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A b s t r a c t. In this paper, we investigate the functional analytical approach for seeking
of solutions to the following abstract multi-term fractional differential inclusion:

BDαn
t u(t) +

n−1!

j=1

AjD
αj

t u(t) ∈ ADα
t u(t) + f(t), t ∈ (0, τ), (∗)

where n ∈ N\{1},A, B and Aj are multivalued linear operators on a complex Banach space
X (1 ≤ j ≤ n − 1), 0 ≤ α1 < · · · < αn, 0 ≤ α < αn, 0 < τ ≤ ∞, f(t) is an X-valued
function, and Dα

t denotes the Riemann-Liouville fractional derivative of order α (see Ph.D.
Thesis by E. Bazhlekova, Eindhoven University of Technology, 2001). We introduce and ana-
lyze several different types of solutions and degenerate k-regularized (C1, C2)-existence and
uniqueness (propagation) families for (∗). Asymptotically almost periodic and asymptoti-
cally almost automorphic solutions of (∗) are sought in the case that B = I (the identity
operator on X), Aj ∈ L(X) for 1 ≤ j ≤ n− 1 and A is a convenable chosen translation of
a C-almost sectorial multivalued linear operator.
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1. Introduction and preliminaries

The class of scalar-valued almost periodic functions was introduced by H. Bohr
[5] (1924–1926), while the class of scalar-valued almost automorphic functions was
introduced by S. Bochner [4] (1962). The study od almost periodic and almost au-
tomorphic type solutions of abstract Volterra integro-differential equations is a very
active and popular field of functional analysis nowdays. For example, in [17, Section
11.4], J. Prüss has analyzed the almost periodic solutions, Stepanov almost periodic
solutions and asymptotically almost periodic solutions of the following abstract non-
degenerate Cauchy problem

u′(t) =

! ∞

0
A0(s)u

′(t− s) ds+

! ∞

0
dA1(s)u(t− s) + f(t), t ∈ R,

where A0 ∈ L1([0,∞) : L(Y,X)), A1 ∈ BV ([0,∞) : L(Y,X)), X and Y are
Banach spaces such that Y is densely and continuously embedded into X; in [6,
Chapter 10], T. Diagana has analyzed the weighted asymptotic behaviour of solutions
to the abstract nonautonomous third-order differential equation

u′′′ +B(t)u′ +A(t)u = h(t, u), t ∈ R,

while, in [1], S. Abbas, V. Kavitha and R. Murugesu have examined Stepanov-like
(weighted) pseudo almost automorphic solutions to the following fractional order
abstract integro-differential equation:

Dα
t u(t) = Au(t) +Dα−1

t f(t, u(t),Ku(t)), t ∈ R,

where

Ku(t) =

! t

−∞
k(t− s)h(s, u(s)) ds, t ∈ R,

1 < α < 2, A is a sectorial operator with domain and range in X, of negative
sectorial type ω < 0, the function k(t) is exponentially decaying, the functions f :
R ×X ×X → X and h : R ×X → X are Stepanov-like weighted pseudo almost
automorphic in time for each fixed elements of X×X and X, respectively, satisfying
some extra conditions. For more details on the subject, we refer the reader to the
monographs [6] by T. Diagana, [9] by G. M. N’Guérékata, [14] by the author, and to
a great number of other scientific monographs and research papers cited therein.

The main aim of this paper is to continue our previous joint research study with
Prof. G. M. N’Guérékata concerning asymptotically almost periodic and asymptoti-
cally almost automorphic solutions of abstract degenerate multi-term fractional dif-
ferential inclusions with Caputo derivatives [9]. We also provide slight generaliza-
tions of notions and results from our previous research paper [15], considering muti-
valued linear operators approach here.
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We use the standard notation throughout the paper. By (X, & · &) and L(X) we
denote a non-trivial complex Banach space and the space of all continuous linear
mappings from X into X, respectively. Given s ∈ R in advance, set

⌈s⌉ := inf{l ∈ Z : s ≤ l}.

The principal branch is always used to take the powers. Set Nl := {1, . . . , l}, N0
l :=

{0, 1, . . . , l}, 0ζ := 0, gζ(t) := tζ−1/Γ(ζ) (ζ > 0, t > 0) and g0(t) := the Dirac
δ-distribution. By χS(·) we denote the characteristic function of set S. If δ ∈ (0,π],
then we define Σδ := {λ ∈ C : λ ∕= 0, | arg λ| < δ}. Let 0 < τ ≤ ∞, and let
I = (0, τ). Then the Sobolev space Wm,1(I : X) is defined in the usual way (see
e.g. [3, p. 7]). We sometimes employ the condition

(P1): h(t) : [0,∞) → X is Laplace transformable, i.e., h ∈ L1
loc([0,∞) : X) and

there exists β ∈ R such that

h̃(λ) := L(h)(λ) := lim
b→∞

! b

0
e−λth(t) dt :=

! ∞

0
e−λth(t) dt

exists for all λ ∈ C with Reλ > β. Put abs(h) :=inf{Reλ : h̃(λ) exists}, and
denote by L−1 the inverse Laplace transform.

We refer the reader to [15] for the notion of condition (P1)-L(X). Fairly complete
information concerning vector-valued Laplace transform can be obtained by consult-
ing the references [2] and [12]–[13]. Let 0 < τ ≤ ∞ and F : [0, τ) → P (X).
A single-valued function f : [0, τ) → X is called a section of F if and only if
f(t) ∈ F(t) for all t ∈ [0, τ); a continuous section of F is any section of F that is
continuous on [0, τ). A multivalued map (multimap) A : X → P (X) is said to be a
multivalued linear operator (MLO) if and only if the following two conditions hold:

(i) D(A) := {x ∈ X : Ax ∕= ∅} is a linear subspace of X;

(ii) Ax+Ay ⊆ A(x+ y), x, y ∈ D(A) and λAx ⊆ A(λx), λ ∈ C, x ∈ D(A).

It is well known that, for every x, y ∈ D(A) and λ, η ∈ C with |λ| + |η| ∕= 0, we
have λAx+ ηAy = A(λx+ ηy). Set R(A) := {Ax : x ∈ D(A)}. It is said that an
MLO A : X → P (X) is closed if and only if for any two sequences (xn) in D(A)
and (yn) in X such that yn ∈ Axn for all n ∈ N we have that limn→∞ xn = x and
limn→∞ yn = y imply x ∈ D(A) and y ∈ Ax.

Let Ω denote a locally compact and separable metric space and let µ denote a
locally finite Borel measure defined on Ω. We need the following important lemma
from [13].
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Lemma 1.1. Suppose that A : X → P (X) is a closed MLO. Let f : Ω → X and
g : Ω → X be µ-integrable, and let g(x) ∈ Af(x), x ∈ Ω. Then

"
Ω f dµ ∈ D(A)

and
"
Ω g dµ ∈ A

"
Ω f dµ.

Assume now that A is an MLO in X , C ∈ L(X) is injective and CA ⊆ AC.
Then the C-resolvent set of A, ρC(A) for short, is defined as the union of those
complex numbers λ ∈ C for which R(C) ⊆ R(λ−A) and (λ−A)−1C is a single-
valued linear continuous operator on X. The operator λ -→ (λ−A)−1C is said to be
the C-resolvent of A (λ ∈ ρC(A)).

Fractional calculus and fractional differential equations are rapidly growing fields
of research of many mathematicians due to their invaluable applications in engineer-
ing, physics, chemistry, biology and other sciences (for more details about fractional
calculus and fractional differential equations, the reader may consult [3], [7], [11]–
[13], [17], [18], and references cited therein; for abstract degenerate differential equa-
tions, one may refer e.g. to [8], [13]–[14], [16], [19] and references cited therein).

In this paper, we use the Riemann-Liouville fractional derivatives. Let α > 0 and
m = ⌈α⌉, and let I = (0, τ), where τ ∈ (0,∞]. The Riemann-Liouville fractional
integral of order α > 0 is defined for any function f ∈ L1(I : X), by

Jα
t f(t) :=

#
gα ∗ f

$
(t), t > 0.

The Riemann-Liouville fractional derivative of order α > 0 is defined for any func-
tion f ∈ L1(I : X) satisfying gm−α ∗ f ∈ Wm,1(I : X), by

Dα
t f(t) :=

dm

dtm
#
gm−α ∗ f

$
(t) = Dm

t Jm−α
t f(t), t > 0.

By [3, Theorem 1.5], for every f ∈ L1(I : X) with gm−α ∗ f ∈ Wm,1(I : X), we
have:

Jα
t D

α
t f(t) = f(t)−

m−1%

k=0

(gm−α ∗ f)(k)(0)gα+k+1−m(t), t > 0. (1.1)

2. Concepts of solutions and degenerate k-regularized (C1, C2)-existence
and uniqueness propagation families for an abstract multi-term

fractional differential inclusion

Now, we investigate the functional analytical approach for seeking of solutions
to the following abstract multi-term fractional differential inclusion:

BDαn
t u(t) +

n−1%

j=1

AjD
αj

t u(t) ∈ ADα
t u(t) + f(t), t ∈ (0, τ), (2.1)
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where n ∈ N \ {1}, A, B and Aj are multivalued linear operators on a complex
Banach space X (1 ≤ j ≤ n − 1), 0 ≤ α1 < · · · < αn, 0 ≤ α < αn, 0 < τ ≤
∞, f(t) is an X-valued function, and Dα

t denotes the Riemann-Liouville fractional
derivative of order α (see [3]). Set α0 := α, m := ⌈α⌉, A0 := −A, An := B and
mi := ⌈αi⌉ for 0 ≤ i ≤ n. The notion of a strong solution of (2.1) is introduced as
follows:

Definition 2.1. Let f ∈ L1((0, τ) : X). A strong solution of (2.1) is any function
u ∈ L1((0, τ) : X) such that the Riemann-Liouville fractional derivatives Dαj

t u(t)
are well defined for j ∈ N0

n and there exist functions uj ∈ L1((0, τ)) ∩ AjD
αj

t u(·)
for j ∈ N0

n so that

f(t) =
%

j∈N0
n

uj(t) for a.e. t ∈ (0, τ).

The notion of strong solution of (2.1) extends the notion of strong solution of
problem [15, (1); see Definition 2.1] in the case that the operators Aj are single-
valued and linear (0 ≤ j ≤ n).

Assume now that u(·) is a strong solution of (2.1) and Aj is a closed MLO for
0 ≤ j ≤ n. Let k ∈ N0

n be fixed. Then we can integrate the equation (2.1) αn-times
by using Lemma 1.1 and the formula (1.1). In such a way, we get that

#
gαn ∗ f

$
(t) ∈

n%

j=0,j ∕=k

#
gαn ∗ uj

$
(t)

+ gαn−αk
∗Ak

&
u(·)−

mk−1%

i=0

#
gmk−αk

∗ u
$(i)

(0)gαk+i+1−mk
(·)

'
(t)

for all t ∈ [0, τ). Hence, the function

t -→ vk(t) := (gαn ∗ f)(t)−
n%

j=0,j ∕=k

(gαn ∗ uj)(t), t ∈ [0, τ)

is a continuous section of multivalued mapping

t -→Vk(t) := Ak

(
gαn−αk

∗
&
u(·)−

mk−1%

i=0

#
gmk−αk

∗ u
$(i)

(0)gαk+i+1−mk
(·)

')
(t), t ∈ [0, τ). (2.2)
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Furthermore, we have:

n%

k=0

vk(t) = (n+ 1)
#
gαn ∗ f

$
(t)− n

n%

j=0

#
gαn ∗ uj

$
(t) =

#
gαn ∗ f

$
(t), t ∈ [0, τ).

This motivates us to introduce the following notion of a mild solution of (2.1):

Definition 2.2. Suppose 0 < τ ≤ ∞ and f ∈ L1((0, τ) : X). By a mild solution
of (2.1) we mean any function u ∈ L1((0, τ) : X) such that the Riemann-Liouville
fractional derivatives Dαj

t u(t) are well defined for j ∈ N0
n, as well as that for each

k ∈ N0
n there exists a continuous section vk(·) of multivalued mapping Vk(·) given

by (2.2), so that

n%

k=0

vk(t) =
#
gαn ∗ f

$
(t), t ∈ [0, τ). (2.3)

The notion of mild solution of (2.1) extends the notion of mild solution of prob-
lem [15, (1); see Definition 2.2] in the case that the operators Aj are single-valued
and linear (0 ≤ j ≤ n). In our previous analysis, we have actually proved that any
strong solution of (2.1) is a mild solution of the same problem; even in single-valued
linear case, the converse statement fails to be true.

In the sequel, we shall primarily use the following notion, which generalizes the
notion of a mild (strong) solution of the abstract Cauchy problems [15, (8)–(9); see
Definition 2.4]:

Definition 2.3. Suppose 0 < τ ≤ ∞ and f ∈ L1((0, τ) : X). Consider the
following abstract multi-term integral inclusion:

#
gαn ∗ f

$
(t) ∈

n%

k=0

Vk(t), t ∈ [0, τ), (2.4)

where

Vk(t) := Ak

(
gαn−αk

∗
&
u(·)−

mk−1%

i=0

gαk+i+1−mk
(·)xi,k

')
(t), t ∈ [0, τ),

for some elements xi,k ∈ X (k ∈ N0
n, 0 ≤ i ≤ mk − 1).

(i) By a mild solution of (2.4), we mean any continuous function u ∈ C([0, τ) :
X) such that, for every k ∈ N0

n, there exists a section vk(·) of multivalued
mapping Vk(·), and (2.3) holds true.
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(ii) By a strong solution of (2.4), we mean any continuous function u ∈ C([0, τ) :
X) such that, for every k ∈ N0

n, there exists a continuous section wk(·) of
multivalued mapping

t -→ Wk(t) := Ak

&
u(·)−

mk−1%

i=0

gαk+i+1−mk
(·)xi,k

'
(t), t ∈ [0, τ) (2.5)

and
n%

k=0

#
gαn−αk

∗ wk

$
(t) =

#
gαn ∗ f

$
(t), t ∈ [0, τ).

In order to subject initial values to (2.1), we first define

T(2.1) :=
(

1, if there exists j ∈ N0
n such that αj ∈ N,

0, otherwise,

and S := {j ∈ N0
n : αj ∈ N}. As in single-valued linear case, we distinguish the

following three subcases of (2.1):

(SC1) αn > 1 : Then for each integer i ∈ Nmn−1 we set

Di := {j ∈ N0
n : mj − 1 ≥ i}, Si := {mj − αj : j ∈ Di}

and si := card(Si). Then we have Si ⊆ [0, 1) and

Si =
*
ai,1, . . . , ai,si

+
,

where 0 ≤ ai,1 < · · · < ai,si ≤ 1 (i ∈ Nmn−1). Define

Dl
i := {j ∈ Di : mj − αj = ai,l} (i ∈ Nmn−1, 1 ≤ l ≤ si).

For each integer i ∈ Nmn−1 we introduce si initial values xi,1, . . . , xi,si for terms
(gmj−αj ∗ u)(i)(0), where j ∈ Di. Additionally, if there exists j ∈ N0

n such that
αj ∈ N, i.e., if S ∕= ∅, then we introduce a new initial value x0 for the term (g0 ∗
u)(0) ≡ u(0).

(SC2) αn = 1 : In this case, we introduce only one initial value for term (g0 ∗
u)(0) ≡ u(0).

(SC3) αn < 1 : In this case, we consider the equation (2.1) without initial condi-
tions.
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Put

B(2.1) :=

,
--.

--/

s1 + · · ·+ smn−1 + T(2.1), if αn > 1,

1, if αn = 1,

0, if αn < 1.

By the foregoing, there will be exactly B(2.1) initial conditions for (2.1).
The subcase (SC3) will not be examined henceforth. For the subcases (SC1) and

(SC2), we will use the following definition (cf. [13, Section 2.4] and [15] for more
details about single-valued linear case).

Definition 2.4. Let 0 < τ ≤ ∞, k ∈ C([0, τ)), C, C1, C2 ∈ L(X), and let C
and C2 be injective.

(i) (SC1) Suppose that, for every i ∈ Nmn−1 and l ∈ Nsi , (Ri,l(t))t∈[0,τ) ⊆ L(X)
is strongly continuous, as well as that, for every t ∈ [0, τ), x ∈ X, i ∈ Nmn−1,
l ∈ Nsi and j ∈ N0

n, one has

[gαn−αj ∗ (Ri,l(·)x− χDl
i
(j)(k ∗ gαj+i−mj )(·)C1x)](t) ∈ D(Aj)

and

B
0
Ri,l(t)x− χDl

i
(n)

#
k ∗ gαn+i−mn

$
(t)C1x

1

+

n−1%

j=1

Aj

2
gαn−αj ∗

3
Ri,l(·)x− χDl

i
(j)

#
k ∗ gαj+i−mj

$
(·)C1x

45
(t)

∈ A
2
gαn−α ∗

3
Ri,l(·)x− χDl

i
(0)

#
k ∗ gα+i−m

$
(·)C1x

45
(t) (2.6)

holds. If S ∕= ∅, then we also introduce a strongly continuous family

(R0,1(t))t∈[0,τ) ⊆ L(X)

satisfying that, for every t ∈ [0, τ), x ∈ X and j ∈ N0
n, one has

[gαn−αj ∗ (R0,1(·)x− χS(j)k(·)C1x)](t) ∈ D(Aj)

and

B
0
R0,1(t)x− χS(n)k(t)C1x

1

+

n−1%

j=1

Aj

2
gαn−αj ∗

3
R0,1(·)x− χS(j)k(·)C1x

45
(t)

∈ A
2
gαn−α ∗

3
R0,1(·)x− χS(0)k(·)C1x

45
(t). (2.7)
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Then the sequence ((Ri,l(t))t∈[0,τ))1≤i≤mn−1,1≤l≤si if S = ∅, resp.,

((Ri,l(t))t∈[0,τ), (R0,1(t))t∈[0,τ))1≤i≤mn−1,1≤l≤si

if S ∕= ∅, is said to be a (local, if τ < ∞) k-regularized C1-existence propaga-
tion family for (2.1).

(SC2) A strongly continuous family (R(t))t∈[0,τ) ⊆ L(X) satisfying that, for
every t ∈ [0, τ), x ∈ X and j ∈ N0

n, one has [gαn−αj ∗ R(·)x](t) ∈ D(Aj)
and

B
0
R(t)x− k(t)C1x

1
+

n−1%

j=1

Aj

#
gαn−αj ∗R(·)x

$
(t) ∈ A

#
gαn−α ∗R(·)x

$
(t),

is said to be a (local, if τ < ∞) k-regularized C1-existence propagation family
for (2.1).

(ii) (SC1) Suppose that, for every i ∈ Nmn−1 and l ∈ Nsi , (Wi,l(t))t∈[0,τ) ⊆
L(X) is strongly continuous, as well as that

6n
j=0D(Aj) ∕= ∅ and

Wi,l(·)xn − χDl
i
(n)

#
k ∗ gαn+i−mn

$
(·)C2xn

+

n−1%

j=1

gαn−αj ∗
2
Wi,l(·)xj − χDl

i
(j)

#
k ∗ gαj+i−mj

$
(·)C2xj

5

= gαn−α ∗
2
Wi,l(·)x0 − χDl

i
(0)

#
k ∗ gα+i−m

$
(·)C2x0

5
,

whenever i ∈ Nmn−1, l ∈ Nsi and (x, xj) ∈ Aj for all j ∈ N0
n. If S ∕= ∅,

then we also introduce a strongly continuous family (W0,1(t))t∈[0,τ) ⊆ L(X)
satisfying that

W0,1(·)xn − χS(n)k(·)C2xn +

n−1%

j=1

gαn−αj ∗
2
W0,1(·)xj − χS(j)k(·)C2xj

5

= gαn−α ∗
2
W0,1(·)x0 − χS(0)k(·)C2x0

5
,

whenever (x, xj) ∈ Aj for all j ∈ N0
n. Then the sequence

((Wi,l(t))t∈[0,τ))1≤i≤mn−1,1≤l≤si

if S = ∅, resp.,

((Wi,l(t))t∈[0,τ), (W0,1(t))t∈[0,τ))1≤i≤mn−1,1≤l≤si
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if S ∕= ∅, is said to be a (local, if τ < ∞) k-regularized C2-uniqueness prop-
agation family for (2.1). If, in addition to the above, Aj for 0 ≤ j ≤ n, any
operator family Wi,l(·), the operator family W0,1(·) if S ∕= ∅, and the opera-
tor C2, all commute with each other, then ((Wi,l(t))t∈[0,τ))1≤i≤mn−1,1≤l≤si if
S = ∅, resp., ((Wi,l(t))t∈[0,τ), (W0,1(t))t∈[0,τ))1≤i≤mn−1,1≤l≤si if S ∕= ∅, is
said to be a k-regularized C2-resolvent propagation family for (2.1).

(SC2) A strongly continuous family (W (t))t∈[0,τ) ⊆ L(X) satisfying that

W (t)xn − k(t)C2xn +

n−1%

j=1

#
gαn−αj ∗W (·)C2xj

$
(t)

=
#
gαn−α ∗W (·)C2x0

$
(t), t ∈ [0, τ),

whenever (x, xj) ∈ Aj for all j ∈ N0
n, is said to be a (local, if τ < ∞) k-

regularized C2-uniqueness propagation family for (2.1). If, additionally, Aj

for 0 ≤ j ≤ n, W (·) and the operator C2, all commute with each other, then
(W (t)) is said to be a k-regularized C2-resolvent propagation family for (2.1).

The notions of k-regularized C2-uniqueness propagation families for (2.1) and k-
regularized C2-resolvent propagation families for (2.1) coincide with the correspond-
ing notions introduced in single-valued linear case (cf. [15, Definition 2.3(ii)–(iii)]).
Furthermore, the notion of a k-regularized C1-existence propagation family for (2.1)
is slightly weaker from that one introduced in [15, Definition 2.3(i)] because, in the
case that the operator B = B is single-valued, we do not assume here the strong
continuity of families (BRi,l(t))t∈[0,τ) ⊆ L(X) and (BR0,1(t))t∈[0,τ) ⊆ L(X) (the
subcase (SC1)).

In the case that k(t) = gζ+1(t), where ζ ≥ 0, then we say that a k-regularized
C1-existence propagation family for (2.1) is also a ζ-times integrated C1-existence
propagation family for (2.1); 0-times integrated C1-existence propagation family for
(2.1) is further abbreviated to C1-existence propagation family for (2.1); a similar
language is used for the classes of C2-uniqueness propagation families for (2.1) and
C-resolvent propagation families for (2.1).

A k-regularized C1-existence propagation family for (2.1) is said to be an expo-
nentially bounded (resp., bounded), analytic k-regularized C1-existence propagation
family for (2.1), of angle α ∈ (0,π/2], if and only if for each single operator family
(R(t))t≥0 of it, the following holds:

(a) For every x ∈ X, the mapping t -→ R(t)x, t > 0, can be analytically extended
to the sector Σα; we denote this extension by the same symbol.

(b) For every x ∈ X and β ∈ (0,α), we have limz→0,z∈Σβ
R(z)x = R(0)x.



Asymptotically almost periodic and asymptotically almost automorphic solutions . . . 65

(c) For every β ∈ (0,α), there exists ωβ ≥ max(0, abs(k)) (resp., ωβ = 0) such
that the family {e−ωβzR(z) : z ∈ Σβ} ⊆ L(X) is bounded.

We similarly introduce the classes of exponentially bounded (resp., bounded), ana-
lytic k-regularized C2-uniqueness propagation families for (2.1) and exponentially
bounded (resp., bounded), analytic k-regularized C-resolvent propagation families
for (2.1).

Concerning the well-posedness of abstract inhomogenous Cauchy problem (2.4)
(f ≡ 0), we want only to observe that the assertions (A)-(B) clarified in [15] continue
to hold in our new framework without any terminological changes. We leave to the
interested readers a problem of transferring the assertions clarified in [15, Theorem
2.6, Remark 2.7] to multivalued linear operators case.

3. Asymptotically almost periodic and asymptotically almost
automorphic solutions of (2.4)

In this section, it will be always assumed that B = I, Aj = Aj ∈ L(X) for 1 ≤
j ≤ n−1, and A is a closed MLO. Then we can profile the class of k-regularized C-
resolvent propagation families for (2.1) by means of vector-valued Laplace transform.
In order to present the main ideas for applications, in the subsequent three theorems,
we will consider only the subcase (SC1) in which 0 /∈ Dl

i ∪ S (1 ≤ i ≤ mn − 1,
1 ≤ l ≤ si).

The following results can be deduced by using the argumentation contained in
the proofs of [14, Theorem 3.4.5, Theorem 3.4.6, Theorem 3.4.8].

Theorem 3.1. Suppose k(t) satisfies (P1), ω ≥ max(0, abs(k)), as well as that
for every i ∈ Nmn−1 and l ∈ Nsi , (e

−ωtRi,l(t))t≥0 ⊆ L(X) is a strongly continuous
bounded family, as well as that, in the case that S ∕= ∅, (e−ωtR0,1(t))t≥0 ⊆ L(X) is
a strongly continuous bounded family. Let 0 /∈ Dl

i∪S (1 ≤ i ≤ mn−1, 1 ≤ l ≤ si).

(I) Let the following two conditions hold:

(i) CAj ⊆ AjC, j ∈ N0
n−1, Aj ∈ L(X), j ∈ Nn−1, AiAj = AjAi,

i, j ∈ Nn−1 and AjA ⊆ AAj , j ∈ Nn−1.

(ii) If S = ∅, there exist an integer i ∈ Nmn−1 and an integer l ∈ [1, si]
satisfying that the operator

Zλ := χDl
i
(n)λmn +

n−1%

j=1

χDl
i
(j)λmjAj

is injective for all λ ∈ C with Reλ > ω and k̃(λ) ∕= 0.
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(iii) If S = ∅ and there do not exist integers i ∈ Nmn−1 and l ∈ [1, si]
such that the operator Zλ is injective for all λ ∈ C with Reλ > ω and
k̃(λ) ∕= 0, then there exists j ∈ Nn with αj ∈ N.

If ((Ri,l(t))t≥0)1≤i≤mn−1,1≤l≤si if S = ∅, resp.,

((Ri,l(t))t≥0, (R0,1(t))t≥0)1≤i≤mn−1,1≤l≤si

if S ∕= ∅, is a k-regularized C-resolvent propagation family for (2.1), then Pλ

is injective for every λ ∈ C with Reλ > ω and k̃(λ) ∕= 0, as well as the
equalities

Pλ

! ∞

0
e−λtRi,l(t)x dt = k̃(λ)λ−α−i

&
χDl

i
(n)λmnCx

+

n−1%

j=1

χDl
i
(j)λmjAjCx

'
(3.1)

and

Pλ

! ∞

0
e−λtR0,1(t)x dt = k̃(λ)

n%

j=1

χS(j)AjCx (3.2)

are fulfilled for Reλ > ω and k̃(λ) ∕= 0.

(II) Suppose that Pλ is injective for every λ ∈ C with Reλ > ω and k̃(λ) ∕= 0
as well as the equalities (3.1)–(3.2) are fulfilled and the condition (I)(i) holds.
Then ((Ri,l(t))t≥0)1≤i≤mn−1,1≤l≤si if S = ∅, resp.,

((Ri,l(t))t≥0, (R0,1(t))t≥0)1≤i≤mn−1,1≤l≤si

if S ∕= ∅, is a k-regularized C-resolvent propagation family for (2.1).

Theorem 3.2. Assume k(t) satisfies (P1), ω ≥ max(0, abs(k)), β ∈ (0,π/2]
and, for every i ∈ N0

mn−1, the function (k ∗ gi)(t) can be analytically extended to a
function ki : Σβ → C satisfying that, for every γ ∈ (0,β), the set

*
e−ωzki(z) : z ∈ Σγ

+

is bounded. Let 0 /∈ Dl
i ∪S (1 ≤ i ≤ mn− 1, 1 ≤ l ≤ si), and let the following four

conditions hold:
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(i) CAj ⊆ AjC, j ∈ N0
n−1, Aj ∈ L(X), j ∈ Nn−1, AiAj = AjAi, i, j ∈ Nn−1

and AjA ⊆ AAj , j ∈ Nn−1.

(ii) The operator Pλ is injective for all ω + Σβ+π/2.

(iii) For every integers i ∈ Nmn−1 and l ∈ [1, si], there exist an operator Di,l ∈
L(X) and a strongly analytic mapping qi,l : ω + Σπ

2
+β → L(X) satisfying

the following:

qi,l(λ)x = 7ki(λ)P−1
λ

&
χDl

i
(n)λmn−αCx+

n−1%

j=1

χDl
i
(j)λmj−αAjCx

'
,

for any x ∈ X, Reλ > ω, the family
*
(λ− ω)qi,l(λ) : λ ∈ ω + Σπ

2
+γ

+
is bounded for all γ ∈ (0,β),

and, in the case D(A) ∕= X,

lim
λ→+∞

λqi,l(λ)x = Di,lx, x /∈ D(A).

(iv) If S = ∅, then there exist an operator D ∈ L(X) and a strongly analytic
mapping q : ω + Σπ

2
+β → L(X) satisfying the following:

q(λ)x = k̃(λ)P−1
λ

n%

j=1

χS(j)AjCx, x ∈ X, Reλ > ω

the family
*
(λ− ω)q(λ) : λ ∈ ω + Σπ

2
+γ

+
is bounded for all γ ∈ (0,β),

and, in the case D(A) ∕= X,

lim
λ→+∞

λq(λ)x = Dx, x /∈ D(A).

Then there exists an exponentially bounded, analytic k-regularized C-resolvent
propagation family

((Ri,l(t))t≥0)1≤i≤mn−1,1≤l≤si

if S = ∅, resp.,

((Ri,l(t))t≥0, (R0,1(t))t≥0)1≤i≤mn−1,1≤l≤si

if S ∕= ∅, for (2.1), of angle β. Furthermore, the family {e−ωzR·,·(z) : z ∈ Σγ}
is bounded for all γ ∈ (0,β), (2.6)–(2.7) and R·,·(z)Aj ⊆ AjR·,·(z), z ∈ Σβ ,
j ∈ N0

n−1 are valid for any single operator family R·,·(·).
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Observe that the notion from Definition 2.1 can be modified and introduced for
single operator families ([10]). The former two theorems can be simply reformulated
in this context, which will be important in the sequel.

For our investigation of generalized asymptotically almost periodic and gener-
alized asymptotically almost automorphic solutions of (2.4), the following analogue
of [14, Theorem 3.4.10] is crucial to be stated. The proof is very similar to that of
afore-mentioned theorem and we will sketch the main details of it, only:

Theorem 3.3. Suppose that cj ≥ 0, B = I and Aj = cjI for 1 ≤ j ≤ n − 1,
ζ ′ ≥ 0, A : X → P (X) is a closed MLO, C ∈ L(X) is injective, CA ⊆ AC and
the following condition holds:

(H): There exist finite constants c < 0, M > 0, 0 < θ < π and β ∈ (0, 1] such that

c+ Σπ−θ ⊆ ρC(A)

and
88(λ−A)−1C

88 ≤ M

|λ− c|β , λ ∈ c+ Σπ−θ.

Assume that the mapping λ -→ (λ − A)−1C, λ ∈ c+ Σπ−θ, is strongly continuous.
Let the integers i ∈ Nmn−1 and l ∈ [1, si] be fixed, and let 0 /∈ Dl

i. Set

r := max
*
s ∈ Nn : s ∈ Dl

i

+
.

Assume also that

r − α− i− ζ ′ −
#
αn − α

$
β ≤ 0, (3.3)

and

ν ′ :=
π − θ

αn − α
− π

2
> 0. (3.4)

Set ζ := ζ ′ if A is densely defined, ζ > ζ ′ otherwise, and ki(·) := gζ+1(·). Then
there exists an exponentially bounded, analytic ki-regularized C-propagation family
(Ri,l(t))t≥0 for (2.1), of angle ν := min(ν ′,π/2). Moreover, (2.6)–(2.7) hold and
there exists a finite constant M ′ > 0 such that

88Ri(t)
88 ≤ M ′

&
tα+ζ+i−mnDl

i(n) +

n−1%

j=1

tα+ζ+i−mjDl
i(j)

'
, t > 0. (3.5)
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Sketch of proof. As in [10], the mapping λ -→ (λ − A)−1C, λ ∈ c+ Σπ−θ is
strongly continuous and its restriction to c+Σπ−θ is strongly analytic. Since cj ≥ 0
for 1 ≤ j ≤ n− 1 and the estimates (3.3)-(3.4) are valid, we can easily show that the
conditions of Theorem 3.2 hold (for single operator families, see the short discussion
above), with ω > 0 sufficiently large and ki(·). Hence, A is a subgenerator of an ex-
ponentially bounded, analytic ζ-times integrated C-propagation family (Ri,l(t))t≥0

for (2.1), of angle ν = min(ν ′,π/2), as claimed. The estimate (3.5) can be deduced
as in the proof of [14, Theorem 3.4.10], with appealing to some estimates contained
in the proof of [2, Theorem 2.6.1].

Remark 3.1. The assertion of Theorem 3.3 can be also formulated, with minor
modifications, for exponentially bounded, analytic C-regularized solution operator
families whose Laplace transform can be computed as

! ∞

0
e−λtR(t)x dt = λ−ζ−1P−1

λ C

&
λas +

s%

j=1

cjλ
aj

'
x, x ∈ X, Reλ > ω,

where ω > 0, s ∈ N, 0 ≤ a1 < a2 < · · · < as, ζ ≥ 0 and cj ≥ 0, j ∈ Ns.

Let F ∈ {APT ([0,∞) : C), AAP ([0,∞) : C), AAA([0,∞) : C)}, where
the symbol APT ([0,∞) : C) denotes the space of scalar-valued asymptotically T -
periodic functions (T > 0), AAP ([0,∞) : C) denotes the space of scalar-valued
asymptotically almost periodic functions and AAA([0,∞) : C) denotes the space of
scalar-valued asymptotically almost automorphic functions defined as in [14]. Let the
function ki(·) be defined as above, let f ∈ F , and let (Ri(t))t≥0 be the ki-regularized
C-propagation family for (2.1), constructed with the help of Theorem 3.3. Then it
can be easily verified that ((Ri ∗ f)(t))t≥0 is a ki-regularized C-propagation family
for (2.1), satisfying additionally (2.6), where ki(·) = (gζ+1 ∗ f)(·). Assume that

#
α+ ζ + i−mn

$
Dl

i(n) +
#
α+ ζ + i−mj

$
Dl

i(j) < −1. (3.6)

Applying Theorem 3.3, some known assertions concerning inheritance of asymptot-
ical periodicity, almost asymptotical almost periodicity and asymptotical almost au-
tomorphy under the action of finite convolution products ([14]), we can establish the
following result (the condition (3.6) yields the uniform integrability of (Ri,l(t))t≥0,
i.e., we have

"∞
0 &Ri,l(t)& dt < ∞, while the uniqueness of solutions is a simple

consequence of the fact that [15, Theorem 2.5] holds in our framework):

Corollary 3.1. Let the requirements of Theorem 3.3 hold, let f ∈ F , and let
ki(·) = (gζ+1 ∗f)(·). Assume that (3.6) holds. Define ux(t) := (Ri,l ∗f)(t)x, t ≥ 0,
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x ∈ X. Then, for every x ∈ X , ux(·) ∈ F is a unique mild solution of the abstract
Cauchy inclusion
0
u(t)− χDl

i
(n)

#
f ∗ gαn+i−mn+ζ+1

$
(t)Cx

1

+

n−1%

j=1

cj

2
gαn−αj ∗

3
u(·)x− χDl

i
(j)

#
f ∗ gαj+i−mj+ζ+1

$
(·)Cx

45
(t)

∈ A
2
gαn−α ∗

3
u(·)x− χDl

i
(0)

#
f ∗ gα+i−m+ζ+1

$
(·)Cx

45
(t), t ≥ 0.

Furthermore, ux(·) is a strong solution of the above inclusion provided that x ∈
D(A).

Concerning generalized asymptotically almost periodic functions and generalized
asymptotically almost automorphic functions (Stepanov and Weyl classes, primarily;
see [6], [9] and [14]), some additional conditions on the vanishing part of function
f(·) must be imposed in our striving for solution ux(·) to belong the same class of
functions as f(·) (in vector-valued sense). It should be noted that Corollary 3.1 is ap-
plicable in the study of certain type of abstract degenerate integral Cauchy problems
involving the Poisson heat operator ([8], [14]). Semilinear Cauchy integral inclusions
can be also examined, with the help of already established results and theorems from
the fixed point theory.

Let F ′ and F ′′ be the spaces of generalized asymptotically almost periodic (au-
tomorphic) functions defined in [14, Section 3.4]. The following analogue of [14,
Proposition 3.4.13] holds in our framework:

Proposition 3.1. Suppose that k(t) satisfies (P1), i ∈ Nmn−1, 1 ≤ l ≤ si,
((Ri,l(t))t∈[0,τ))1≤i≤mn−1,1≤l≤si if S = ∅, resp.,

((Ri,l(t))t∈[0,τ), (R0,1(t))t∈[0,τ))1≤i≤mn−1,1≤l≤si

if S ∕= ∅, is a strongly Laplace transformable k-regularized C-resolvent propagation
family for (2.1).

(i) For every λ ∈ C, there exists a function f i,l
λ (·) satisfying (P1)-L(X) and

f i,l
λ (t) := L−1

(&9
1− λ

zαn−α

:
I +

n−1%

j=1

Aj

zαn−αj

'−1

×
9
χDl

i
(n)

k̃(z)C

zαn+i−mn
+

n−1%

j=1

χDl
i
(j)Aj

k̃(z)C

zαn+i−mj
− χDl

i
(0)

λk̃(z)C

zαn+i−m

:)
(t),
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for any t ≥ 0, and a function f0,1
λ (·) satisfying (P1)-L(X) and

f0,1
λ (t) := L−1

(&9
1− λ

zαn−α

:
I +

n−1%

j=1

Aj

zαn−αj

'−1

×
9
χS(n)k̃(z) +

n−1%

j=1

χS(j)Aj k̃(z)z
αj−αn − χS(0)k̃(z)z

α−αn

:)
(t),

for any t ≥ 0.

(ii) Denote by D the set consisting of all eigenvectors x of operator A which corre-
sponds to eigenvalues λ ∈ C of operator A (λx ∈ Ax) for which the mapping

f i,l
λ,x(t) := f i,l

λ (t)x, t ≥ 0, resp., f0,1
λ,x(t) := f0,1

λ (t)x, t ≥ 0

belongs to the space F ′. Then the mapping t -→ Ri,l(t)x, t ≥ 0, resp., t -→ R0,1(t)x,
t ≥ 0, belongs to the space F ′ for all x ∈ span(D); furthermore, the mapping
t -→ Ri,l(t)x, t ≥ 0, resp., t -→ R0,1(t)x, t ≥ 0, belongs to the space F ′′ for all
x ∈ span(D) provided additionally that (Ri(t))t≥0 is bounded.

The assertion of [14, Theorem 3.4.15] can be also rephrased for abstract multi-
term fractional differential inclusions with Riemann-Liouville derivatives. Details
can be left to the interested readers.
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Novi Sad 21125, Serbia
e-mail: marco.s@verat.net




