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AMS Mathematics Subject Classification (2020): 60E05, 62E10.

Key Words: Discrete random variable, power series distribution, generating function, com-
pound process, extreme values.

1. Introduction and definition

In the literature, for a long time, there has been attention for discrete probability
distributions that are linked to power series. Among others we mention the works of
Joshi (1975), Kosambi (1949) or Noack (1950). Patil (1962) and Kemp (1968, 1970)
made great advances in the theory of generalized power series. A lot of information
can be found in Johnson et al. (1992).
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In this paper, we assume that the Taylor series expansion:

f(a+ λ) = f(a) + f ′(a)
λ

1!
+ · · ·+ f (k)(a)

λk

k!
+ · · · =

∞

n=0

f (n)(a)
λn

n!
. (1.1)

converges for values λ ∈ A ⊆ (−∞,∞). If f (n)(a) ≥ 0, ∀ n ≥ 0 and f(a+ λ) >
0, then, we have

1

f(a+ λ)

∞

n=0

f (n)(a)
λn

n!
= 1. (1.2)

Without loss of generality, we assume throughout the paper that a = 0 and then
(1.2) leads to the following definition.

1.1. Definition

The probability distribution (p.d.) (pn(λ; f), n ≥ 0,λ ∈ A) generated by f as
above is given by

pn(λ; f) =
f (n)(0)

n!

λn

f(λ)
= Θn(λ; f)λ

n, n ≥ 0. (1.3)

In what follows, we let X(λ; f) denote a random variable (r.v.) with probability
density function (p.d.f.)

P (X(λ; f) = n) = pn(λ; f), n ≥ 0.

When it is clear from the context, we will write pn(λ; f) = pn(λ) and X(λ; f) =
X(λ).

Probability distributions of the type (1.3) are called power series distributions.
They were studied, among others, by Joshi (1934), Noack (1950), Johnson et al.
(1992), Momeni (2011).

1.2. Remarks

1) Taking logarithms in (1.3) we find that

log pn(λ; f) = log f (n)(0)− log n!− log f(λ) + n log λ.

Taking the derivative with respect to (w.r.t.) λ, we find that

dpn(λ; f)

dλ
=


n

λ
− f (1)(λ)

f(λ)


pn(λ; f).
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2) Using (1.3) we easily see that

pn+1(λ; f) =
λ

n+ 1

f (n+1)(0)

f (n)(0)
pn(λ; f).

3) We can easily construct a family of probability distributions. Using (1.1) for
f (k)(·), k = 1, 2, . . ., we have

f (k)(λ) =

∞

n=0

f (n+k)(0)
λn

n!
, λ ∈ A.

If for each n ≥ 0, f (n+k)(0) ≥ 0 and f (k)(λ) > 0, then it follows that (with
obvious notation)

pn(λ; f
(k)) =

f (n+k)(0)

f (k)(λ)

λn

n!
, n ≥ 0. (1.4)

From (1.4) if follows that

pn(λ; f
(k)) =

n+ 1

λ

f (k−1)(λ)

f (k)(λ)
pn+1(λ, f

(k−1)), n ≥ 0,

or equivalently that

pn+1(λ, f
(k−1)) =

λ

n+ 1

f (k)(λ)

f (k−1)(λ)
pn(λ; f

(k)).

4) Modified power series distributions are obtained by studying power series of
the form f(λ) =

∞
n=0 an(u(λ))

n for suitable functions u(λ). The p.d. generated
by f is given by

P (X = n) =
an(u(λ))

n

f(λ)
.

1.3. Examples

1) For f(x) = eαx, we have

f (m)(x) = αmf(x), fm(x) = f(mx), m ≥ 1,

and f(λ) =
∞

n=0(αλ)
n/n!. Using (1.3) we find that

pn(λ; f) = e−λ (αλ)
n

n!
= Θnλ

n, n ≥ 0,
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and X(λ; f) has a Poisson distribution with parameter αλ. Note that we have
Θn+1/Θn → 0 as n → ∞. We also have

X(λ; f (m))
∆
= X(λ; f) and X(λ; fm)

∆
= X(mλ; f).

2) Assume that f(x) = (1− x)−α, α > 0. For |λ| < 1 we have

f(λ) =

∞

n=0

Γ(α+ n)

Γ(α)

λn

n!
,

and then we find

pn(λ; f) =
Γ(α+ n)

Γ(α)Γ(n+ 1)
(1− λ)αλn = Θnλ

n, n ≥ 0.

In this example, we have
Θn+1

Θn
=

α+ n

n+ 1
→ 1,

and

n


Θn+1

Θn
− 1


→ α− 1.

It follows that (Θn) is a regularly varying sequence or short (Θn) ∈ RV (α−1). For
properties of regularly varying sequences, we refer to Bojanic and Seneta (1973) of
Bingham et al. (1987).

Clearly pn(λ; f), pn(λ; fm) and pn(λ; f
(m)) are all of the same negative bino-

mial type.

3) For f(x) = − log(1− x) we have

f(x) =

∞

n=1

n−1xn, |x| < 1,

and the p.d. generated by f is given by:

pn(λ; f) =
1

(− log(1− λ))n
λn = Θnλ

n, n ≥ 1, 0 < λ < 1.

Here Θn satisfies

n


Θn+1

Θn
− 1


→ −1

so that (Θn) ∈ RV (−1).
Since f (1)(x) = (1− x)−1, we have

f (1)(x) =

∞

n=0

xn, |x| < 1
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and we find

pn(λ; f
(1)) =

n+ 1

λ

f(λ)

f (1)(λ)
pn+1(λ; f) = (1− λ)λn−1, n ≥ 1.

This corresponds to a geometric distribution. Using the k−th derivative, we find
that f (k)(x) = (k − 1)!(1 − x)−k and then pn(λ, f

(k)) yields a negative binomial
distribution as in Example 2.

4) For f(x) = −(1−x)−1 log(1−x), we have f(x) =
∞

n=1H(n)xn, |x| < 1,
where H(n) =

n
k=1 1/k. In this example, we find

pn(λ; f) =
1

f(λ)
H(n)λn, n ≥ 1, 0 < λ < 1,

and here (Θn) = (H(n)/f(λ)) ∈ RV (0).

5) The Gauss hypergeometric function F for |x| < 1 is defined by

F (a, b, c;x) =

∞

n=0

(a)n(b)n
(c)n

xn

n!
,

where a, b, c are real numbers and c ∕= 0, c ∕= −1, c ∕= −2, . . . . We write

pn(λ;F ) =
1

F (a, b, c;λ)

(a)n(b)n
(c)n

λn

n!
= Θnλ

n.

We have
Θn+1

Θn
=

(a+ n)(b+ n)

(c+ n)(n+ 1)
→ 1,

which shows that the series above converges for |x| < 1. We also have that

n


Θn+1

Θn
− 1


= n

(a+ n)(b+ n)− (c+ n)(n+ 1)

(c+ n)(n+ 1)

=
n

n+ 1

ab+ (a+ b)n− (c+ 1)n− c

c+ n
→ a+ b− c− 1,

and this shows that (Θn) ∈ RV (a+ b− c− 1).

6) The generalized hypergeometric function is defined by its power series as
follows:

pFq(a, b;x) = pFq


a1 a2 · · · ap
b1 b2 · · · bq

;x


=

∞

n=0

(a1)n · · · (ap)n
(b1)n · · · (bq)n

xn

n!
.

Here ai, bj are real numbers with bj ∕= 0, − 1, − 2, . . . .
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Also, if ai > 0, 1 ≤ i ≤ p, bj > 0, 1 ≤ j ≤ q, then pFq(a, b;x) > 0 and we
find that for 0 < λ < 1,

pn(a, b;λ) =
1

pFq(a, b;λ)

(a1)n · · · (ap)n
(b1)n · · · (bq)n

λn

n!
= Θnλ

n, n ≥ 0,

is a p.d. Note that

Θn+1

Θn
=

n(a1 + n) · · · (ap + n)

(n+ 1)(b1 + n) · · · (bq + n)
∼ np−q−1.

If p ≤ q + 1, then the series converges for |x| < 1.

If p < q + 1, then the series converges for all values of x.

If p = q + 1, then Θn+1/Θn → 1 and

n


Θn+1

Θn
− 1


= n


(a1 + n) · · · (ap + n)

(n+ 1)(b1 + n) · · · (bq + n)
− 1



=
n

n+ 1


(a1 + n) · · · (ap + n)− (n+ 1)(b1 + n) · · · (bq + n)

(b1 + n) · · · (bq + n)



→ (a1 + · · ·+ ap − b1 − · · ·− bq − 1),

so that (Θn) ∈ RV (a1 + · · ·+ ap − b1 − · · ·− bq − 1).

2. Some basic properties

The distribution function (d.f.) FX(λ;f)(x) of X(λ; f) is given by

FX(λ;f)(x) =

x

n=0

pn(λ; f) =
1

f(λ)

x

n=0

f (n)(0)
λn

n!
,

and its survival function SX(λ:f) is given by

SX(λ;f)(x) = P (X(λ; f) ≥ x) =
1

f(λ)

∞

n=x

f (n)(0)
λn

n!
.

The hazard function hX(λ;f)(n) is given by

hX(λ;f)(n) =
pn(λ; f)

SX(λ;f)(n)
= f (n)(0)

λn

n!
· 1

∞
k=n

f (k)(0)λ
k

k!

.
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2.1. The generating function

Using (1.1) and (1.3), the moment generating function (MGF) of X(a,λ; f) is
given by:

ϕX(λ;f)(z) = EzX(λ;f) =
f(zλ)

f(λ)
, λ ∈ A, zλ ∈ A. (2.1)

Using (2.1) we obtain the following property.

Proposition 2.1. Suppose that X(λ; f) and X(λ; g) are independent r.v.s.

(a) Then X(λ; fg)
∆
= X(λ, f) +X(λ; g).

(b) If Y1, Y2, . . . , Ym are i.i.d. with Yi
∆
= X(λ; f), then

Y1 + Y2 + · · ·+ Ym
∆
= X(λ; fm).

PROOF. (a) For independent r.v.s X(λ; f) and X(λ; g) we find

ϕX(λ;f)+X(λ;g)(z) = ϕX(λ;f)(z)× ϕX(λ;g)(z) =
f(zλ)g(zλ)

f(λ)g(λ)
.

and conclude that X(λ, f) +X(λ; g)
∆
= X(λ; fg).

(b) If we take independent and identically distributed (i.i.d.) r.v.s Y1, Y2, . . . , Ym
where Yi

∆
= X(λ; f), then part a) shows that Y1 + Y2 + · · ·+ Ym

∆
= X(λ; fm).

Examples. 1) For f(x) = exp(αx), we have X(λ; f) ∼POISSON(αλ).
We also have X(λ; fm) ∼POISSON(mαλ). Using Prop 1(b),we find back the

well known property that X1(λ; f) + · · · + Xm(λ; f) ∼ POISSON(mλ). This
shows that the Poisson distribution is infinitely divisible, cf. Fisz (1962), Feller
(1971), Steutel (1979).

2) Suppose that f(x) = (1− x)−α, α > 0. In this case we have

pn(λ; f) =
Γ(α+ n)

Γ(α)Γ(n+ 1)
(1− λ)αλn, n ≥ 0.

If we take i.i.d. r.v.s Y1, Y2, . . . , Ym where Yi
∆
= X(λ; f), then Y1+Y2+· · ·+Ym

∆
=

X(λ; fm). Among others this shows that the sum of negative binomial distributed
r.v.s again has a negative binomial distribution.

3) Assume that f(x) = (1 + x)m. We have f(λ) =
m

n=0


m
n


λn.and

pn(λ; f) =


m

n


λn

(1 + λ)m
, 0 ≤ n ≤ m.

We find that X(a,λ) ∼ BIN(m,λ/(1+λ)). Note that we have fk(x) = (1+x)km,
and we find back the well known property that

X1(λ; f) + · · ·+Xn(λ; f) ∼ BIN


km,

λ

1 + λ


.
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2.2. Moments

2.2.1. First approach. Following Kosambi (1949), Noack (1950), we start from
(5) and take derivatives w.r.t. z. We find

E(X(λ; f)zX(λ;f)−1) = λ
f (1)(zλ)

f(λ)
,

and for m ≥ 1,

E([X(λ; f)]m zX(λ;f)−m) = λm f (m)(zλ)

f(λ)
,

where [x]m = x(x− 1) · · · (x−m+ 1). For m = 2, we have

E(X(λ; f)(X(λ; f)− 1)zX(λ;f)−2) = λ2 f
(2)(zλ)

f(λ)
.

Taking z = 1, we find the following

Proposition 2.2. (2) (a) For m ≥ 1 we have

E([X(λ; f)]m) = λmf (m)(λ)/f(λ).

(b) We have EX(λ; f) = λf (1)(λ)/f(λ) and

V arX(λ; f) = λ2 f
(2)(λ)

f(λ)
+ EX(λ; f)− E2X(λ; f).

Remarks. (1) Clearly we have V arX(λ; f) = EX(λ; f) if and only if

λ2 f
(2)(λ)

f(λ)
= E2X(λ; f) = λ2


f (1)(λ)

f(λ)

2

,

and this holds if and only if

f (2)(λ)

f (1)(λ)
=

f (1)(λ)

f(λ)
.

It is easy to see that f(·) has to be an exponential function.

(2) Patil (1962) studies the properties of a generalized power series distributions.
Among others he studied the case where the generating function is of the form
f(λ) = exp(a + bλ) or f(λ) = exp(P (λ) + a + bλ), where a and b are constants
and P (·), along with its derivative, is a positive monotone-increasing function of λ.
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(3) Also Gupta (1974) and Khatri (1959) studied the properties of the moments
that occur in modified power series distributions.

2.2.2. Second approach. Alternatively, by definition, we have

EXr(λ; f) =

∞

n=0

nr f
(n)(0)

n!

λn

f(λ)
.

Taking derivatives w.r.t. λ, we find

λ
dEXr(λ; f)

dλ
=

∞

n=0

nr f
(n)(0)

n!

nλn

f(λ)
−

∞

n=0

nr f
(n)(0)

n!

λn+1

f2(λ)
f (1)(λ)

= EXr+1(λ; f)− λ
f (1)(λ)

f(λ)
× EXr(λ; f)

= EXr+1(λ; f)− EX(λ; f)× EXr(λ; f).

Hence we obtain the following recursion:

Proposition 2.3. For r ≥ 1 we have

EXr+1(λ; f) = EX(λ; f)× EXr(λ; f) + λ
dEXr(λ; f)

dλ
,

V ar(X(λ; f) = λ
dEX(λ; f)

dλ
.

2.3. Combining power series distributions

Starting from two functions f and g we can find r.v. X(λ; f) and X(θ; g). We
can define a modified power series distribution as follows. For 0 ≤ β ≤ 1 we define
the r.v. X by its p.d.:

P (X = n) = βP (X(λ; f) = n) + (1− β)P (X(θ; g) = n), n ≥ 0.

The generating function of X is given by

φX(z) = βφX(λ;f)(z) + (1− β)φX(θ;g)(z) = β
f(λz)

f(λ)
+ (1− β)

g(θz)

g(θ)
.

If f(x) = 1, we find that

P (X = n) = (1− β)P (X(θ; g) = n), n ≥ 1,

P (X = 0) = β + (1− β)P (X(θ; g) = 0).
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It means that we pay extra attention to the value X = 0. This type of p.d. is often
referred as a zero-inflated p.d. cf. Kolev at al. (2000), Minkova (2002a, 2002b).

If f(x) = xk and λ = 1, for some positive number k, we find

P (X = n) = (1− β)P (X(θ; g) = n), n ∕= k,

P (X = k) = β + (1− β)P (X(θ; g) = k),

and we call the result a non-zero inflated modified power series distribution. For
different families of g, this type of pd was studied by Murat and Szynal (1998) and
pay special attention to estimating the parameters in these models.

A discrete Lindley p.d. was introduced by Gomez and Calderin-Ojeda (2011)
and reinvented by Bakouch et al. (2014). It has the following form:

P (X = n) =
(θ(1− 2p) + (1− p)

1 + θ
pn +

θ(1− p)

1 + θ
npn

=: Apn +Bnpn.

It is easy to find the generating function:

φX(z) = A
1

1− zp
+B

zp

(1− zp)2

= (A−B)
1

1− zp
+B

1

(1− zp)2
.

Now let U and V denote i.i.d. r.v.s with P (U = n) = (1−p)pn, n ≥ 0. Clearly
we have

φX(z) =
A−B

1− p
φU (z) +

B

(1− p)2
φU+V (z)

= βφU (z) + (1− β)φU+V (z),

where
β = 1− θ

(1− p)(1 + θ)
.

So we find that P (X = n) = βP (U = n) + (1− β)P (U + V = n). The authors
also study how to estimate all the parameters in this model.

Remark 2.1. We may further generalize and study properties of p.d. of the
form

P (X = n) = βP (X(λ; f) = n)+δP (X(θ; g) = n)+(1−β−δ)P (X(σ;h) = n),

where n ≥ 0 and β, δ, 1− β − δ ≥ 0.
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2.4. The class SHS(λ, δ)

The examples in the previous section 1.3 show that in many cases we have

Θn+1

Θn
=

f (n+1)(0)

(n+ 1)f (n)(0)
→ 1,

and then we can take 0 < λ < 1 in (1.1). Note that in this case we have

lim
n→∞

pn+1(λ; f)

pn(λ; f)
= λ.

It follows that log pn+1(a,λ; f) − log pn(a,λ; f) → log λ. By Césaro-Stolz, we
have

lim
n→∞

log pn(λ; f)

n
= log λ.

Further, it often happens that

n


Θn+1

Θn
− 1


= n


f (n+1)(0)

(n+ 1)f (n)(0)
− 1


→ δ,

and, if this is the case, then (Θn) ∈ RV (δ).
Probability measures of the form (pn(λ; f) = Θnλ

n) with 0 < λ < 1 and
(Θn) ∈ RV (δ) have been called “semi-heavy tailed sequences”, cf Omey et al.
(2018) and then we use the notation (pn(λ; f)) ∈ SHS(λ, δ). In our paper Omey
et al. (2018) we have proved that if (pn(λ; f)) ∈ SHS(λ, δ), then

P (X(λ; f) ≥ n) =

∞

k=n

pk(λ; f) ∈ SHS(λ, δ)),

and
P (X(λ; f) ≥ n) ∼ 1

1− λ
pn(λ; f).

It also follows that the hazard rate satisfies:

h(n) =
pn(λ; f)

P (X(λ; f) ≥ n)
→ 1− λ.

Note that log pn(λ; f) = n log λ+logΘn. If (Θn) ∈ RV (δ), then logΘn/ log n →
δ and hence

log pn(λ; f)− n log λ

log n
→ δ.

We have the following result:
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Proposition 2.4. If (pn(λ; f)) ∈ SHS(λ, δ), 0 < λ < 1, then

P (X(λ; f) ≥ n) ∼ 1

1− λ
pn(λ; f),

and the hazard rate satisfies h(n) → 1− λ. Moreover we have

lim
n→∞

log pn(λ; f)

n
= lim

n→∞

logP (X(λ; f) ≥ n)

n
= log λ,

and
log pn(λ; f)− n log λ

log n
→ δ,

and
logP (X(λ; f) ≥ n)− n log λ

log n
→ δ.

Now we consider independent r.v. X(λ; f) and X(λ; g). In this case, we find

P (X(λ; f) = n) = Θnλ
n

P (X(λ; g) = n) = ∆nλ
n,

where

Θn =
f (n)(0)

f(λ)n!
; ∆n =

g(n)(0)

g(λ)n!
.

For the sum we find P (X(λ; f)+X(λ; g) = n) = (Θ∗∆)nλ
n, where (Θ∗∆)n =n

i=0Θi∆n−i. In the paper by Omey et al. (2018) we studied the asymptotic of
this expression. Among others, Omey et al. (2018) proved the following result.

Proposition 2.5. Suppose X(λ; f), X(λ; g) as above. Assume that (Θn) ∈
RV (θ) and (∆n) ∈ RV (δ). If A :=

∞
n=0Θn < ∞ and B :=

∞
n=0∆n < ∞,

then

P (X(λ; f) +X(λ; g) = n)

= (A+ o(1))P (X(λ; g) = n) + (B + o(1))P (X(λ; f) = n).

3. Compound Processes

3.1. Some notations

In what follows Y, Y1, Y2, . . . denote nonnegative i.i.d. r.v.s with d.f. G(x) and
Laplace transform φ(s) = E(e−sY ). If Y is discrete and takes values in N, we let
qn = P (Y = n) and denote the generating function of Y by Q(z) = E(zY ). We
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will consider partial sums defined as S(0) = 0 and S(n) =
n

i=1 Yi, n ≥ 1, and
the extreme values m(n) = min(Y1, . . . , Yn), M(n) = max(Y1, . . . , Yn).

Let X(λ; f) denote an r.v. as before and assume that all variables involved are
independent.

3.2. Random sums

3.2.1. Compounding. We consider the partial sums S(n), and we replace the
fixed index n by the discrete random index X(λ; f). We define S(X(λ; f)) as
follows:

S(X(λ; f)) = 0 if X(λ; f) = 0;

S(X(λ; f)) =

n

i=1

Yi if X(λ; f) = n ≥ 1.

For the d.f. of S(X(λ; f)) we find:

FS(X(λ;f))(x) : = P (S(X(λ; f)) ≤ x)

=

∞

n=0

P (S(n) ≤ x)P (X(λ; f) = n)

=

∞

n=0

G∗n(x)pn(λ; f),

where G∗0(x) = δ0(x) and G∗n(x) is the n−fold Lebesgue-Stieltjes convolution of
G with itself. As a consequence, for the Laplace transform ψ(s) = E(e−sS(X(λ;f)))
we find

ψ(s) =

∞

n=0

E(e−sS(n))P (X(λ; f) = n)

=

∞

n=0

φn(s)pn(λ; f)

= ϕX(λ;f)(φ(s))

=
f(λφ(s))

f(λ)
.

If Y is discrete then we find that

P (S(X(λ; f)) = m) =

∞

n=0

q∗n(m)pn(λ; f),
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and the GF is given by

ψ(z) = ϕS(X(λ;f))(z) = E(zS(X(λ;f))) =
f(λQ(z))

f(λ)
.

Using the notations as above, we conclude.

Proposition 3.1. The Laplace transform/GF of the compound process is given
by

ψ(s) = E(e−sS(X(λ;f))) =
f(λφ(s))

f(λ)
,

resp.

ψ(z) = E(zS(X(λ;f))) =
f(λQ(z))

f(λ)
.

The distribution of S(X(λ; f)) is called a compound distribution with com-
pounder X(λ; f). Compound distributions appear in many papers related to finance
and insurance. A special interest goes to compound Poisson distributions (where
f(x) = exp(αx)). As examples we mention R. M. Adelson (1966), Afuecheta et al.
(2020), Panjer (1981), Willmot and Lin (2001), Minkova and Balakrishnan (2013),
Schmidli (1999), Momeni (2011), Minkova (2002). Stam (1973) used regular varia-
tion to study the tail of subordinated distributions. In Roozegar and Nadaraja (2017),
the authors consider Y to have a normal distribution, and they consider different
choices of f(x).

Many authors have studied the asymptotic behaviour of FS(X(λ;f))(x) as x →
∞. Clearly we have

FS(X(λ;f))(x) =

∞

n=1

(1−G∗n(x))pn(λ; f).

If G(x) ∈ RV (−β),β > 0 and ϕX(λ;f)(z) = f(λz)/f(λ) is analytic at z = 1, one
can prove that as x → ∞ we have

FS(X(λ;f))(x) ∼ G(x)

∞

n=1

npn(λ; f) = G(x)EX(λ; f).

For more results of this type see for example Foss et al. (2011), Stam (1973).

3.2.2. The p.d. ψn = P (S(X(λ; f)) = n). It is often very hard to obtain
explicit formulas for the p.d. ψn = P (S(X(λ; f)) = n). As an alternative, one can
try to find Panjer type of recursions or other types of recursive relationships. Our
approach is as follows. Based on the derivative f (1)(·) we can define the random
sum S(X(λ; f (1))) as before. The GF of this new compound process is given by

ψ1(z) =
f (1)(λQ(z))

f (1)(λ)
.
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On the other hand, we have ψ(z) = f(λQ(z))/f(λ). Taking the derivative w.r.t. z,
we find

ψ(1)(z) =
f (1)(λQ(z))

f(λ)
λQ(1)(z).

We have the following result.

Proposition 3.2. We have

ψ(1)(z) = λ
f (1)(λ)

f(λ)
ψ1(z)Q

(1)(z).

This relation can be used to obtain more precise information about ψn.

Example 3.1. Take f(x) = (1− x)−α. In this case we have

ψ(z) =
f(λQ(z))

f(λ)
=

(1− λ)α

(1− λQ(z))α
,

and

ψ1(z) =
f (1)(λQ(z))

f(λ)
=

(1− λ)1+α

(1− λQ(z))1+α
= ψ(z)

1− λ

1− λQ(z)
.

Using the proposition, we see that

ψ(1)(z) = αλψ(z)
1

1− λQ(z)
Q(1)(z),

and it follows that

ψ(1)(z)− λQ(z)ψ(1)(z) = αλψ(z)Q(1)(z).

Using ψn and qn, we find that

nψn − λ

n

k=0

kψkqn−k = αλ

n

k=0

(n− k)qn−kψk.

It follows that

nψn − λnψnq0 = λ

n−1

k=0

kψkqn−k + αλ

n−1

k=0

(n− k)qn−kψk

= λ

n−1

k=0

(k + α(n− k))ψkqn−k,

or

ψn =
λ

1− λq0

n−1

k=0


α+

(α− 1)k

n


ψkqn−k.
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Example 3.2. Take f(x) = expx. We have ψ(z) = exp[−λ(1 − Q(z))], and
ψ(1)(z) = λψ(z)Q(1)(z). From here we find that

nψn = λ

n−1

k=0

(n− k)qn−kψk,

and

ψn = λ

n−1

k=0


1− k

n


qn−kψk.

3.2.3. The special case where f(x) = expx. In the special case where f(x) =
expx, earlier we proved that ψ(1)(z) = λψ(z)Q(1)(z). In this section we consider
special choices for Q(z) to obtain Panjer type of recursions. We extend the results
of Minkova (2002). We assume that Q(z) is of the following rational form:

Q(z) = C +
A0 +A1z

B0 +B1z +B2z2
.

For the derivative we find

Q(1)(z) =
(B0 +B1z +B2z

2)A1 − (A0 +A1z)(B1 + 2B2z)

(B0 +B1z +B2z2)2

=
B0A1 −A0B1 − 2A0B2z −A1B2z

2

B2
0 + 2B0B1z + (B2

1 + 2B0B2)z2 + 2B1B2z3 +B2
2z

4

=

2
i=0

αiz
i

4
i=0

βizi
.

Using ψ(1)(z) = λψ(z)Q(1)(z), it follows that

ψ(1)(z)

4

i=0

βiz
i = λψ(z)

2

i=0

αiz
i.

Hence
∞

i=0

nψn

4

i=0

βiz
n+i−1 = λ

∞

i=0

ψn

2

i=0

αiz
n+i.

Equating the coefficients of zm, we find

β0(m+ 1)ψm+1 +

4

i=1

βi(m+ 1− i)ψm+1−i = λ

2

i=0

αiψm−i.
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It follows that

β0(m+ 1)ψm+1 = −
3

j=0

βj+1(m− j)ψm−j + λ

2

i=0

αiψm−i

=

2

i=0

(λαi − βi+1(m− i))ψm−i − β4(m− 3)ψm−3,

and then also that

ψm+1 =
1

β0


2

i=0


λαi + iβi+1 − βi+1m

(m+ 1)


ψm−i −

β4(m− 3)

(m+ 1)
ψm−3



=
1

β0


2

i=0


−βi+1 +

λαi + (i+ 1)βi+1

(m+ 1)


ψm−i

+


−β4 +

4β4
m+ 1


ψm−3


.

3.2.4. Special cases. 1) Minkova (2002) and Momeni (2011) study examples of
the geometric type where

Q(z) =
(1− ρ)z

1− ρz
.

Clearly functions of this type can be rewritten as

Q(z) = C +
A0

B0 +B1z
.

We have
Q(1)(z) =

−A0B1

B2
0 + 2B0B1z +B2

1z
2
=

α0

2
0
βizi

.

Using ψ(1)(z) = λψ(z)Q(1)(z) straightforward calculations show that

ψn+1 =
1

β0


−β1 +

λα0 + β1
n+ 1


ψn +


−β2 +

4β2
n+ 1


ψn−1


.

2) Consider the following modified power distribution with

Q(z) =
(1− α)z

1− αz
× (1− β)z

1− βz
.

Clearly we have

Q(z) =
(1− α)(1− β)

αβ


1 +

−1 + (α+ β)z

1− (α+ β)z + αβz2


.



118 M. Masjed-Jamei, E. Omey, M. Cadena, N. Saad

This is of the form that we studied above and we can apply the same formulas.

3) Earlier we discussed a discrete Lindley distribution with generating function

Q(z) = β
1− p

1− pz
+ (1− β)

(1− p)2

(1− pz)2
,

where
β = 1− θ

(1− p)(1 + θ)
.

It is easy to see that Q(z) can be rewritten as

Q(z) = (1− p)
(1− β)(1− p) + β − βpz

1− 2pz + p2z2

=
A0 +A1z

B0 +B1z +B1z2
,

where

A0 = (1− p)((1− β)(1− p) + β), A1 = −βp(1− p),

B0 = 1, B1 = −2p, B2 = p2.

Now the previous procedures lead to a Panjer type of recursion for ψn.

3.3. Extreme values

3.3.1. Univariate case. In this section, we consider random variables X(λ; f)
introduced before, i.e., the extreme values m(n) = min(Y1, Y2, . . . , Yn) and M(n)
= max(Y1, Y2, . . . , Yn), n ≥ 1, with m(0) = M(0) = 0.

Clearly for x > 0 we have P (m(0) > x) = P (M(0) > x) = 0, and for n ≥ 1:

P (m(n) > x) = (1−G(x))n = G
n
(x),

P (M(n) ≤ x) = Gn(x).

We agree to set G0(x) = 1 and G
0
(x) = 0 and G(0) = 0, G(0) = 1.

Now we replace the index n by the random index X(λ; f). For 0 < G(x) we
find

P (m(X(λ; f)) > x) =

∞

n=0

G
n
(x)pn(λ; f) = ϕX(λ;f)(G(x))

=
f(λG(x))

f(λ)
,
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so that

Fm(x) = P (m(X(λ; f) ≤ x) = 1− f(λG(x))

f(λ)
.

For G(x) = 0 we have P (m(X(λ; f) ≤ x) = 1.
For the maximum, in a similar way, we find: for x ≥ 0,

FM (x) = P (M(X(λ; f) ≤ x) =

∞

n=0

pn(λ; f)G
n(x)

= φX(λ;f)(G(x)) =
f(λG(x))

f(λ)
.

In the case of the maximum, we can calculate
– The survival function:

SM (x) = 1− f(λG(x))

f(λ)
=

f(λ)− f(λG(x))

f(λ)
.

– The density (here we use G′(x) = g(x)):

fM (x) = λ
f (1)(λG(x))

f(λ)
g(x).

– The hazard rate:

hM (x) = λ
f (1)(λG(x))

f(λ)− f(λG(x))
g(x)

= λ
f (1)(λG(x))

(f(λ)− f(λG(x)))/(1−G(x))

g(x)

G(x)

= λ
f (1)(λG(x))

(f(λ)− f(λG(x)))/(1−G(x))
hY (x).

For special cases of G and f , we find back many specific examples that appear
in the literature.

Examples. 1) Let f(x) = expαx, α > 0. We have

FM (x) = P (M(X(λ; f) ≤ x) = exp[−αλG(x)],

which is a compound Poisson distribution. Note that as x → ∞, we have

FM (x) = 1− exp[−αλG(x)] ∼ αλG(x).

We also have
– Density: fM (x) = FM (x)αλg(x).
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– Hazard rate:

hM (x) =
fM (x)

1− FM (x)
=

FM (x)

1− FM (x)
αλg(x).

As x → ∞, we have

hM (x) ∼ g(x)

G(x)
= hY (x).

2) Mahmoudi and Jafari (2012) study the case where G(x) is a generalized
exponential distribution:

G(x) = (1− e−βx)α, x > 0.

Note that we have G(x) ∼ (βx)α and logG(x) ∼ α log x as x ↓ 0. As x → ∞,
we have

G(x) = 1− (1− e−βx)α ∼ αe−βx,

and logG(x) ∼ −βx. For this function G(x) we find

P (m(X(λ; f) > x) =
f(λ(1− (1− e−βx)α)))

f(λ)
,

and

P (M(X(λ; f) ≤ x) =
f(λ(1− e−βx)α)

f(λ)
.

This distribution is called a generalized exponential power series distribution. Note
that the density is given by

fM(X(λ;f))(x) = λαβ
f (1)(λ(1− e−βx)α)

f(λ)
(1− e−βx)α−1e−βx.

If α = 1, we find

P (m(X(λ; f) ≤ x) = 1− f(λe−βx)

f(λ)
,

P (M(X(λ; f) ≤ x) =
f(λ(1− e−βx))

f(λ)
,

which has been studied by Chakhandi and Ganjali (2009).
3) Rashid et al. (2017) and Warahena-Liyanage and Paravai (2015) consider

Lindley distributions with density function

g(x) =
α2

1 + α
(1 + x)e−αx, x > 0, α > 0,
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and d.f.

G(x) = 1−

1 +

αx

1 + α


e−αx.

Using our notation, in the paper the authors study P (M(X(λ; f) ≤ x) and obtain
various properties of this distribution. Note that in this case we have

G(x) =


1 +

αx

1 + α


e−αx ∼ α

1 + α
xe−αx, as x → ∞,

and

G(x) ∼ α2

1 + α
x, as x → 0.

4) Elbatal et al. (2017) studied an exponential Pareto power distributions where

G(x) = 1− exp(−αxλ), x, α, λ > 0,

and they study M(X(λ; f)) and m(X(λ; f)) for a variety of choices of f . Note
that in this example we have

− logG(x) = αxλ.

As x ↓ 0, we have G(x) = 1− exp(−αxλ) ∼ αxλ, and logG(x) ∼ λ log x.

3.3.2. On P (m(X(λ; f)) > x). Consider the following relationship that has
been proved before:

Fm(x) =
f(λG(x))

f(λ)
.

Now we analyze the behavior of Fm(x) as x → ∞. We have log f(λ)Fm(x) =
log f(λG(x)) and

log f(λ)Fm(x) =
log f(λG(x))

r(λG(x))
r(λG(x))

If

lim
z↓0

log f(z)

r(z)
= α,

we conclude that log f(λ)Fm(x) ∼ αr(λG(x)), as x ↑ ∞.
The examples below show that r(x) = x often does the job.

Examples. 1) If f(x) = exp(αx) we have log f(x) = αx and log f(λ)Fm(x) =
αλG(x).
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2) If f(x) = (1− x)−α, we have log f(x) = (−α) log(1− x) ∼ αx as x → 0.
Now we have

log f(λ)Fm(x) = log f(λG(x)) ∼ αλG(x).

3) If f(x) = −(1− x)−1 log(1− x), we have

log f(x) = − log(1− x) + log(− log(1− x)).

As x → 0, we have − log(1 − x) ∼ x and log(− log(1 − x))/ log x → 1 and
then log f(x) ∼ x. Now we have

log f(λ)Fm(x) = log f(λG(x)) ∼ αλG(x).

Next we study

Fm(x) = 1− f(λG(x))

f(λ)
,

and analyze the behavior of Fm(x) as x → 0. As x ↓ 0 we have G(x) → G(0) = 1,
and Fm(x) → 0. Using the mean value theorem, we have

Fm(x) =
f(λ)− f(λG(x))

f(λ)
=

f (1)(λθ(x))

f(λ)
λG(x),

where G(x) ≤ θ(x) ≤ 1 (so that θ(x) → 1 as x ↓ 0). We obtain that

Fm(x) =
f (1)(λθ(x))

f (1)(λ)

λf (1)(λ)

f(λ)
G(x).

If we assume that

lim
z→1

f (1)(λz)

f (1)(λ)
→ 1,

we find that

Fm(x) ∼ λf (1)(λ)

f(λ)
G(x), as x ↓ 0.

Examples. 1) If f(x) = exp(αx) we have f (1)(x) = αf(x) and

f (1)(λz)/f (1)(λ) = expλ(z − 1) → 1, as z → 1,

so that we find that
Fm(x) ∼ λαG(x), as x ↓ 0.
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2) If f(x) = (1− x)−α, we have f (1)(x) = α(1− x)−α−1 and we find that

Fm(x) ∼ λα

1− λ
G(x), as x ↓ 0.

3) If f(x) = −(1− x)−1 log(1− x), we find that

Fm(x) ∼ λ
(1− log(1− λ))

(1− λ)(− ln(1− λ))
G(x), as x ↓ 0.

3.3.3. On P (M(X(λ; f) > x). Earlier we have proved that FM (x) =
f(λG(x))/f(λ), and

FM (x) = 1− f(λG(x))

f(λ)
.

First we study the asymptotic behaviour of FM (x) as x → ∞. Clearly we have

FM (x) =
f(λ)− f(λG(x))

f(λ)
=

 1

G(x)

f (1)(λz)

f (1)(λ)

λf (1)(λ)

f(λ)
dz.

Now we assume that

lim
u↑1

f (1)(λu)

f (1)(λ)
= 1.

Then it follows that as x → ∞,

FM (x) ∼ λf (1)(λ)

f(λ)
G(x).

Now we study the asymptotic behaviour of FM (x) as x → 0. We have f(λ)FM (x) =
f(λG(x)). If

lim
z↓0

log f(z)

r(z)
= α,

we find that log f(λ)FM (x) ∼ αλG(x), as x ↓ 0.

3.3.4. Multivariate case. Now let (X,Y ), (X1, Y1), . . . , (Xn, Yn) denote i.i.d.
random vectors with d.f. F (x, y) and assume that all variables involved are inde-
pendent. We consider M (1)(0) = M (2)(0) = 0 and for n ≥ 1, we consider the
random vector

(M (1)
n (n),M (2)

n (n)) = (max(X1, . . . , Xn),max(Y1, . . . , Yn)).
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Clearly we have P (M (1)(n) ≤ x,M (2)(n) ≤ y) = Fn(x, y). Replacing the index
n with the random index X(λ; f), we find that

P (M (1)(X(λ; f)) ≤ x, M (2)(X(λ; f) ≤ y) =

∞

n=0

Fn(x, y)P (X(λ; f) = n)

=
f(λF (x, y))

f(λ)
.

This model has been studied by Jafari and Tahmasebi (2016).

4. Concluding remarks

1) In Macci et al. (2021) the authors consider X(λ; f) with p.d.

P (X(λ; f) = n) =
f (n)(0)

n!f(λ)
λn, n ≥ 0,

and generating function φX(λ;f)(z) = f(λz)/f(λ). Then they consider a function
δ(t) such that δ(t) ↑ ∞ and consider a family of r.v. N(t) defined as N(t) =
X(δ(t); f) and with generating function

φN(t)(z) =
f(δ(t)z)

f(δ(t))
.

In their paper the authors study large and moderate deviations of N(t). One of the
basic assumptions is that there exist functions A(·) and B(·) so that A(t) → ∞ and
B(·) is differentiable and

(∀u > 0) lim
t→∞

log f(ut)

v(t)
= B(u).

Note that this implies that

lim
t→∞

log φN(t)(z)

v(t)
= B(z)−B(1).

2) Earlier, we have proved that

P (m(X(λ; f)) > x) =
f(λG(x))

f(λ)
.

In the exponential case (f(x) = expx) we have P (m(X(λ; f)) > x) =
exp(−λG(x)). If G(x) has density g, we find that

d

dx
P (m(X(λ; f)) > x) = −λP (m(X(λ; f)) > x)g(x).
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Now assume that

P (m(X(λ; f)) > x) =

∞

n=0

ψnx
n and g(x) =

∞

i=0

Aix
i
 ∞

j=0

Bjx
j .

The above relation shows that

∞

j=0

Bjx
j

∞

n=1

nψnx
n−1 = −λ

∞

n=0

ψnx
n

∞

i=0

Aix
i,

and
∞

j=0

∞

m=0

Bj(m+ 1)ψm+1x
m+j = −λ

∞

n=0

∞

i=0

ψnAix
n+i.

This type of relation may be used to obtain recursions for (ψn).
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