = ΠPix1 =


i∈I
Pix ≤ Mx

for some constant M and for all x ∈ ΣI . Thus, Φ−11 ≤ M < ∞.
b) Again, take x = Πxi ∈ ΠI

∞ and Φx = x = Σxi ∈ ΣI . We have the
following:

Φ−1x∞ = Πxi∞ = ΠPix∞ = sup
i∈I

Pix ≤ Mx

for some constant M and for all x ∈ ΠI
∞. We conclude Φ−1∞ ≤ M .

c) If ΣI is a Banach space, then the Banach-Stainhas theorem implies that from
the strong boudedness of (Pi)i we have its uniform boundedness (in the sense of
Definition 2.2). Thus, the result follows from b).

Theorem 2.7. Let X be a Banach space and let ΣI =

i∈I

Xi. Then the follow-

ing statements are equivalent:
a) ΣI is a Banach space;
b) Xi is a Banach space for every i ∈ I .

PROOF. a) =⇒ b): Since ΣI is TDS, we get that every Pi is bounded. Hence,
every Xi is a closed subspace of a Banach space ΣI .

b) =⇒ a): If every Xi is a Banach space, we get that ΠI
1 is a Banach space.

Since ΣI is TDS, then Φ ∈ B(ΠI
1,Σ

I) and Φ−1 ∈ B(ΣI ,ΠI
1). Thus, ΣI is a

Banach space.

Theorem 2.8. Let X be a Banach space and let K ⊂ I . If ΣI =

i∈I

Xi is TDS,

then ΣK =

k∈K

Xk is TDS.

PROOF. Let Φ : ΠI
1 → ΣI be the isomorphism such that Φ and Φ−1 are

bounded. If (xi)i∈I is absolutely summable in a Banach space X , then (xk)k∈K is
also absolutely summable. Thus, ΣK is a subspace of ΣI . If ΠKI

1 = {(xi)i∈I |(∀i ∈
I\K) xi = 0} then ΠKI

1 is a subspace of ΠI
1. Let x = (xi)i∈K ∈ ΠK

1 and define
y = (yi)i∈I as follows:

yi =





xi, for i ∈ K,

0, for i ∈ I\K.

Then y = (yi)i∈I ∈ ΠKI
1 and x1 = y1. Now it is obviously that the reduction

operator Φ0 = Φ|ΠK
1

: ΠK
1 → ΣK ⊂ ΣI obeys properties Φ0 ∈ B(ΠK

1 ,ΣK) and
Φ−1
0 ∈ B(ΣK ,ΠK

1 ). Thus, ΣK is TDS.
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3. Infinite operator matrices

We continue with investigating decompositions of operators induced by infinite
direct sums of subspaces.

Lemma 3.1. If a family (xi)i∈I of vectors in X is summable, x =


i∈I xi and
A ∈ B(X,Y ) then


i∈I Axi is summable and Ax =


i∈I Axi.

PROOF. Let x =


i∈I xi be summable and let ε > 0 be arbitrary. There exists
a finite set Jε ⊂ I such that for every finite J , Jε ⊂ J ⊂ I , we have

x−


i∈J
xi

 <
ε

A .

It follows that
Ax−



i∈J
Axi

 =

A(x−


i∈J
xi)

 ≤ A

x−


i∈J
xi

 < ε.

Thus,


i∈I Axi is summable and Ax =


i∈I Axi.

Note that Definition 2.2 a) make sense even when Ti ∈ L(X,Y ).

Theorem 3.1. Let X and Y be Banach spaces and let ΣJ =

j∈J

Xj and ΣI =


i∈I

Yi be TDS in X and Y respectively. Let Qj : ΣJ → ΣJ and Pi : ΣI → ΣI

be defined by Qj(Σxk) = xj , Σxk ∈ ΣJ , and Pi(Σyk) = yi, Σyk ∈ ΣI . If
A ∈ B(X,Y ) then the family (PiAQj)(i,j)∈I×J is uniformly summable and

Ax =


i∈I,j∈J
PiAQjx, x ∈ X.

If J ′ ⊂ J and I ′ ⊂ I , then the operator AI′,J ′ :

k∈J ′

Xk →

k∈I′

Yk, given by

AI′,J ′x =


i∈I′,j∈J ′

PiAQjx, x ∈


k∈J ′

Xk

is well-defined and bounded.

PROOF. Let ΣJ =

j∈J

Xj and ΣI =

i∈I

Yi be TDS, and let A ∈ B(ΣJ ,ΣI).

By Theorem 2.4 (Pi)i and (Qj)j are uniformly summable. There exist M1 and
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M2 such that for every x ∈ ΣJ and y ∈ ΣI we have


i∈I Piy < M1y and
j∈J Qjx < M2x. Thus for x ∈ ΣJ , we have



j∈J




i∈I
PiAQjx


≤



j∈J
M1AQjx

≤


j∈J
M1AQjx ≤ M1AM2x < ∞.

Since every term in above double sum is nonnegative, it follows that


i∈I,j∈J
PiAQjx < M1M2Ax,

that is (PiAQj)(i,j)∈I×J is uniformly summable. Since Y is Banach space, by
Corollary 2.2, we conclude that the family (PiAQjx)(i,j)∈I×J is summable for ev-
ery x ∈ ΣJ . Note that


i∈I PiAQjx = AQjx, for every j ∈ J . By Lemma

3.1, we have


j∈J AQjx = A


j∈J Qjx


= Ax. Due to associativity of the
summable family, see [1, Theorem 9.2.2], we have



i∈I,j∈J
PiAQjx =



j∈J




i∈I
PiAQjx


=



j∈J
AQjx = Ax.

The remaining result can be proved similarly taking into account Theorem 2.8 and
the fact that a subfamily of an absolutely summable family is absolutely summable.

Note that for x =


j∈J xj ∈ ΣJ we can define the operators Aij : Xj → Yi
by Aijxj := PiAQjx = PiAxj . Then Ax =


i∈I,j∈J Aijxj .

Theorem 3.2. Let X and Y be Banach spaces, and let

ΣJ =


j∈J
Xj and ΣI =



i∈I
Yi

be TDS in X and Y respectively. Suppose that Aij : Xj → Yi, i ∈ I , j ∈ J , is
the family of operators such that for every j ∈ J the family (Aij)i∈I is uniformly
summable with 

i∈I
Aijxj ≤ Mjxj, xj ∈ Xj .

Suppose that sup
j∈J

Mj = M < ∞. Then the family (Aijxj)(i,j)∈I×J is absolutely

summable for every x =


j∈J xj ∈ ΣJ , and the operator A : ΣJ → ΣI given by

Ax =


i∈I,j∈J
Aijxj , x =



j∈J
xj ∈ ΣJ
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is well-defined and bounded.
If J ′ ⊂ J and I ′ ⊂ I , then the operator AI′,J ′ :


j∈J ′

Xj →

i∈I′

Yi, given by

AI′,J ′x =


i∈I′,j∈J ′

Aijxj , x =


j∈J ′

xj ∈


j∈J ′

Xj ,

is well-defined and bounded.

PROOF. Suppose that

i∈I

Aijxj ≤ Mjxj, xj ∈ Xj and supj Mj = M <

∞. Let x =


j∈J xj ∈ ΣJ . We have



j∈J




i∈I
Aijxj


≤



j∈J
Mjxj ≤



j∈J
Mxj

= MΠxj1 = MΦ−1(x)1 ≤ MΦ−1x < ∞. (3.1)

From the same reasons as in the proof of Theorem 3.1, we conclude that the family
(Aijxj)(i,j)∈I×J is absolutely and ordinary summable. Thus the operator Ax =

i∈I,j∈J Aijxj is well defined. By the associativity, Lemma 2.1 and inequality
(3.1), we obtain

Ax =





i∈I,j∈J
Aijxj


=





j∈J




i∈I
Aijxj



≤


j∈J




i∈I
Aijxj


≤ MΦ−1x,

so A is bounded operator. The remaining result can be proved similarly taking into
account Theorem 2.8.

In Theorem 3.1 and Theorem 3.2 we established the infinite operator matrix for
the operator – we can write A = (Aij)i∈I,j∈J and

Ax =


i∈I,j∈J
Aijxj =



j∈J




i∈I
Aijxj


=



i∈I






j∈J
Aijxj



 .

Note that the addition and multiplication of operators represented in their infinite
operator matrices can be performed using known matrix rules. Let

A,B ∈ B






j∈J
Xj ,



i∈I
Yi



 and C ∈ B




i∈I
Yi,



k∈K
Zk
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and A = (Aij)i∈I,j∈J , B = (Bij)i∈I,j∈J , C = (Cki)k∈K,i∈I . Then A + B =
(Aij +Bij)i∈I,j∈J . Also,

CA ∈ B






j∈J
Xj ,



k∈K
Zk





and for x = Σxj ∈

j∈J

Xj we have

CAx = C






i∈I






j∈J
Aijxj







 =


k∈K






i∈I



Cki






j∈J
Aijxj













=


k∈K






i∈I






j∈J
Cki(Aijxj)







 =


k∈K






j∈J




i∈I
Cki(Aijxj)



 .

The previous equalities follow from Lemma 3.1 and associativity. Therefore, as we
have expected

(∀xj ∈ Xj) (CA)kj : Xj → Zk and (CA)kjxj =


i∈I
Cki(Aijxj).
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Faculty of Sciences and Mathematics
Department of Mathematics
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