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A b s t r a c t. We establish the characterisations of the classes of bounded linear op-

erators from the generalised Hahn sequence space hd, where d is an unbounded monotone

increasing sequence of positive real numbers, into the spaces wp
0
, wp and wp

∞
of sequences

that are strongly summable to zero, strongly summable and strongly bounded by the Cesàro

method of order one and index p for 1 ≤ p < ∞. Furthermore, we prove estimates for the

Hausdorff measure of noncompactness of bounded linear operators from hd into wp, and

identities for the Hausdorff measure of noncompactness of bounded linear operators from

hd to wp
0
. We use these results to characterise the classes of compact operators from hd to

wp and wp
0
. Finally, we provide an example for some applications of our results and visuali-

sations in crystallography.
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1. Introduction and notation

The Hahn space h was originally introduced and studied by Hahn [8], and later

generalised by Goes [7]. Matrix transformations and bounded and compact operators
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the Hahn space have recently been studied in various papers, for instance in [17, 6,

11, 4]. A survey of these recent results can be found in [10].

We establish the characterisations of the classes B(hd, Y ) of bounded linear op-

erators and their norms from the generalised Hahn space hd into each of the spaces

Y ∈ {wp
0 , w

p, wp
∞}, formulas for the Hausdorff measure of noncompactness of op-

erators in B(hd, w
p
0) and B(hd, w

p), and the characterisations of their subclasses

K(hd, w
p
0) and K(hd, w

p) of compact operators. Since the operators can be repre-

sented by infinite matrices of complex numbers, in each case, the characteristaions

are expressed in terms of necessary and sufficient conditions on the entries of the

matrices. Since each one of these operators can be represented by an infinite matrix

of complex numbers, the mentioned characterisations are achieved by establishing

necessary and sufficient conditions on the entries of the reprenting matrices to map

between the respective spaces.

Measures of noncompactness are widely used in fixed point theory and applied

in the study of differential and integral equations. We refer the interested reader to

[1, 2, 3, 15, 22, 13]. Our results could also be used in the study of sequence spaces

equations and sequence spaces inclusion relations; for related results we refer to [5].

We use the standard notations ω for the set of all complex sequences x = (xk)
∞
k=1,

and ℓ∞, c, c0 and φ for the sets of all bounded, convergent, null and finite se-

quences, that is, sequences terminating in zeros. We denote by e = (ek)
∞
k=1 and

e(n) = (e
(n)
k )∞k=1 (n ∈ N) the sequences with ek = 1 for all k, and e

(n)
n = 1 and

e
(n)
k = 0 for k 6= n.

We recall that a BK space X is a Banach sequence space with continuous coor-

dinates Pn : X → C (n ∈ N), where Pn(x) = xn for all x = (xk)
∞
k=1 ∈ X. A BK

space X ⊃ φ is said to have AK if x = limm→∞ x[m] for all x = (xk)
∞
k=1 ∈ X,

where x[m] =
∑m

k=1 xke
(k).

Let X ⊂ ω. Then the set Xβ = {a ∈ ω :
∑∞

k=1 akxk converges for all x ∈ X}
is the β–dual of X. Let A = (ank)

∞
n,k=1 be an infinite matrix of complex numbers,

An = (ank)
∞
k=1 and Ak = (ank)

∞
n=1 be the sequences in the nth row and the kth

column of A, and X and Y be subsets of ω. Then we write Anx =
∑∞

k=1 ankxk
and Ax = (Anx)

∞
n=1 for x = (xk)

∞
k=1 provided all the series converge. The set

XA = {x ∈ ω : Ax ∈ X} is called the matrix domain of A in X, and (X,Y )
denotes the class of all matrix transformations from X into Y , that is, A ∈ (X,Y ) if

and only if X ⊂ YA.

If X and Y are Banach spaces, we use the standard notation B(X,Y ) for the

Banach space of all bounded linear operators L : X → Y with the operator norm

‖L‖ = sup{|L(x)| : ‖x‖ = 1}. Also K(X,Y ) denotes the class of all compact

operators in B(X,Y ).
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For every sequence x = (xk)
∞
k=1 ∈ ω, let ∆kx = xk − xk+1 (k = 1, 2, . . . ).

Goes [7] introduced and studied the generalised Hahn space hd for arbitrary complex

sequences d = (dk)
∞
k=1 with dk 6= 0 for all k by

hd =

{

x ∈ ω :

∞
∑

k=1

|dk| · |∆kx| < ∞

}

∩ c0,

with the norm

‖x‖hd
=

∞
∑

k=1

|dk| · |∆kx| for all x = (xk)
∞
k=1 ∈ hd. (1.1)

Recent research on the Hahn space and its generalisations can be found, for in-

stance, in [19, 10, 20, 21, 4, 17, 6] and the survey paper [11].

Let 1 ≤ p < ∞

wp
0 =

{

x ∈ ω : lim
n→∞

1

n

n
∑

k=1

|xk|
p = 0

}

,

wp = wp
0 ⊕ e =

{

x ∈ ω : x− ξe ∈ wp
0 for some ξ ∈ C

}

and

wp
∞ =

{

x ∈ ω : sup
n

1

n

n
∑

k=1

|xk|
p < ∞

}

denote the sets of sequences that are strongly summable C1 to zero, strongly summable

C1 and strongly bounded C1 ([12]), with index p.

It is well-known ([13, Proposition 3.44]) that wp
0, wp and wp

∞ are BK spaces

with

‖x‖wp
∞

= sup
n

(

1

n

n
∑

k=1

|xk|
p

)1/p

; (1.2)

wp
0 is a closed subspace of wp, and wp is a closed subspace of wp

∞; wp
0 has AK and

every sequence x = (xk)
∞
k=1 ∈ wp has a unique representation

x = ξe+
∞
∑

k=1

(xk − ξ)e(k), (1.3)

where ξ is the unique complex number such that x− ξe ∈ wp
0, the so–called wp–limit

of x.
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2. The classes B(hd, Y ) for Y ∈ {wp
∞,wp,w

p
0}

Throughout let d be an unbounded increasing sequence of positive real numbers

and 1 < p < ∞.

In this section, we are going to characterise the classes B(hd, Y ) and compute

the operator norm of L ∈ B(hd, Y ) for Y ∈ {wp
∞,wp,wp

0}. We will also establish a

formula for the wp–limit of L(x) when x ∈ hd and L ∈ B(hd, w
p).

Since (hd, ‖ · ‖hd
) is a BK space with AK by [17, Proposition 2.1], and each

space Y is a BK space with respect to the norm ‖ · ‖wp
∞

in (1.2), each operator

L ∈ B(hd, Y ) can be represented by a matrix A ∈ (hd, Y ) by [9, Theorem 1.9], that

is, there exists an infinite matrix A ∈ (hd, Y ) such that

L(x) = Ax for all x ∈ hd. (2.1)

We are going to use these facts and notations throughout the paper.

Theorem 2.1. We have

(a) L ∈ B(hd, w
p
∞) if and only if

‖A‖(hd,w
p
∞) = sup

l,m

1

dm

(

1

l

l
∑

n=1

∣

∣

∣

∣

∣

m
∑

k=1

ank

∣

∣

∣

∣

∣

p)1/p

< ∞; (2.2)

(b) L ∈ B(hd, w
p) if and only if (2.2) holds and











for each k ∈ N, there exists αk ∈ C such that

lim
l→∞

1
l

l
∑

n=1
|ank − αk|

p = 0;











(2.3)

(c) L ∈ B(hd, w
p
0) if and only if (2.2) holds and

lim
l→∞

1

l

l
∑

n=1

|ank|
p = 0 for each k. (2.4)

(d) If L ∈ B(hd, Y ) for Y ∈ {wp
∞, wp, wp

0}, then

‖L‖ = ‖A‖(hd,w
p
∞). (2.5)

PROOF. We write ‖A‖ = ‖A‖(hd,w
p
∞), for short.

(a) Let L ∈ B(hd, w
p
∞) and A be the infinite matrix that represents L as in (2.1).

Since the set

E =

{

1

m
e[m] : m ∈ N

}
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is a determining set for hd by [17, Proposition 3.2], we have to show by [23, Theorem

8.3.4] that the following two conditions are satisfied:

(i) The columns of A belong to wp
∞;

(ii) L(E) is a bounded subset of wp
∞.

First we show (ii).

Let m ∈ N be given and y(m) = (1/dm)e[m] ∈ E. Then we have

Any
(m) =

∞
∑

k=1

anky
(m)
k =

1

dm

m
∑

k=1

ank,

hence

∥

∥

∥Ay(m)
∥

∥

∥

p

wp
∞

= sup
l

1

l

l
∑

n=1

∣

∣

∣Any
(m)
∣

∣

∣

p
= sup

l

1

l

l
∑

n=1

(

1

dm

∣

∣

∣

∣

∣

m
∑

k=1

ank

∣

∣

∣

∣

∣

)p

.

So (2.2) is the condition in (ii).

It remains to show that the condition in (i) is redundant.

We have |ank| = |dkAny
(k) − dk−1Any

(k−1)| for all n and k, hence

∥

∥

∥Ak
∥

∥

∥

wp
∞

= sup
l

(

1

l

l
∑

n=1

|ank|
p

)1/p

≤ sup
l

(

1

l

l
∑

n=1

∣

∣

∣
dkAny

(k)
∣

∣

∣

p
)1/p

+ sup
l

(

1

l

l
∑

n=1

∣

∣

∣
dk−1Any

(k−1)
∣

∣

∣

p
)1/p

≤ 2dk ‖A‖ < ∞ for all k.

This completes the proof of Part (a).

(b) and (c) Since hd is a BK space with AK and wp
0 and wp are closed subspaces

of the BK space wp
∞ by [13, Proposition 3.44], Parts (b) and (c) follow by [23,

Theorem 8.3.6].

(d) Finally we assume that L ∈ B(hd, Y ), where Y ∈ {wp
0 , w

p, wp
∞}. Then

An ∈ hβd for all n and by [17, Proposition 2.3]

hβd = bsd =

{

a ∈ ω : sup
m

1

dm

∣

∣

∣

∣

∣

m
∑

k=1

ak

∣

∣

∣

∣

∣

< ∞

}

.
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Writing Ln(x) = Anx (x ∈ hd) for all n we obtain from [6, (2.6)] and Minkowski’s

inequality for all x ∈ hd and all l ∈ N

(

1

l

l
∑

n=1

|Ln(x)|
p

)1/p

=

(

1

l

l
∑

n=1

|Anx|
p

)1/p

≤





1

l

l
∑

n=1

∣

∣

∣

∣

∣

∣

∞
∑

m=1

dm|∆mx|
1

dm

∣

∣

∣

∣

∣

∣

m
∑

j=1

anj

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

p



1/p

≤
1

l1/p

∞
∑

m=1

dm|∆mx| ·





l
∑

n=1





1

dm

∣

∣

∣

∣

∣

∣

m
∑

j=1

anj

∣

∣

∣

∣

∣

∣





p



1/p

≤ sup
l,m

1

dm





1

l

l
∑

n=1

∣

∣

∣

∣

∣

∣

m
∑

j=1

anj

∣

∣

∣

∣

∣

∣

p



1/p

· ‖x‖hd
,

hence

‖L‖ ≤ ‖A‖. (2.6)

Now let m ∈ N be given and x(m) = (1/dm)e[m]. Then we have

‖x(m)‖hd
=

1

dm

∞
∑

k=1

dk

∣

∣

∣
∆kx

(m)
∣

∣

∣
=

dm
dm

= 1,

and

∥

∥

∥
L(x(m))

∥

∥

∥

wp
∞

= sup
l

(

1

l

l
∑

n=1

∣

∣

∣
Anx

(m)
∣

∣

∣

p
)1/p

= sup
l

1

dm

(

1

l

l
∑

n=1

∣

∣

∣

∣

∣

m
∑

k=1

ank

∣

∣

∣

∣

∣

p)1/p

≤ ‖L‖.

Since m ∈ N was arbitrary, we conclude ‖A‖ ≤ ‖L‖, and this and (2.6) imply

(2.5).

Now we establish a formula for the wp–limits of L(x) and x ∈ hd, when L ∈
B(hd, w

p).
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Theorem 2.2. Let L ∈ B(hd, w
p) and αk for k ∈ N be the complex numbers in

(2.3). Then the wp–limit η(x) of L(x) for each sequence x ∈ hd is given by

η(x) =

∞
∑

k=1

αkxk. (2.7)

PROOF. Let L ∈ B(hd, w
p). We define the matrix B = (bnk)

∞
n,k=1 by

bnk = ank − αk

for all n and k, and show

B ∈ (hd, w
p
0). (2.8)

First we show

(αk)
∞
k=1 ∈ bsd. (2.9)

We have for all l,m ∈ N by Hölder’s inequality

1

dm

∣

∣

∣

∣

∣

m
∑

k=1

αk

∣

∣

∣

∣

∣

=
1

dm
·
1

l

l
∑

n=1

∣

∣

∣

∣

∣

m
∑

k=1

αk

∣

∣

∣

∣

∣

≤
1

dm
·
1

l

l
∑

n=1

∣

∣

∣

∣

∣

m
∑

k=1

(ank − αk)

∣

∣

∣

∣

∣

+
1

dm
·
1

l

l
∑

n=1

∣

∣

∣

∣

∣

m
∑

k=1

ank

∣

∣

∣

∣

∣

≤
1

dm

m
∑

k=1

1

l

l
∑

n=1

|ank − αk|+
1

dm
·
1

l
· l1/q

(

l
∑

n=1

∣

∣

∣

∣

∣

m
∑

k=1

αk

∣

∣

∣

∣

∣

p)1/p

≤
1

dm

m
∑

k=1

(

1

l

l
∑

n=1

|ank − αk|
p

)1/p

+ ‖A‖. (2.10)

Since the first term in the last inequality above tends to 0 as l tends to infinity for each

fixed m by (2.3), it follows that

sup
m

1

dm

∣

∣

∣

∣

∣

m
∑

k=1

αk

∣

∣

∣

∣

∣

≤ ‖A‖(hd,w∞) < ∞,

and so (2.9) is satisfied and (αk)
∞
k=1 ∈ hβd by [17, Proposition 2.3]. Also A ∈

(hd, w
p) implies An ∈ hβd for each n, and consequently Bn = An − (αk)

∞
k=1 ∈ hβd

for each n.
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We obtain by (2.10)

‖B‖ = sup
l,m

1

dm

(

1

l

l
∑

n=1

∣

∣

∣

∣

∣

m
∑

k=1

(ank − αk)

∣

∣

∣

∣

∣

p)1/p

≤ sup
l,m

1

dm

(

1

l

l
∑

n=1

∣

∣

∣

∣

∣

m
∑

k=1

ank

∣

∣

∣

∣

∣

p)1/p

+ sup
l,m

1

dm

(

1

l

l
∑

n=1

∣

∣

∣

∣

∣

m
∑

k=1

αk

∣

∣

∣

∣

∣

p)1/p

≤ ‖A‖+ sup
l,m

1

dm

(

1

l

l
∑

n=1

∣

∣

∣

∣

∣

m
∑

k=1

αk

∣

∣

∣

∣

∣

p)1/p

≤ ‖A‖+ sup
m

1

dm

∣

∣

∣

∣

∣

m
∑

k=1

αk

∣

∣

∣

∣

∣

≤ 2 ‖A‖.

Thus, B ∈ (hd, w
p
∞) by Theorem 2.1 (a).

Furthermore, liml→∞(1/l)
∑l

n=1 |bnk| = 0 for each k, by definition of the ma-

trix B, that is, the condition in (2.4) also holds, and so (2.8) is satisfied by Theorem

2.1 (c).

Finally (2.7) is an immediate consequence of (2.8).

3. The Hausdorff measure of noncompactness of operators

In this section, we establish an identity for the Hausdorff measure on noncom-

pactness of operators in B(hd, w
p
0) and an estimate for the Hausdorff measure of non-

compactness of operators in B(hd, w
p). We also characterise the classes K(hd, w

p
0)

and K(hd, w
p).

We refer to [22, Definition II.2.1] and [16, Definition 7.11.1] for the definitions

of the Hausdorff measure of compactness χ on the class MX of bounded subsets

of a complete metric space, and the Hausdorff measure of noncompactness ‖ · ‖χ of

operators between Banach spaces.

We need the following well–known results.

Theorem 3.1 (Goldenštein, Goh’berg, Markus [13, Theorem 2.23]). Let X be a

Banach space with a Schauder basis (bn). Then the function µ : MX → [0,∞)
defined by

µ(Q) = lim sup
m→∞

(

sup
x∈Q

‖Rm(x)‖

)

, (3.1)
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with

Rm(x) =

∞
∑

n=m+1

λnbn for all x =

∞
∑

n=1

λnbn ∈ X

satisfies the following inequality for every Q ∈ MX

1

a
· µ(Q) ≤ χ(Q) ≤ µ(Q), (3.2)

where a = lim sup
n→∞

‖Rn‖ is the basis constant.

Proposition 3.1. Let X and Y be Banach spaces and L ∈ B(X,Y ) and SX

denote the unit sphere in X. Then we have

‖L‖χ = χ(L(SX)) ([16, Theorem 7.11.4]) (3.3)

and L ∈ K(X,Y ) if and only if

‖L‖χ = 0 ([16, Theorem 7.11.5]). (3.4)

Proposition 3.2. (a) Let the operators Rm : wp → wp for m ∈ N be defined by

Rm(x) =
∑∞

k=m+1(xk − ξ)e(k) for all x ∈ wp, where ξ is the wp–limit of x. Then

we have for all Q ∈ Mwp

1

2
lim

m→∞

(

sup
x∈Q

‖Rm(x)‖wp
∞

)

≤ χ(Q) ≤ lim
m→∞

(

sup
x∈Q

‖Rm(x)‖wp
∞

)

. (3.5)

(b) Let the operators Rm : wp
0 → wp

0 for m ∈ N be defined by

Rm(x) =

∞
∑

k=m+1

xke
(k)

for all x = (xk)
∞
k=1 ∈ wp

0. Then we have for all Q ∈ Mwp
0

χ(Q) = lim
m→∞

(

sup
x∈Q

‖Rm(x)‖w∞

)

. (3.6)

PROOF. We have by [14, Lemma 2 (a), (b)]

lim
m→∞

‖Rm‖ =

{

2 in Part (a),

1 in Part (b),

and (3.5) and (3.6) follow from (3.1) and (3.2).
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Now we prove an estimate for ‖L‖χ, if L ∈ B(hd, w
p), and an identity ‖L‖χ, if

L ∈ B(hd, w
p
0).

Theorem 3.2. (a) Let L ∈ B(hd, w
p). Then we have

1

2
· lim
r→∞



 sup
m;l≥r

1

dm

(

1

l

l
∑

n=r

∣

∣

∣

∣

∣

m
∑

k=1

(ank − αk)

∣

∣

∣

∣

∣

p)1/p


 ≤ ‖L‖χ

≤ lim
r→∞



 sup
m;l≥r

1

dm

(

1

l

l
∑

n=r

∣

∣

∣

∣

∣

m
∑

k=1

(ank − αk)

∣

∣

∣

∣

∣

p)1/p


 , (3.7)

where the complex numbers αk are defined in (2.3).

(b) Let L ∈ B(hd, w
p
0). Then we have

‖L‖χ = lim
r→∞



 sup
m;l≥r

1

dm

(

1

l

l
∑

n=r

∣

∣

∣

∣

∣

m
∑

k=1

ank

∣

∣

∣

∣

∣

p)1/p


 . (3.8)

PROOF. Let A = (ank)
∞
n,k=1 be any infinite matrix and r ∈ N. We write A<r> =

(a<r>
nk )∞n,k=1 for the matrix with the rows A<r>

n = 0 for 1 ≤ n ≤ r and A<r>
n = An

for n ≥ r + 1.

(a) Let L ∈ (hd, w
p), B = (bnk)

∞
n,k=1 be the matrix with bnk = ank − αk for all

n and k, and L<r> ∈ B(hd, w
p) be the operator with L<r> = Rr ◦L. We denote the

unit sphere in hd by S. Then L<r>(x) = B<r>x for all x ∈ hd by (1.3) and (2.7)

and we obtain by (2.5)

µ(r) = sup
x∈S

‖(Rr ◦ L) (x)‖wp
∞

= ‖B<r>‖(hd,w
p
∞)

= sup
l,m

1

dm

(

1

l

l
∑

n=1

∣

∣

∣

∣

∣

m
∑

k=1

b<r>
nk

∣

∣

∣

∣

∣

p)1/p

= sup
l,m

1

dm

(

1

l

l
∑

n=r+1

∣

∣

∣

∣

∣

m
∑

k=1

(ank − αk)

∣

∣

∣

∣

∣

p)1/p

= sup
l≥r+1;m

1

dm

(

1

l

l
∑

n=r+1

∣

∣

∣

∣

∣

m
∑

k=1

(ank − αk)

∣

∣

∣

∣

∣

p)1/p

.
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Finally, (3.3) and (3.5) imply (1/2) limr→∞ µ(r) ≤ ‖L‖χ ≤ limr→∞ µ(r),
which is (3.7).

(b) The proof is similar to that of Part (a) with αk = 0 for all k and (3.6) instead

of (3.5).

Finally the characterisations of the classes K(hd, w
p) and K(hd, w

p
0) are imme-

diate consequences of (3.4) and Theorem 3.2.

Corollary 3.1. (a) Let L ∈ B(hd, w
p). Then L ∈ K(hd, w

p) if and only if

lim
r→∞



 sup
m;l≥r

1

dm

(

1

l

l
∑

n=r

∣

∣

∣

∣

∣

m
∑

k=1

(ank − αk)

∣

∣

∣

∣

∣

p)1/p


 = 0,

where the complex numbers αk are defined in (2.3).

(b) Let L ∈ B(hd, w
p
0). Then L ∈ K(hd, w

p) if and only if

lim
r→∞



 sup
m;l≥r

1

dm

(

1

l

l
∑

n=r

∣

∣

∣

∣

∣

m
∑

k=1

ank

∣

∣

∣

∣

∣

p)1/p


 = 0.

We close with an application of our results.

Example 3.1. We consider the classical Hahn space h = hd, where dk = k for

all k = 1, 2, . . . , and the Cesàro matrix C1 = A = (ank)
∞
n,k=1 of order 1, where

ank = 1/n for 1 ≤ k ≤ n and ank = 0 for k > n (n = 1, 2, . . . ).

Then we have |
∑m

k=1 ank| ≤ m/n for all m and n, hence

clm =
1

m

(

1

l

l
∑

n=1

∣

∣

∣

∣

∣

m
∑

k=1

ank

∣

∣

∣

∣

∣

p)1/p

≤
1

m

(

1

l

l
∑

n=1

∣

∣

∣

m

n

∣

∣

∣

p
)1/p

=

(

1

l

l
∑

n=1

1

np

)1/p

≤ 1,

and so

‖A‖(h,wp
∞) = sup

l,m
clm ≤ 1, (3.9)
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that is, the condition in (2.2) is satisfied. Furthermore, for each k ∈ N,

0 ≤
1

l

l
∑

n=1

|ank|
p =

1

l

l
∑

n=k

1

n
≤

1

l

l
∑

n=1

1

np

= Al

((

1

np

)∞

n=1

)

→ 0 (l → ∞),

since A = C1 ∈ (c0, c0). Thus the condition (2.4) is also satisfied and consequently

C1 ∈ (h,wp
0) by Theorem 2.1 (c).

Now c11 = 1, and so we have ‖A‖(h,wp
∞) = ‖LC1

‖ = 1 by Theorem 2.1 (d) and

(3.9).

Finally, we have

c
(r)
lm =

1

m

(

1

l

l
∑

n=r

∣

∣

∣

∣

∣

m
∑

k=1

ank

∣

∣

∣

∣

∣

p)1/p

≤
1

m

(

1

l

l
∑

n=r

mp

np

)1/p

,

i.e.,

c
(r)
lm ≤

(

1

l
·
l − r + 1

rp

)1/p

≤
1

r

for all l ≥ r, m and r, hence

0 ≤ lim
r→∞

(

sup
m;l≥r

c
(r)
lm

)

≤ lim
r→0

1

r
= 0,

and so LC1
∈ K(h,wp

0) by Corollary 3.1 (b).

4. Visualisation of Wulff’s crystals

A surface energy function is a real valued function depending on a direction in

three–dimensional space. We visualise the surface energy functions given by the

norms of wp
∞ and hd and the correponding Wulff’s crystals which are uniquely de-

termined by their surface energy functions according to Wulff’s principle [24]. Our

figures are created by our own software package.

Let

S =







~x = (x1, x2, x3) ∈ R
3 : ‖~x‖2 =

(

3
∑

k=1

x2k

)1/2

= 1
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and F : S → R. Writing

~e = ~e(u1, u2) = (cosu1 cos u2, cos u1 sinu2, sinu1)

for

(u1, u2) ∈ R = (−π/2, π/2) × (0, 2π)

we consider the so–called potential surface with a parametric representation

PS =
{

~x = F (~e(u1, u2))~e(u1, u2) : (u1, u2) ∈ R
}

as a representation of the surface energy function F .

The following result is known.

Proposition 4.1 ([18, Corollary 5.5]). Let ‖ · ‖ be a norm on R
3 and, for each

~v = (v1, v2, v3) ∈ S, let φ~v : R3 → R be defined by φ~v(x) =
∑3

k=1 vkxk for all

~x = (x1, x2, x3) ∈ R
3. Then the boundary ∂C‖·‖ of Wulff’s crystal determined by

the surface energy function F = ‖ · ‖ is given by

∂C‖·‖ =

{

~x =
1

‖φ~e‖
· ~e : ~e ∈ S

}

,

where ‖φ~e‖
∗ is the norm of the functional φ~e, that is, ‖ · ‖∗ is the dual norm of ‖ · ‖.

In the following visualisations, we identify (x1, x2, x3) with the following se-

quence (x1, x2, x3, 0, . . . ).

Example 4.1. We consider the space wp
∞ with the block norm ‖ · ‖b defined by

‖x‖b = sup
ν≥0





1

2

2ν+1−1
∑

k=2ν

|xk|
p





1/p

(x ∈ wp
∞)

which is equivalent to ‖·‖wp
∞

by [13, Proposition 3.44]. The dual norm ‖·‖∗b is given

by ([13, Proposition 3.47])

‖a‖∗b =
∞
∑

ν=0

2ν/p





2ν+1−1
∑

k=2ν

|xk|
q





1/q

(a ∈ (wp
∞)β)

(see Figure 1).
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Figure 1: From left to right: Potential surfaces for ‖ · ‖wp
∞

, corresponding Wulff’s

crystal and both for top: q = p/(p− 1) = 1.025, middle q = 1.5, bottom q = 3.5
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Example 4.2. We consider the generalised Hahn space (hd, ‖ · ‖hd
). Then the

dual norm ‖ · ‖hd
= ‖ · ‖bsd , where by [17, Proposition 2.3]

‖a‖bsd = sup
m

1

m

∣

∣

∣

∣

∣

m
∑

k=1

ak

∣

∣

∣

∣

∣

(a ∈ bsd)

(see Figure 2).

Figure 2: From left to right: Potential surface for ‖ · ‖hd
, corresponding Wulff’s

crystal and both for d1 = 1, d2 = 2, d3 = 3
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and Applications, Springer, 2021.
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e-mail: vesna@pmf.ni.ac.rs


