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A b s t r a c t. Djuro Kurepa formulated in 1971 the so called left factorial hypothesis.

This hypothesis is still open, despite much efforts to solve it. Here we give some historical

notes and review the current status of the hypothesis. Using probabilistic model we also

estimated sums of Kurepa reminders and discussed in details finite Kurepa trees.
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1. Introduction

Djuro Kurepa defined in 1964 [17] the left factorial function as

Kn ≡ !n =

n−1
∑

i=0

i!. (1.1)

In 1971 [18] he asserted a number theoretical conjecture related to !n with simple

formulation which is stated as follows: Assuming n ≥ 2, prove that the only common

divisor of n! and
∑n−1

i=0 i! is 2. Prime divisors p of n! must satisfy p ≤ n, so we have
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immediately the following equivalent reformulation of the hypothesis, also known to

Kurepa, which we abbreviate as KHp:

KHp !p 6= 0 (mod p) for all odd primes p.

This second formulation is more convenient to work with and most of the papers on

this topic refer to it. So we shall adopt the same convention here, i.e by the Kurepa

hypothesis we shall assume the statement KHp.

This problem had caught the attention of many mathematicians. For example, it

is listed as a Problem B44 in R. Guys book [10], a Problem 37 in Konick-Mercier

book [23] and in Sandor – Crstici book [36]. There were number-theoretical attempts

to prove it and on the other side many computational efforts to find a counterexample

to KHp, a prime p such that !p = 0 (mod p). However, up to this moment KHp is

still an open problem.

We assume the following notation. The set of natural numbers (nonnegative in-

tegers) is denoted by N, N+ denotes positive integers, Z is the ring of integers, while

Zn denotes the ring of integers modulo n. The greatest common divisor of integers a
and b is denoted by (a, b). If m and n > 1 are integers, the remainder obtained from

division of m by n is denoted by ρn(m). Observe that ρn is an epimorphism from

the ring of integers Z to the ring Zn. If p is a prime, GF(p) denotes the Galois field

with p elements.

2. Problem and computational attempts

Djuro Kurepa is mostly known for his works in set theory, in particular in infini-

tary combinatorics and on infinite trees. In some of these papers he defined factorial

functions in connection with these infinitary objects and studied their properties. So

Kurepa surely was inspired with his earlier works [15] and [16] for the introduction

of the left factorial function. We shall see that !n is related to domains of some fast

branching trees.

Immediately after Kurepa introduced !n in [18], several papers studying proper-

ties of this function were published. Kurepa himself published several papers and

extended the left factorial function to complex numbers C:

!(z + 1) = Γ(z + 1)+!z, z ∈ C. (2.1)

Notation K(z) =!z is also used and Milovanović in [31] gave an expansion of K(z)
what enabled computation of K(x) for any real number x. The same author also

defined an interesting sequence of functions which generalize K(z). The first two

terms of this sequence are Γ(z) and K(z). Mijajlović and Malešević proved in [30]

that Γ(z) and K(z) are transcendental differential functions, i.e they are not solutions
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of algebraic differential equations. They also asked if the Milovanović’s sequence is

an infinite part of a transcendental differential base. Malešević considered in [24],

[25] and [26] various inequalities on K(z), while Slavić gave in [40] an interesting

integral representation of K(z).

In a short period Carlitz in [6], Stanković in [41] and Šami in [38] proved many

identities on !n, some of them modulo n, while Slavić tested KHp up to n = 1000,

see [40].

For more than 15 years, since 1974 till the beginning of 1990’s there were no

publications on !n. Mijajlović published the first paper [29] at that time where a

computational method for testing KHp was presented. There were two major nov-

elties. The first one was the introduction of recurrent formulas in GF(p) on which

the computation was based. Strange enough, even if the modular arithmetic was used

already in the 1970’s for proving identities involving !n, that was the first applica-

tion of arithmetic in Zn in verification of KHp. The second one was the parallel

software for testing KHp, while the computation was carried out on parallel comput-

ers based on transputer CPU’s T800. The left factorial hypothesis was verified for

primes p ≤ 311009, extending a Wagstaff result n ≤ 50000, for which we could

find only a secondarily reference [10]. After that and following similar ideas several

extensions appeared, e.g. Gogić [9] for primes p ≤ 220, Malešević [26] for p ≤ 222,

Živković [43], [44] for 224, Gallot [8] for p ≤ 226, Jobling [13] for p ≤ 227 and us-

ing modern technologies for parallel computing on GPU’s Ilijašević [11] tested KHp

up to p ≤ 231. Andrejić and Tatarević extended in [1] the verification to p ≤ 234 .

This computation took 240 days. Finally, in the recent paper [2] Andrejić, Bostan and

Tatarević published that they verified KHp up to the amazing p ≤ 240. In this compu-

tation they used a new algorithm based on matrix multiplication and fast algorithms

for multiplication of large integers. The method is also independently described and

studied in details, but without formal program implementation, in the Rajkumar’s

master thesis [34].

In attempts to solve KHp new and interesting identities were found and other

open problems were solved. Probably the most notable achievement is the Živković’s

solution [43] of the neighboring problem B43 in [10] which asks if there are infinitely

many primes of the form An =
∑n

i=0(−1)n−ii!. Živković gave a negative answer as

he has shown that p = 3612703 divides An for all n ≥ p. In some cases particular

formulas, or their variations, were reinvented by several authors. For example, in [29]

it was proved that in the Galois field GF[p] the following formula is valid:

!p =

p−1
∑

k=0

(−1)k+1

k!
. (2.2)
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Using Wilson theorem one can then immediately infer that for a prime p:

!p =

[

(p− 1)!

e

]

+ 1 (mod p ). (2.3)

Another proof of (2.3) can be found in [12] using analytic continuation K(z) of

!n. These formulas were rediscovered later several times, for example in [1]. In

connection with this I have to mention the following interesting fact. Aleksandar Ivić

used to keep a neat math diary of all his mathematical inventions. In one occasion,

in the middle of nineties, he had shown me there his unpublished note dating the

beginning of 1970’s which contained the mentioned analytic proof of (2.3).

We have to mention also that there are inappropriate names assignments related to

Kurepa’s left factorial function. The most remarkable example is that !n is also called

Smarandache-Kurepa function at the rather reputed WolframMathWorld portal [45].

The first mention of this term we found in Ashbacher somewhat ghostly (I could not

find it) reference [3], published 33 years after Kurepa introduced the left factorial

function [17] and posed his problem and after several tens of papers on this matter

were published. We do not know any contribution of F. Smarandache to this topic,

except the mention of his name in the left factorial problem.

It should be mentioned that there were several announcements, even published

papers with solution of KHp. However, these alerts were never confirmed, while

solutions were wrong. Kurepa himself announced the solution (he ringed me up

one early morning in the spring of 1992 to tell me this), but he never published the

solution. Richard Guy in a letter to me in 1991 mentioned that R. Bond from G.

Britain might solved the left factorial hypothesis, but this proof did not appear either

up to now. Finally, we mention Barsky – Benzaghou paper [4] with the erroneous

proof. It passed almost ten years before the authors declared the mistake [5].

3. Probabilistic method

A number of algorithms for testing KHp is reduced to the search of first odd

prime p such that rp ≡ ρp(Kp) 6= 0. Several author had heuristic assumption that

rp behaves as a random variable with uniform distribution, taking any integer value

in [0, p − 1] with the probability 1/p. Under this assumption, many question can

be answered including if KHp is true. Namely, assuming the probabilistic nature of

rp, the probability of rp not being 0 is 1 − 1/p. So, also assuming that they are

probabilistically independent, the probability to appear 0 in the sequence rp, p ∈ P,

P is the set of odd primes, would be

1−
(

1− 1

3

)(

1− 1

5

)(

1− 1

7

)(

1− 1

11

)

· · · = 1, (3.1)
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yielding the violation of KHp. Edwin Clark [7] first mentioned such a probabilistic

model already in 1994 at sci.math forum. Later, Živković [44] and Andrejić and

Tatrević [1] discussed, assuming this premisse, in depth the distribution of odd primes

p such that rp = 0. For example, if p0 violates KHp, then the infinite product
∏

(1−
1/p) over primes where p > p0 is still divergent i.e., tends to 0, hence according to

(3.1) there is another p1 > p0 which violates KHp. By this argument it follows that

there are infinitely many counterexamples to KHp. On the other hand one can easily

see that the probability of being rp = 0 for p ∈ [2n, 2n+1] is equal to 1/(n + 1),
reducing to chance for real finding such a prime p if not already found.

There are computational supports for adopting probabilistic models. Živković

used chi square test and the result was concordat. We add several more arguments

in favor of probabilistic model. The first one is “white noise” that makes a visual

presentation of reminders rp for the last 60000 primes p < 8 000 000. Under the

Figure 1: “White noise” produced by rp

assumption that rp is a random variable taking values in [0, p−1], the expected value

of rp is vp = (p − 1)/2. Hence the average value for vp for the first n odd primes

would be wn = (
∑

p vp)/n. On the other hand, the effective mean of computed rp is

w′
n = (

∑

p rp)/n. For primes bellow 8 000 000 we found w′ = 1.92815×106 , while

w = 1.92717 × 106 giving the relative difference (w′ − w)/w′ = 0.0005.

However, we note that it is easy to construct similar examples that have seemingly

uniform probabilistic distribution on [0,m − 1] but the “random” variable sp never

takes the value 0. For that we can take m = 2q where q is a moderately large prime

and the sequence sp = ρm(p), p is a prime.

Using the probabilistic model, we can also resolve some other questions. Even if

it seems obvious, there is no proof that there are infinitely many primes p such that

rp 6= 0. As the probability of rp being 6= 0 is 1 − 1/p it follows that the for almost
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all p, rp 6= 0. Obviously it would be interesting to give a proper proof of the above

statement. If the primality condition for p is omitted, we write then rn. Kurepa had

shown in [18] that in this case there are infinitely many n such that rn 6= 0. For that

we can take for example n = 3k. Really, if r3k = 0 for some k, then k > 1 and

3k|!(3k), and so 3 divides !3 + 4! + 5! + · · · + (3k − 1)!, i.e. 3 divides !3 = 4, a

contradiction.

In [12], page 9, the following hypothesis related to the above numerical example

is posed:

Does there exist a constant C > 0 such that

(Q)
∑

p≤x

rp =
Cx2

ln(x)
, (x → ∞)? (3.2)

We give a proof of the statement (Q) assuming probabilistic model for rq. Namely

we prove

Theorem 3.1 (assuming probabilistic model). We have

∑

p≤x

rp =
1

4

x2

ln(x)
+O

(

x2

ln(x)2

)

. (3.3)

PROOF. If vp is a random variable with the uniform distribution taking the values

in the interval [0, p − 1], by the probabilistic model we may take rp = E(vp) =
(p − 1)/2 where E is the expectation operator. Using the additivity of the operator

E, for v =
∑

p≤x vp we have

E(v) =
∑

p≤x

rp =
∑

p≤x

p− 1

2
=

1

2

∑

p≤x

p− 1

2
x. (3.4)

As, for derivation see for example [12],

∑

p≤x

p =
x2

2 ln(x)
+O

(

x2

ln(x)2

)

, (3.5)

substituting
∑

p≤x

rp in (3.4) by the righthand side of (3.5) and observing that the term

1
2x is absorbed by O

(

x2

ln(x)2

)

, we obtain (3.3). ✷

In fact we found that C = 1/4 in the statement (Q). In the above numerical

example, x = 8000 000, we computed

a ≡
∑

p≤x

rp = 1.04077 × 1012, b ≡ x2

4 ln(x)
= 1.00661 × 1012,
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giving the relative difference (a− b)/a = 0.034, well concordant with the statement

(Q).

4. Finite Kurepa’s tree

First we remind some terminology on trees. A partially ordered set S = (S,≤, 0)
with the least element 0 is called a tree with the root 0 if for every a ∈ S the set

[0, a]S = {s ∈ S : s ≤ a} is a well ordered chain. Here we shall consider only finite

trees, so the condition “well-ordered” is automatically fulfilled. Depending on the

context we shall identify S with it’s domain S. Rank function r : S → N is defined

recursively taking r(0) = 0 and for a > 0, r(a) = max{r(x) : x < a} + 1. The set

Li(S) = {a ∈ S : r(a) = i}, i ∈ N, is called the i-th level of S. The height of S is

htS = max{r(a) : a ∈ S}. A tree S is called smooth if all maximal elements of S

belong to the same level L. We see that for a smooth tree L is the top level of S and

that for a ∈ L, r(a) = ht(S).
Kurepa defined in [20] the following tree (Tn, <, v). Let I0 = ∅ and for n > 0,

In = {0, 1, . . . , n − 1}. Then T0 = {v}, where v is the empty function, i.e., v ≡ ∅.

If n > 0 then: For every n ∈ N let Tn be the tree formed of the empty sequence v
and of the all sequences

a = (a1, a2, . . . , aj) where 1 ≤ i ≤ j ≤ n, ai ∈ Ii. (4.1)

The tree Tn is ordered by the relation < (Kurepa used the sign ⊣) where a < a′

means that the sequence a is an initial part of the sequence a′. In particular, v < a for

every a ∈ Tn. We see that Tn is a smooth tree. The maximal branch v002 of the tree

T3 corresponds to the sequence f0 ⊆ f1 ⊆ f2 ⊆ f3 of functions, where f0 = v ≡ ∅,

f1 = {(0, 0)}, f2 = {(0, 0), (1, 0)} and f3 = {(0, 0), (1, 0), (2, 2)}.

Kurepa also observed that that the height of Tn is ht(Tn) = n and that every

element a at the level Lk, k < n, splits into k+1 elements, i.e., has k+1 immediate

successors. Hence, each level Lk, k ≤ n, has k! elements. Since levels are mutually

disjoint sets, there is the following connection between !n and the cardinality of Tn:

Theorem 4.1 (Dj. Kurepa, 1974). If n ≥ 1 then |Tn−1| =!n.

From this theorem immediately follows the following combinatorial reformula-

tion of the left factorial hypothesis:

KHp2 For no prime p there is a partition of Tp−1 into p subsets of the same size.

Using the branching property of elements of Tn it is easy to find a simple recur-

sive definition of this notion taking T0 = v and for n ≥ 1:

Tn = Tn−1 ∪
{

f : In → In | there is g ∈ Tn−1 so that g ⊆ f
}

. (4.2)
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Figure 2: Finite Kurepa tree T3

Following this definition, we constructed more examples of the trees Tn using the

programming package Wolfram Mathematica (see Figure 3).

The Kurepa tree Tn was discussed in the late 1990’s and in this century, e.g.

[33], but without reference to Kurepa’s definition from 1974 and it’s connection to

!n. Even more, in [37], A003422, the notion of the tree Tn is attributed to Arkadiusz

Wesolowski (2012) and Jon Perry (2013).

Now we consider some combinatorial properties of Tn. Let Bn be full binary

tree. Let us remind that Bn is a tree of the height ht(Bn) = n in which every

element b ∈ Bn of rank r(b) < n splits into exactly two elements. We say that a tree

S is embedded into a tree S′ if there is an order preserving 1 − 1 map τ : S → S′.

which maps the root od S into the root of S′. In this case we write S →֒ S′. For

example,

T0 →֒ B0, T1 →֒ B1, T2 →֒ B2, T3 →֒ B4, (4.3)

but T3 6 →֒ B3. The next proposition speaks about reasonable small m relative to n
such that Tn is embeddable into Bm.

Theorem 4.2. Let n ∈ N, n ≥ 6 and m = [n log2(n)]. Then Tn →֒ Bm.

For the simplicity of the notation, let us introduce Qm = Tm−1, m > 0. We

see that Qm+1 is obtained from Qm by branching each element a ∈ Qm of the

highest rank, i.e., r(a) = m− 1, into m new elements. First we prove the following

statement:
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Figure 3: Finite Kurepa trees Tn for n = 3, 4, 5, 6, and 7

Lemma 4.1. Suppose Qm →֒ Bn and assume 2k−1 < m ≤ 2k. Then

Qm+1 →֒ Bn+k.

PROOF. Suppose τ : Qm →֒ Bn, let for a ∈ Qm, a′ = τ(a) and L = Lm−1(Qm)
the set of elements which lay on top of Qm. For each a ∈ Ł there is ba ∈ Bn, such

that r(ba) = n and ba ≥ a′. We see that all elements ba are at the same, the last level

of Bn. To each ba let us attach a copy Ba of the tree Bk on top of the element a, i.e.,

a being a root of Ba. Then we obtain a binary tree

S = Bn ∪
⋃

a∈L

Ba (4.4)

with inherited orderings from Bn and trees Ba. The tree S is obviously embedded

into Bn+k. As m ≤ 2k and Ba as a copy of Bk has 2k elements at the top level
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W , we can choose mutually incomparable elements ba1, b
a
2, . . . , b

a
m ∈ W . Let us take

Sa = {ba1, ba2, . . . , bam} and

Q′ = τ(Qm) ∪
⋃

a∈L

Sa. (4.5)

Then Q′ is a subtree of Bn+k in which for every a ∈ L, we remind that L is the top

level of Qm, a′ splits into m elements ba1, b
a
2, . . . , b

a
m. Hence, the tree Q′ is isomorphic

to Qm+1 and Q′ ⊂ Bn+k i.e Tm →֒ Bn+k. This ends the proof of the lemma and we

continue with the proof of the theorem. ✷

PROOF OF THEOREM 4.2. Suppose Tm−1 →֒ Bn and 2k−1 < m ≤ 2k. Then

log2(m) ≤ k < log2(m)+1 and so [log2(m)] ≤ k ≤ [log2(m)]+1. The embedding

relation is transitive, hence by Lemma

Tm →֒ Bn+[log2(m)]+1. (4.6)

As T2 →֒ B2, iterating (4.6) we obrain

T3 →֒ B2+[log2(3)]+1, T4 →֒ B2+[log2(3)]+1+[log2(4)]+1, . . . ,

Tm →֒ B2+
∑

m

i=3
([log

2
(i)]+1).

As
m
∑

i=3

[

log2(i)
]

≤
[

m
∑

i=3

log2(i)

]

,

we have

Tm →֒ Bm+[log2(m!)]. (4.7)

It is easy to prove by induction:

If n ≥ 6 then 2n · n! < nn.

Hence n+ log2(n!) < n log(n), and so by (4.7)

If n ≥ 6 then Tn →֒ B[n log2(n)]
. ✷

By (4.3) it follows that the theorem is valid also for n = 0, 1, 2, 3. It would be

interesting to check if it is also true for n = 4, 5, i.e., if T4 →֒ B8 and T5 →֒ B11.

We also note that there are better bounds for m in Theorem 4.2 if one uses sharper

bounds for n!, e.g. variants of Stirling’s formula, for example (Robins [35]):

n! <
√
2πnn+ 1

2 e−ne
1

12n for n ∈ N+. (4.8)
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[16] Dj. Kurepa, Über die Faktoriellen der endlichen und unendlichen Zahlen, Ac. Sci.

Yougoslave, Classe Math. 4 (1954), 51–64.
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