INFINITE TOPOLOGICAL DIRECT SUM OF SUBSPACES

DRAGAN S. DJORDJEVIĆ, DRAGAN S. RAKIĆ

(Accepted at the 8th Meeting, held on November 25, 2022)
Abstract. We define and investigate infinite topological direct sum of subspaces of a normed space, as well as corresponding matrix decompositions of bounded linear operators.

AMS Mathematics Subject Classification (2020): 46B20, 47A08.
Key Words: infinite sum of subspaces, infinite operator matrices.

1. Introduction

The notion of a topological direct sum of closed subspaces of a normed space is well-known. The situation of a finite number of subspaces is presented in more details in [2]. On the other hand, we did not find a systematic treatment of results concerning the infinite sum of subspaces. Hence, we define and investigate the infinite sum of subspaces of a normed space. It is well-known that decompositions of a space induce decompositions of linear operators over the same space. For this reason we investigate matrix decompositions of bounded linear operators induced by infinite direct sums of subspaces.

In this paper all vector spaces will be over the field \mathbb{F} which is equal to \mathbb{R} or \mathbb{C}. I will be an arbitrary index set, X, Y will be normed spaces over \mathbb{F}, and $\left(X_{i}\right)_{i \in I}$ will be a family of vector subspaces of X.

We use $L(X, Y)$ and $B(X, Y)$, respectively, to denote the set of all linear and the set of all bounded linear operators from X to Y. Shortly, $L(X)=L(X, X)$ and $B(X)=B(X, X)$.

In order to define infinite sum of subspaces, we recall the notion of summable vectors in normed spaces (see [1,3], for example).

Suppose that $\left(x_{i}\right)_{i \in I}$ is a family of vectors in X. The family $\left(x_{i}\right)_{i \in I}$ is summable and its sum is equal to $\bar{x}=\sum_{i \in I} x_{i}$, provided that for every $\varepsilon>0$ there exists a finite subset $J_{\varepsilon} \subset I$ such that for every finite subset J satisfying $J_{\varepsilon} \subset J \subset I$ we have

$$
\left\|\bar{x}-\sum_{j \in J} x_{j}\right\|<\varepsilon
$$

If $\left(x_{i}\right)_{i \in I}$ is summable, then the number of all x_{i} such that $x_{i} \neq 0$, is at most countable. The family $\left(x_{i}\right)_{i \in I}$ is absolutely summable, if $\left(\left\|x_{i}\right\|\right)_{i \in I}$ is summable in \mathbb{R}. If X is a Banach space, then absolute summability of $\left(x_{i}\right)_{i}$ implies its summability ([1, pp. 113-124], [3, pp. 45-47]).

First we investigate infinite sums of subspaces of normed spaces, and then we investigate corresponding decompositions of bounded linear operators.

2. Infinite sums of subspaces

Consider the following sets:

$$
\begin{aligned}
& \prod_{i \in I} X_{i}=\left\{x=\left(x_{i}\right)_{i}=\Pi x_{i}:(\forall i \in I) x_{i} \in X_{i}\right\} \\
& \Pi^{I}=\left\{x=\left(x_{i}\right)_{i} \in \prod_{i \in I} X_{i}:\left(x_{i}\right)_{i} \text { is ordinary and absolutely summable }\right\} \\
& \Sigma^{I}=\left\{\bar{x}=\sum_{i \in I} x_{i}=\Sigma x_{i}:(\forall i \in I) x_{i} \in X_{i}\right. \\
& \left.\qquad\left(x_{i}\right)_{i} \text { is ordinary and absolutely summable }\right\}
\end{aligned}
$$

It is elementary that $\prod_{i \in I} X_{i}$ is a vector space, Π^{I} is a subspace of $\prod_{i \in I} X_{i}$, and Σ^{I} is a subspace of X.

We need the following elementary lemma.
Lemma 2.1. If $\left(x_{i}\right)_{i \in I}$ is summable, then

$$
\left\|\sum_{i \in I} x_{i}\right\| \leq \sum_{i \in I}\left\|x_{i}\right\|
$$

Proof. Suppose that $\left(x_{i}\right)_{i \in I}$ is summable and let $\bar{x}=\sum_{i \in I} x_{i}$. For an arbitrary $\varepsilon>0$ there exists finite J_{ε} such that for every finite $J, J_{\varepsilon} \subset J \subset I$ we have $\left\|\bar{x}-\sum_{i \in J} x_{i}\right\|<\varepsilon$. It follows that

$$
\|\bar{x}\| \leq\left\|\bar{x}-\sum_{i \in J} x_{i}\right\|+\left\|\sum_{i \in J} x_{i}\right\| \leq \varepsilon+\sum_{i \in J}\left\|x_{i}\right\| \leq \varepsilon+\sum_{i \in I}\left\|x_{i}\right\|
$$

Since $\varepsilon>0$ is arbitrary, we conclude that $\left\|\sum_{i \in I} x_{i}\right\| \leq \sum_{i \in I}\left\|x_{i}\right\|$.
We have the following result.
Theorem 2.1. a) $\Pi^{I} \equiv \Pi_{1}^{I}$ is a normed space with respect to the norm

$$
\|x\|_{1}=\sum_{i \in I}\left\|x_{i}\right\|, \quad x=\Pi x_{i} \in \Pi^{I}
$$

If X is a Banach space and every X_{i} is closed in X, then Π_{1}^{I} is a Banach space.
b) $\Pi^{I} \equiv \Pi_{\infty}^{I}$ is a normed space with respect to the norm

$$
\|x\|_{\infty}=\sup _{i \in I}\left\|x_{i}\right\|, \quad x=\Pi x_{i} \in \Pi^{I} .
$$

Proof. a) It is easy to verify that Π_{1}^{I} is a normed space. Assume that X is a Banach space and that every X_{i} is closed in X. Let $\left(x^{m}\right)_{m}$ be a Cauchy sequence in Π_{1}^{I}, where $x^{m}=\left(x_{i}^{m}\right)_{i} \in \Pi_{1}^{I}$. Take $\varepsilon>0$. There exists some $n_{0} \in \mathbb{N}$ such that for every $m, n \geq n_{0}$ we have

$$
\left\|x^{m}-x^{n}\right\|_{1}=\sum_{i \in I}\left\|x_{i}^{m}-x_{i}^{n}\right\|<\varepsilon
$$

We get that for every $i \in I$ we have $\left\|x_{i}^{m}-x_{i}^{n}\right\|<\varepsilon$. Then for every $i \in I$ it follows that $\left(x_{i}^{m}\right)_{m}$ is a Cauchy sequence in a Banach space X_{i}. Thus, for every $i \in I$ there exists $x_{i}=\lim _{m \rightarrow \infty} x_{i}^{m} \in X_{i}$. Let $x=\Pi x_{i}$. For given $\varepsilon>0$, for all $m, n \geq n_{0}$ and for every finite set $J \subset I$ we have

$$
\sum_{i \in J}\left\|x_{i}^{m}-x_{i}^{n}\right\|<\varepsilon
$$

Taking $m \rightarrow \infty$ we conclude

$$
\sum_{i \in J}\left\|x_{i}-x_{i}^{n}\right\| \leq \varepsilon
$$

and

$$
\sum_{i \in J}\left\|x_{i}\right\| \leq \sum_{i \in J}\left\|x_{i}^{n}\right\|+\varepsilon \leq \sum_{i \in I}\left\|x_{i}^{n}\right\|+\varepsilon=\left\|x^{n}\right\|_{1}+\varepsilon
$$

Since J is an arbitrary finite subset of I, we conclude that $x=\left(x_{i}\right)_{i}$ is absolutely summable, $x \in \Pi_{1}^{I}$ and $\lim _{n \rightarrow \infty} x^{n}=x$ in Π_{1}^{I}.
b) It is easy to see that Π_{∞}^{I} is a normed space with respect to the norm $\|\cdot\|_{\infty}$. Notice that Π_{∞}^{I} is not a Banach space for the following reason: ℓ_{1} is contained in ℓ_{∞}, but the $\|\cdot\|_{\infty}$-closure of ℓ_{1} is c_{0}, so ℓ_{1} is not a $\|\cdot\|_{\infty}$-closed subspace of ℓ_{∞}.

If $x \in \Pi^{I}$, we see that $\|x\|_{\infty} \leq\|x\|_{1}$. Thus,

$$
B\left(\Pi_{\infty}^{I}, \Sigma^{I}\right) \subset B\left(\Pi_{1}^{I}, \Sigma^{I}\right) \quad \text { and } \quad B\left(\Sigma^{I}, \Pi_{1}^{I}\right) \subset B\left(\Sigma^{I}, \Pi_{\infty}^{I}\right)
$$

If $A \in L\left(\Pi^{I}, \Sigma^{I}\right)$, then we can ask if A is bounded with respect to any one of the norm $\|\cdot\|_{1}$ or $\|\cdot\|_{\infty}$. For the same A we use corresponding norms $\|A\|_{1}$ and $\|A\|_{\infty}$, knowing that $\|A\|_{\infty} \leq\|A\|_{1}$. The similar situation is when we consider $B \in L\left(\Sigma^{I}, \Pi^{I}\right)$, where $\|B\|_{1} \leq\|B\|_{\infty}$.

Consider the natural mapping $\Phi: \Pi^{I} \longrightarrow \Sigma^{I}$ defined as follows:

$$
\Phi\left(\Pi x_{i}\right)=\Sigma x_{i}, \quad \Pi x_{i} \in \Pi^{I}
$$

We have the following result.
Theorem 2.2. $\Phi \in B\left(\Pi_{1}^{I}, \Sigma^{I}\right)$ and Φ is onto.
Proof. For $x=\Pi x_{i} \in \Pi_{1}^{I}$ we have

$$
\|\Phi(x)\|=\left\|\Sigma x_{i}\right\| \leq \sum_{i \in I}\left\|x_{i}\right\|=\|x\|_{1}
$$

implying that $\|\Phi\|_{1} \leq 1$. Obviously, Φ is onto.
Following [2, Definition 2.3], we introduce the notion of the infinite topological sum of subspaces.

Definition 2.1. a) Σ^{I} is a topological direct sum (TDS) of $\left(X_{i}\right)_{i \in I}$, denoted as

$$
\Sigma^{I}=\bigoplus_{i \in I} X_{i}
$$

if $\Phi \in B\left(\Pi_{1}^{I}, \Sigma^{I}\right)$ is bijective and $\Phi^{-1} \in B\left(\Sigma^{I}, \Pi_{1}^{I}\right)$.
b) Σ^{I} is an ∞-topological direct sum (∞-TDS) of $\left(X_{i}\right)_{i \in I}$, denoted as

$$
\Sigma^{I}=\bigoplus_{i \in I}^{\infty} X_{i}
$$

if $\Phi \in B\left(\Pi_{\infty}^{I}, \Sigma^{I}\right)$ is bijective and $\Phi^{-1} \in B\left(\Sigma^{I}, \Pi_{\infty}^{I}\right)$.

Once we know that Φ is a bounded linear epimorphism, we continue with the following results.

Theorem 2.3. If Φ is bijective, then $X_{j} \cap X_{k}=\{0\}$ for $j \neq k$. In this case the operator $P_{j}: \Sigma^{I} \rightarrow X_{j} \subset \Sigma^{I}$ is well-defined by $P_{j}\left(\Sigma x_{i}\right)=x_{j}$ for every $j \in I, P_{j}$ is linear, $P_{j}^{2}=P_{j}$, and the image of P_{j} is equal to X_{j}. Moreover, $\sum_{i \in I} P_{i} x=x$, for all $x \in \Sigma^{I}$, and $P_{i} P_{j}=0$ for $i \neq j$.

Proof. Suppose that Φ is bijective, $z \in X_{j} \cap X_{k}$ and $j \neq k$. Let $x=\Pi x_{i} \in \Pi^{I}$ such that

$$
x_{i}= \begin{cases}0, & i \neq j \\ z, & i=j\end{cases}
$$

and let $y=\Pi y_{i} \in \Pi^{I}$ with

$$
y_{i}= \begin{cases}0, & i \neq k \\ z, & i=k\end{cases}
$$

Then $x \neq y$ and $\Phi(x)=z=\Phi(y)$. This contradicts to the fact that Φ is bijective.
Moreover, if $\bar{x}=\Sigma x_{i} \in \Sigma^{I}$, then $x=\Phi^{-1}(x)=\Pi x_{i} \in \Pi^{I}$, so every $x_{i} \in X_{i}$ is unique. Thus, P_{j} is well-defined as $P_{j}\left(\Sigma x_{i}\right)=x_{j}$. Obviously, P_{j} is linear, $P_{j}^{2}=P_{j}, \sum_{i \in I} P_{i} x=x$ for $x \in \Sigma^{I}$, and $P_{i} P_{j}=0$ for $i \neq j$.

We need the following conditions on a family of linear operators.
Definition 2.2. A family $\left(T_{i}\right)_{i \in I}$ of operators in $L(X, Y)$ is:
a) Uniformly summable, if there exsists a constant $M<\infty$ such that for every $x \in X$ we have $\sum_{i \in I}\left\|T_{i} x\right\| \leq M\|x\|$.
b) Uniformly bounded, if there exists some constant $M<\infty$ such that for every $x \in X$ we have $\sup _{i \in I}\left\|T_{i} x\right\| \leq M\|x\|$.
c) Strongly bounded, if there exists some constant $M<\infty$ such that for every $x \in X$ we have $\sup _{i \in I}\left\|T_{i} x\right\| \leq M$.

Corollary 2.1. a) If $\left(T_{i}\right)_{i \in I}$ is uniformly summable, then T_{i} is bounded for every $i \in I$ and $\left(\left\|T_{i}\right\|\right)_{i \in I}$ is bounded.
b) If $\left(T_{i}\right)_{i \in I}$ is uniformly bounded, then T_{i} is bounded for every $i \in I$, and $\left(\left\|T_{i}\right\|\right)_{i \in I}$ is bounded.
c) If X is a Banach space, if every T_{i} is bounded, and if $\left(T_{i}\right)_{i \in I}$ is strongly bounded, then $\left(\left\|T_{i}\right\|\right)_{i \in I}$ is bounded.

Proof. a) Follows from

$$
\left\|T_{j} x\right\| \leq \sum_{i \in I}\left\|T_{i} x\right\| \leq M\|x\|
$$

and $\left\|T_{j}\right\| \leq M$.
b) Follows from

$$
\left\|T_{j} x\right\| \leq \sup _{i \in I}\left\|T_{i} x\right\| \leq M\|x\|
$$

and $\left\|T_{j}\right\| \leq M$.
c) This is the Banach-Steinhaus theorem.

Corollary 2.2. If Y is Banach space and a familly $\left(T_{i}\right)_{i \in I}$ of operators in $L(X, Y)$ is uniformly summable then $\left(T_{i} x\right)_{i \in I}$ is absolutely and ordinary summable for every $x \in X$.

Proof. If $\left(T_{i}\right)_{i \in I}$ is uniformly summable then there exists a constant M such that $\sum_{i \in I}\left\|T_{i} x\right\| \leq M\|x\|$ for every $x \in X$. Therefore $\left(T_{i} x\right)_{i \in I}$ is absolutely summable and hence summable because Y is Banach space.

Theorem 2.4. If Φ is bijective and $\Phi^{-1} \in B\left(\Sigma^{I}, \Pi_{1}^{I}\right)$, then $\left(P_{i}\right)_{i \in I}$ is uniformly summable and $\left\|P_{j}\right\| \leq\left\|\Phi^{-1}\right\|_{1}$ for every $j \in J$.

Proof. Since Φ is bijective, projections P_{j} are well-defined. Let $\Phi^{-1} \in B\left(\Sigma^{I}, \Pi_{1}^{I}\right)$ and $\bar{x}=\Sigma x_{i} \in \Sigma^{I}$. Then $x=\Pi x_{i}=\Pi P_{i} \bar{x}=\Phi^{-1} \bar{x} \in \Pi_{1}^{I}$. We have the following:

$$
\left\|P_{j} \bar{x}\right\| \leq \sum_{i \in I}\left\|P_{i} \bar{x}\right\|=\|x\|_{1}=\left\|\Phi^{-1} \bar{x}\right\|_{1} \leq\left\|\Phi^{-1}\right\|_{1}\|\bar{x}\| .
$$

Hence, $\left(P_{i}\right)_{i \in I}$ is uniformly summable and $\left\|P_{j}\right\| \leq\left\|\Phi_{1}^{-1}\right\|_{1}$ for every $j \in I$.
Theorem 2.5. If Φ is bijective and $\Phi^{-1} \in B\left(\Sigma^{I}, \Pi_{\infty}^{I}\right)$, then $\left(P_{i}\right)_{i \in I}$ is uniformly bounded and $\left\|P_{j}\right\| \leq\left\|\Phi^{-1}\right\|_{\infty}$ for every $j \in J$.

Proof. Let $\Phi^{-1} \in B\left(\Sigma^{I}, \Pi_{\infty}^{I}\right)$ and $\bar{x}=\Sigma x_{i} \in \Sigma^{I}$. Then $x=\Pi x_{i}=\Pi P_{i} \bar{x}=$ $\Phi^{-1} \bar{x} \in \Pi_{\infty}^{I}$, and we have the following:

$$
\left\|P_{j} \bar{x}\right\| \leq \sup _{i \in I}\left\|P_{i} \bar{x}\right\|=\|x\|_{\infty}=\left\|\Phi^{-1} \bar{x}\right\|_{\infty} \leq\left\|\Phi^{-1}\right\|_{\infty}\|\bar{x}\|
$$

Thus, $\left(P_{i}\right)_{i \in I}$ is uniformly bounded and $\left\|P_{j}\right\| \leq\left\|\Phi^{-1}\right\|_{\infty}$ for every $j \in I$.
Theorem 2.6. Let Φ be bijective.
a) If $\left(P_{i}\right)_{i \in I}$ is uniformly summable, then $\Phi^{-1} \in B\left(\Sigma^{I}, \Pi_{1}^{I}\right)$.
b) If $\left(P_{i}\right)_{i \in I}$ is uniformly bounded, then $\Phi^{-1} \in B\left(\Sigma^{I}, \Pi_{\infty}^{I}\right)$.
c) If Σ^{I} is a Banach space, $P_{j} \in B\left(\Sigma^{I}\right)$ for every $j \in I$, and $\left(P_{i}\right)_{i \in I}$ is strongly bounded, then $\Phi^{-1} \in B\left(\Sigma^{I}, \Pi_{\infty}^{I}\right)$.

Proof. a) Take $x=\Pi x_{i} \in \Pi_{1}^{I}$ and $\Phi x=\bar{x}=\Sigma x_{i} \in \Sigma^{I}$. We have the following:

$$
\left\|\Phi^{-1} \bar{x}\right\|_{1}=\left\|\Pi x_{i}\right\|_{1}=\left\|\Pi P_{i} \bar{x}\right\|_{1}=\sum_{i \in I}\left\|P_{i} \bar{x}\right\| \leq M\|\bar{x}\|
$$

for some constant M and for all $\bar{x} \in \Sigma^{I}$. Thus, $\left\|\Phi^{-1}\right\|_{1} \leq M<\infty$.
b) Again, take $x=\Pi x_{i} \in \Pi_{\infty}^{I}$ and $\Phi x=\bar{x}=\Sigma x_{i} \in \Sigma^{I}$. We have the following:

$$
\left\|\Phi^{-1} \bar{x}\right\|_{\infty}=\left\|\Pi x_{i}\right\|_{\infty}=\left\|\Pi P_{i} \bar{x}\right\|_{\infty}=\sup _{i \in I}\left\|P_{i} \bar{x}\right\| \leq M\|\bar{x}\|
$$

for some constant M and for all $\bar{x} \in \Pi_{\infty}^{I}$. We conclude $\left\|\Phi^{-1}\right\|_{\infty} \leq M$.
c) If Σ^{I} is a Banach space, then the Banach-Stainhas theorem implies that from the strong boudedness of $\left(P_{i}\right)_{i}$ we have its uniform boundedness (in the sense of Definition 2.2). Thus, the result follows from b).

Theorem 2.7. Let X be a Banach space and let $\Sigma^{I}=\bigoplus_{i \in I} X_{i}$. Then the following statements are equivalent:
a) Σ^{I} is a Banach space;
b) X_{i} is a Banach space for every $i \in I$.

Proof. a) $\Longrightarrow \mathrm{b}$): Since Σ^{I} is TDS, we get that every P_{i} is bounded. Hence, every X_{i} is a closed subspace of a Banach space Σ^{I}.
b) \Longrightarrow a): If every X_{i} is a Banach space, we get that Π_{1}^{I} is a Banach space. Since Σ^{I} is TDS, then $\Phi \in B\left(\Pi_{1}^{I}, \Sigma^{I}\right)$ and $\Phi^{-1} \in B\left(\Sigma^{I}, \Pi_{1}^{I}\right)$. Thus, Σ^{I} is a Banach space.

Theorem 2.8. Let X be a Banach space and let $K \subset I$. If $\Sigma^{I}=\bigoplus_{i \in I} X_{i}$ is TDS, then $\Sigma^{K}=\bigoplus_{k \in K} X_{k}$ is TDS.

Proof. Let $\Phi: \Pi_{1}^{I} \rightarrow \Sigma^{I}$ be the isomorphism such that Φ and Φ^{-1} are bounded. If $\left(x_{i}\right)_{i \in I}$ is absolutely summable in a Banach space X, then $\left(x_{k}\right)_{k \in K}$ is also absolutely summable. Thus, Σ^{K} is a subspace of Σ^{I}. If $\Pi_{1}^{K I}=\left\{\left(x_{i}\right)_{i \in I} \mid(\forall i \in\right.$ $\left.I \backslash K) x_{i}=0\right\}$ then $\Pi_{1}^{K I}$ is a subspace of Π_{1}^{I}. Let $x=\left(x_{i}\right)_{i \in K} \in \Pi_{1}^{K}$ and define $y=\left(y_{i}\right)_{i \in I}$ as follows:

$$
y_{i}= \begin{cases}x_{i}, & \text { for } i \in K \\ 0, & \text { for } i \in I \backslash K\end{cases}
$$

Then $y=\left(y_{i}\right)_{i \in I} \in \Pi_{1}^{K I}$ and $\|x\|_{1}=\|y\|_{1}$. Now it is obviously that the reduction operator $\Phi_{0}=\left.\Phi\right|_{\Pi_{1}^{K}}: \Pi_{1}^{K} \rightarrow \Sigma^{K} \subset \Sigma^{I}$ obeys properties $\Phi_{0} \in B\left(\Pi_{1}^{K}, \Sigma^{K}\right)$ and $\Phi_{0}^{-1} \in B\left(\Sigma^{K}, \Pi_{1}^{K}\right)$. Thus, Σ^{K} is TDS.

3. Infinite operator matrices

We continue with investigating decompositions of operators induced by infinite direct sums of subspaces.

Lemma 3.1. If a family $\left(x_{i}\right)_{i \in I}$ of vectors in X is summable, $x=\sum_{i \in I} x_{i}$ and $A \in B(X, Y)$ then $\sum_{i \in I} A x_{i}$ is summable and $A x=\sum_{i \in I} A x_{i}$.

Proof. Let $x=\sum_{i \in I} x_{i}$ be summable and let $\varepsilon>0$ be arbitrary. There exists a finite set $J_{\varepsilon} \subset I$ such that for every finite $J, J_{\varepsilon} \subset J \subset I$, we have

$$
\left\|x-\sum_{i \in J} x_{i}\right\|<\frac{\varepsilon}{\|A\|} .
$$

It follows that

$$
\left\|A x-\sum_{i \in J} A x_{i}\right\|=\left\|A\left(x-\sum_{i \in J} x_{i}\right)\right\| \leq\|A\|\left\|x-\sum_{i \in J} x_{i}\right\|<\varepsilon .
$$

Thus, $\sum_{i \in I} A x_{i}$ is summable and $A x=\sum_{i \in I} A x_{i}$.
Note that Definition 2.2 a) make sense even when $T_{i} \in L(X, Y)$.
Theorem 3.1. Let X and Y be Banach spaces and let $\Sigma^{J}=\bigoplus_{j \in J} X_{j}$ and $\Sigma^{I}=$ $\bigoplus_{i \in I} Y_{i}$ be TDS in X and Y respectively. Let $Q_{j}: \Sigma^{J} \rightarrow \Sigma^{J}$ and $P_{i}: \Sigma^{I} \rightarrow \Sigma^{I}$ be defined by $Q_{j}\left(\Sigma x_{k}\right)=x_{j}, \Sigma x_{k} \in \Sigma^{J}$, and $P_{i}\left(\Sigma y_{k}\right)=y_{i}, \Sigma y_{k} \in \Sigma^{I}$. If $A \in B(X, Y)$ then the family $\left(P_{i} A Q_{j}\right)_{(i, j) \in I \times J}$ is uniformly summable and

$$
A x=\sum_{i \in I, j \in J} P_{i} A Q_{j} x, \quad x \in X
$$

If $J^{\prime} \subset J$ and $I^{\prime} \subset I$, then the operator $A_{I^{\prime}, J^{\prime}}: \underset{k \in J^{\prime}}{ } X_{k} \rightarrow \underset{k \in I^{\prime}}{ } Y_{k}$, given by

$$
A_{I^{\prime}, J^{\prime}} x=\sum_{i \in I^{\prime}, j \in J^{\prime}} P_{i} A Q_{j} x, \quad x \in \bigoplus_{k \in J^{\prime}} X_{k}
$$

is well-defined and bounded.

$$
\text { Proof. Let } \Sigma^{J}=\bigoplus_{j \in J} X_{j} \text { and } \Sigma^{I}=\bigoplus_{i \in I} Y_{i} \text { be TDS, and let } A \in B\left(\Sigma^{J}, \Sigma^{I}\right) \text {. }
$$ By Theorem $2.4\left(P_{i}\right)_{i}$ and $\left(Q_{j}\right)_{j}$ are uniformly summable. There exist M_{1} and

M_{2} such that for every $x \in \Sigma^{J}$ and $y \in \Sigma^{I}$ we have $\sum_{i \in I}\left\|P_{i} y\right\|<M_{1}\|y\|$ and $\sum_{j \in J}\left\|Q_{j} x\right\|<M_{2}\|x\|$. Thus for $x \in \Sigma^{J}$, we have

$$
\begin{aligned}
\sum_{j \in J}\left(\sum_{i \in I}\left\|P_{i} A Q_{j} x\right\|\right) & \leq \sum_{j \in J} M_{1}\left\|A Q_{j} x\right\| \\
& \leq \sum_{j \in J} M_{1}\|A\|\left\|Q_{j} x\right\| \leq M_{1}\|A\| M_{2}\|x\|<\infty .
\end{aligned}
$$

Since every term in above double sum is nonnegative, it follows that

$$
\sum_{i \in I, j \in J}\left\|P_{i} A Q_{j} x\right\|<M_{1} M_{2}\|A\|\|x\|,
$$

that is $\left(P_{i} A Q_{j}\right)_{(i, j) \in I \times J}$ is uniformly summable. Since Y is Banach space, by Corollary 2.2 , we conclude that the family $\left(P_{i} A Q_{j} x\right)_{(i, j) \in I \times J}$ is summable for every $x \in \Sigma^{J}$. Note that $\sum_{i \in I} P_{i} A Q_{j} x=A Q_{j} x$, for every $j \in J$. By Lemma 3.1, we have $\sum_{j \in J} A Q_{j} x=A\left(\sum_{j \in J} Q_{j} x\right)=A x$. Due to associativity of the summable family, see [1, Theorem 9.2.2], we have

$$
\sum_{i \in I, j \in J} P_{i} A Q_{j} x=\sum_{j \in J}\left(\sum_{i \in I} P_{i} A Q_{j} x\right)=\sum_{j \in J} A Q_{j} x=A x .
$$

The remaining result can be proved similarly taking into account Theorem 2.8 and the fact that a subfamily of an absolutely summable family is absolutely summable.

Note that for $x=\sum_{j \in J} x_{j} \in \Sigma^{J}$ we can define the operators $A_{i j}: X_{j} \rightarrow Y_{i}$ by $A_{i j} x_{j}:=P_{i} A Q_{j} x=P_{i} A x_{j}$. Then $A x=\sum_{i \in I, j \in J} A_{i j} x_{j}$.

Theorem 3.2. Let X and Y be Banach spaces, and let

$$
\Sigma^{J}=\bigoplus_{j \in J} X_{j} \quad \text { and } \quad \Sigma^{I}=\bigoplus_{i \in I} Y_{i}
$$

be TDS in X and Y respectively. Suppose that $A_{i j}: X_{j} \rightarrow Y_{i}, i \in I, j \in J$, is the family of operators such that for every $j \in J$ the family $\left(A_{i j}\right)_{i \in I}$ is uniformly summable with

$$
\sum_{i \in I}\left\|A_{i j} x_{j}\right\| \leq M_{j}\left\|x_{j}\right\|, \quad x_{j} \in X_{j} .
$$

Suppose that $\sup M_{j}=M<\infty$. Then the family $\left(A_{i j} x_{j}\right)_{(i, j) \in I \times J}$ is absolutely $j \in J$
summable for every $x=\sum_{j \in J} x_{j} \in \Sigma^{J}$, and the operator $A: \Sigma^{J} \rightarrow \Sigma^{I}$ given by

$$
A x=\sum_{i \in I, j \in J} A_{i j} x_{j}, \quad x=\sum_{j \in J} x_{j} \in \Sigma^{J}
$$

is well-defined and bounded.
If $J^{\prime} \subset J$ and $I^{\prime} \subset I$, then the operator $A_{I^{\prime}, J^{\prime}}: \bigoplus_{j \in J^{\prime}} X_{j} \rightarrow \bigoplus_{i \in I^{\prime}} Y_{i}$, given by

$$
A_{I^{\prime}, J^{\prime}} x=\sum_{i \in I^{\prime}, j \in J^{\prime}} A_{i j} x_{j}, \quad x=\sum_{j \in J^{\prime}} x_{j} \in \bigoplus_{j \in J^{\prime}} X_{j}
$$

is well-defined and bounded.
Proof. Suppose that $\sum_{i \in I}\left\|A_{i j} x_{j}\right\| \leq M_{j}\left\|x_{j}\right\|, x_{j} \in X_{j}$ and $\sup _{j} M_{j}=M<$ ∞. Let $x=\sum_{j \in J} x_{j} \in \Sigma^{J}$. We have

$$
\begin{align*}
\sum_{j \in J}\left(\sum_{i \in I}\left\|A_{i j} x_{j}\right\|\right) & \leq \sum_{j \in J} M_{j}\left\|x_{j}\right\| \leq \sum_{j \in J} M\left\|x_{j}\right\| \\
& =M\left\|\Pi x_{j}\right\|_{1}=M\left\|\Phi^{-1}(x)\right\|_{1} \leq M\left\|\Phi^{-1}\right\|\|x\|<\infty \tag{3.1}
\end{align*}
$$

From the same reasons as in the proof of Theorem 3.1, we conclude that the family $\left(A_{i j} x_{j}\right)_{(i, j) \in I \times J}$ is absolutely and ordinary summable. Thus the operator $A x=$ $\sum_{i \in I, j \in J} A_{i j} x_{j}$ is well defined. By the associativity, Lemma 2.1 and inequality (3.1), we obtain

$$
\begin{aligned}
\|A x\| & =\left\|\sum_{i \in I, j \in J} A_{i j} x_{j}\right\|=\left\|\sum_{j \in J}\left(\sum_{i \in I} A_{i j} x_{j}\right)\right\| \\
& \leq \sum_{j \in J}\left(\sum_{i \in I}\left\|A_{i j} x_{j}\right\|\right) \leq M\left\|\Phi^{-1}\right\|\|x\|
\end{aligned}
$$

so A is bounded operator. The remaining result can be proved similarly taking into account Theorem 2.8.

In Theorem 3.1 and Theorem 3.2 we established the infinite operator matrix for the operator - we can write $A=\left(A_{i j}\right)_{i \in I, j \in J}$ and

$$
A x=\sum_{i \in I, j \in J} A_{i j} x_{j}=\sum_{j \in J}\left(\sum_{i \in I} A_{i j} x_{j}\right)=\sum_{i \in I}\left(\sum_{j \in J} A_{i j} x_{j}\right)
$$

Note that the addition and multiplication of operators represented in their infinite operator matrices can be performed using known matrix rules. Let

$$
A, B \in B\left(\bigoplus_{j \in J} X_{j}, \bigoplus_{i \in I} Y_{i}\right) \quad \text { and } \quad C \in B\left(\bigoplus_{i \in I} Y_{i}, \bigoplus_{k \in K} Z_{k}\right)
$$

and $A=\left(A_{i j}\right)_{i \in I, j \in J}, B=\left(B_{i j}\right)_{i \in I, j \in J}, C=\left(C_{k i}\right)_{k \in K, i \in I}$. Then $A+B=$ $\left(A_{i j}+B_{i j}\right)_{i \in I, j \in J}$. Also,

$$
C A \in B\left(\bigoplus_{j \in J} X_{j}, \bigoplus_{k \in K} Z_{k}\right)
$$

and for $x=\Sigma x_{j} \in \bigoplus_{j \in J} X_{j}$ we have

$$
\begin{aligned}
C A x & =C\left(\sum_{i \in I}\left(\sum_{j \in J} A_{i j} x_{j}\right)\right)=\sum_{k \in K}\left(\sum_{i \in I}\left(C_{k i}\left(\sum_{j \in J} A_{i j} x_{j}\right)\right)\right) \\
& =\sum_{k \in K}\left(\sum_{i \in I}\left(\sum_{j \in J} C_{k i}\left(A_{i j} x_{j}\right)\right)\right)=\sum_{k \in K}\left(\sum_{j \in J}\left(\sum_{i \in I} C_{k i}\left(A_{i j} x_{j}\right)\right)\right) .
\end{aligned}
$$

The previous equalities follow from Lemma 3.1 and associativity. Therefore, as we have expected

$$
\left(\forall x_{j} \in X_{j}\right) \quad(C A)_{k j}: X_{j} \rightarrow Z_{k} \text { and }(C A)_{k j} x_{j}=\sum_{i \in I} C_{k i}\left(A_{i j} x_{j}\right)
$$

Acknowledgement. The author is financially supported by the Ministry of Education, Science and Technological Development, Republic of Serbia, grant no. 451-03-68/2022-14/200124. The research is done under the project Linear operators: invertibility, spectra and operator equations under the Branch of SANU in Niš.

REFERENCES

[1] J. Dixmier, General Topology, Springer-Verlag, New York - Berlin - Heidelberg Tokyo, 1984.
[2] D. Rakić, D. S. Djodjević, A note on topological direct sum of subspaces, Funct. Anal. Approx. Comput. 10 (1) (2018), 9-20.
[3] V. Rakočević, Funkcionalna analiza, Naučna knjiga, Beograd, 1994.

University of Niš
Faculty of Sciences and Mathematics
Department of Mathematics
Višegradska 33, 18000 Niš
Serbia
e-mails: dragan@pmf.ni.ac.rs
dragandjordjevic70@gmail.com

University of Niš
Faculty of Mechanical Engineering
Department of Mathematics
Aleksandra Medvedeva 14, 18000 Niš
Serbia
e-mail: rakic.dragan@gmail.com

