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A b s t r a c t. The energy E(G) of a graph G is the sum of absolute values of the

eigenvalues of the adjacency matrix of G. This spectral quantity was introduced in 1978 by

Ivan Gutman, but its extensive research started only twenty five years later. A large number

(over hundred) variants of graph energy have been proposed, based on matrices other than

the adjacency matrix. Research of these graph energies is nowadays very active, resulting in

well over a thousand publications. In recent years, more than two papers on graph energies

appear each week. Graph energies found a remarkable number of various applications. In

this paper, we outline some basic, mainly statistical, facts on the research of graph energies,

and point out their main applications.
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1. Introduction

In 1978 one of the present authors (I.G.) introduced a novel graph spectral quan-

tity which he named graph energy [1].

Let G be a simple graph of order n. Let A(G) be its adjacency matrix. The

eigenvalues of A(G), denoted by λ1,λ2, . . . ,λn, form the spectrum of G [2].
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Definition 1.1. (Gutman, 1978, [1]) The energy of the graph G is

E(G) =
n∑

i=1

|λi| . (1.1)

This definition was motivated by several earlier known results for the Hückel

molecular orbital total π-electron energy [3–5]. The author of Definition 1.1 put

forward it in good hope that the mathematical community will recognize its signifi-

cance, and that it will trigger future research and lead to the discovery of numerous

additional results. What happened was a lack of any interest for the graph energy con-

cept, in spite of the author’s several attempts to popularize it [6–10]. In the next more

than twenty years, the graph energy concept was almost completely ignored by other

mathematicians. Then, somewhere after year 2000 a fortunate change happened.

Suddenly, several mutually unrelated mathematicians started to examine graph en-

ergy and publish papers on it. What followed was an almost explosive growth in

interest for graph energy, in practically every part of the globe, resulting in a large

number of publications. In the recent years, more than two papers on graph energy

are published each week.

Research of graph energy and its numerous variants shows no sign of attenuation.

On the other hand, the time of I.G. is about to expire. In view of this, we found it

purposeful to present data on the enormous increase of work in this area. In addition,

we outline the various, sometimes quite unexpected and surprising, applications that

graph energies have found in other fields of science.

The data given in the present article are those that we collected by May 1, 2019.

2. Graph energy and its variants

Let, as before, G be a graph of order n, and let λ1,λ2, . . . ,λn be the eigenvalues

of its adjacency matrix. Assume that these are labeled in a non-increasing order.

Then, within the Hückel molecular orbital theory, the total energy of π-electrons of

an unsaturated conjugated hydrocarbon is given by [12]

Eπ =






2
n/2∑
i=1

λi if n is even,

2
(n−1)/2∑

i=1
λi + λ(n+1)/2 if n is odd .

(2.1)

Note that the graph G to which Eq. (2.1) is applicable, the so-called “molecular

graph”, must satisfy several structural limitations. For instance, G must be connected
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and its maximum vertex degree is at most 3. It was to be expected that mathemati-

cians will not be particularly interested to study an awkward graph-spectral quantity

such as the right–hand side of Eq. (2.1), which anyway would be applicable to a

narrow class of graphs.

On the other hand, it could be easily shown that if the conditions

λn/2 ≥ 0 ≥ λn/2+1 if n is even,

λ(n+1)/2 = 0 if n is odd .
(2.2)

are satisfied, then Eq. (2.1) reduces to

Eπ =
n∑

i=1

|λi| .

This observation led directly to the idea to define graph energy via Eq. (1.1).

Details on the validity of conditions (2.2), as well on other mathematical argu-

ments in favor of Eq. (1.1) can be found elsewhere [11, 13, 14].

After a quarter-of-century delay, an extensive research of graph energy started,

and is still vigorous. The main results achieved in this area are presented in the

book [13].

Motivated by the success of the theory of graph energy, its variants were pro-

posed, based on matrices other than the adjacency matrix. In what follows we define

the first few such graph energies.

Denote by deg(i) the degree of the i-th vertex of the graph G. Let ∆(G) be the

diagonal matrix of vertex degrees. Then the Laplacian matrix of G is

L(G) = ∆(G) −A(G).

The extended adjacency matrix is the square matrix of order n, whose (i, j)-element

is equal to
1

2

(
deg(i)

deg(j)
+

deg(j)

deg(i)

)

if i and j are adjacent vertices, and is zero otherwise [15]. The Randić matrix of the

graph G is the square matrix of order n, whose (i, j)-element is equal to

1√
deg(i) deg(j)

if i and j are adjacent vertices, and is zero otherwise [16]. The distance matrix of a

connected graph G is the square matrix of order n whose (i, j)-element is the distance

between the vertices i and j.
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Definition 2.1. (a) The extended energy is the sum of absolute values of the

eigenvalues of the extended adjacency matrix [15].

(b) The Laplacian energy of a graph of order n and size m is the sum of absolute

values of the eigenvalues of L(G) − 2m
n In, where In is the unit matrix of order

n [17].

(c) The distance energy of a connected graph is the sum of absolute values of the

eigenvalues of the distance matrix [18].

(d) The Randić energy is the sum of absolute values of the eigenvalues of the

Randić matrix [16].

Let M be a matrix of dimension p×q, and let Mt be its inverse. Then the singular

values of M are the positive square roots of the eigenvalues of MM
t.

A significant step forward in the theory of graph energy was made by Vladimir

Nikiforov [19].

Definition 2.2. (Nikiforov, 2007, [19]) Let σ1,σ2, . . . ,σp be the singular values

of the matrix M. Then the energy of M is

E(M) =
p∑

i=1

σi .

Needless to say that in the case of square symmetric matrices, the energies defined

in Definitions 1.1, 2.1, and 2.2 coincide.

3. Expansion of research of graph energies

In recent years a plethora of other graph energies appeared in the literature. We

list here only their names, whereas more details and the respective references can be

found in the book [11]. At the present moment, this list consists of over hundred

graph energies, and more will, for sure, appear in the future. Thus, in addition to

extended, distance, Laplacian, and Randić energies, we have:

ABC energy

accurate independent dominating energy

additive color Laplacian energy

Albertson energy

arithmetic–geometric energy

average degree energy

average degree-eccentricity energy

color energy
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color Laplacian energy

color signless Laplacian energy

common-neighborhood energy

complement Randić energy

complementary distance energy

complementary distance signless Laplacian energy

complementary dominating energy

connected complement domination energy

Co-PI energy

Coxeter energy

degree equitable connected cototal dominating energy

degree product energy

degree subtraction energy

degree subtraction adjacency energy

degree sum energy

detour energy

distance signless Laplacian energy

domination energy

double dominating energy

e-energy

eccentric Laplacian energy

edge energy

edge-Zagreb energy

extended ABC energy

extended signless Laplacian energy

first Hermitian–Zagreb energy

forgotten energy

general Randić energy

general sum-connectivity energy

geometric–arithmetic energy

greatest common divisor energy

greatest common divisor degree energy

Harary energy

harmonic energy

He energy

Hermitian energy

Hermitian–Randić energy
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incidence energy

intrinsic energy

inverse dominating energy

inverse sum indeg energy

iota energy

Kirchhoff energy

Laplacian distance energy

Laplacian incidence energy

Laplacian minimum boundary dominating energy

Laplacian minimum-covering energy

Laplacian minimum-covering chromatic energy

Laplacian minimum-covering color energy

Laplacian minimum dominating energy

Laplacian partition energy

Laplacian resolvent energy

Laplacian sum-eccentricity energy

matching energy

maximum degree energy

maximum eccentricity energy

maximum independent vertex energy

minimum boundary dominating energy

minimum-covering energy

minimum-covering color energy

minimum-covering distance energy

minimum-covering Gutman energy

minimum-covering Harary energy

minimum-covering Randić energy

minimum-covering reciprocal distance signless Laplacian energy

minimum-covering Seidel energy

minimum-domination energy

minimum bb-dominating energy

minimum dom strong dominating energy

minimum-dominating distance energy

minimum-dominating Harary energy

minimum-dominating maximum degree energy

minimum-dominating partition energy

minimum-dominating Randić energy
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minimum-dominating Seidel energy

minimum edge covering energy

minimum edge dominating energy

minimum efficient dominating energy

minimum equitable color dominating energy

minimum equitable dominating energy

minimum equitable dominating Randić energy

minimum hub energy

minimum hub distance energy

minimum Laplacian efficient dominating energy

minimum majority domination energy

minimum-maximal-domination energy

minimum mean boundary dominating energy

minimum mean dominating energy

minimum mean dominating distance energy

minimum monopoly energy

minimum monopoly distance energy

minimum neighborhood energy

minimum paired dominating energy

minimum robust domination energy

minimum total edge dominating energy

n-energy

net-Laplacian energy

non-common neighborhood energy

normalized incidence energy

normalized Laplacian energy

normalized Laplacian resolvent energy

o-energy

oriented incidence energy

partition energy

path energy

path Laplacian energy

peripheral distance energy

PI energy

Randić color energy

Randić incidence energy

rational metric energy
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reciprocal complementary distance energy

reciprocal distance signless Laplacian energy

reciprocal Randić energy

reciprocal sum-connectivity energy

reduced color energies (two)

resistance-distance energy

resolvent energy

second–stage energy

Seidel energy

Seidel Laplacian energy

Seidel signless Laplacian energy

signless Laplacian energy

signless Laplacian resolvent energy

skew energy

skew Randić energy

skew Laplacian energy

so-energy

sum-connectivity energy

sum-eccentricity energy

symmetric division deg energy

Szeged energy

terminal distance energy

total digraph energy

ultimate energy

upper dominating energy

vertex energy

vertex degree energy

vertex Zagreb adjacency energy

Zagreb energies (two)

α-distance energy

α-incidence energy

The graph energy concept was extended also to polynomials, semigroups, and

matroids.

The extent of research on graph energies, and its change over time, can be seen

from Table 1 and Figure 1. In our records, we have references to over 1100 pub-

lished papers (which do not include Ph.D. and M.Sc. theses, conference reports, or

preliminary announcements); these can be found in the book [11].
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year #pap. comment year #pap. comment

1996 2 2008 56 > o.p.w.

1997 0 2009 72 > o.p.w.

1998 2 2010 69 > o.p.w.

1999 6 2011 61 > o.p.w.

2000 4 2012 63 > o.p.w.

2001 12 2013 63 > o.p.w.

2002 3 2014 76 > o.p.w.

2003 5 2015 114 > t.p.w.

2004 9 2016 113 > t.p.w.

2005 16 2017 132 > t.p.w.

2006 11 2018 113 > t.p.w.

2007 35 2019 63 as on May 1

Table 1: Number of published works on graph energies that appeared around year

2000 and later. In the last few years, such papers were produced faster than one per

week (= o.p.w.) or two per week (= t.p.w.). Attenuation of this speed is not to be

expected in the foreseen future. The authors are aware that there must be numer-

ous additional papers published in India and China (in particular, those in Chinese

language) that are not accounted for.

1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
0

19

38

57

76

95

114

133

#papers

year

Figure 1: Distribution of the published graph energy papers by years.
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Research of graph energies is conducted literally all over the world. Table 2 and

Figure 2 show the distribution of authors of graph-energy-papers by the country of

affiliations.

country no. country no. country no. country no.

Argentina 6 Georgia 1 Mexico 7 Slovenia 4

Australia 6 Germany 11 Morocco 1 South Africa 5

Austria 3 Greece 2 Norway 1 South Korea 15

Bahrain 1 Hungary 2 Netherlands 5 Spain 2

Belgium 2 India 260 Oman 4 Sweden 1

Brazil 16 Indonesia 8 Pakistan 25 Taiwan 4

Canada 9 Iran 89 Philippines 3 Thailand 3

Chile 16 Ireland 1 Poland 3 Turkey 23

China 267 Israel 1 Portugal 3 UK 10

Colombia 12 Italy 15 Romania 5 Uruguay 2

Croatia 4 Japan 4 Russia 1 USA 66

Czechia 1 Kuwait 7 Saudi Arabia 6 Venezuela 8

Ethiopia 1 Lebanon 1 Serbia 39

Finland 2 Malaysia 15 Singapore 2

France 8 Malta 4 Slovakia 2

Table 2: Number of scholars from various countries who authored or coauthored at

least one article on graph energy in the period 1996–2019 (as on May 1, 2019). Their

true count is somewhat greater because we did not distinguish between scholars with

the same surname and different names beginning with the same letter. Thus, Xia Li,

Xuechao Li, and Xueliang Li were counted as one. Note that all continents, with the

regretful exception of Antarctica, are represented in this field of research.

4. Applications of graph energies

Although graph energy and its later variants were introduced solely for mathemat-

ical investigations, these energies found a remarkable, somewhat surprising and mys-

terious, applications in other fields of science and engineering. Applications of graph

energy in the chemistry of unsaturated conjugated molecules are obvious, rather nu-

merous, and will not be further commented here. Somewhat related are applications

in crystallography [20,21], theory of macromolecules [22,23], as well as analysis and

comparison of protein sequences [24–27]. Also not particularly unexpected are at-

tempts to apply graph energies in network analysis [28–35], including problems of air

transportation [30], satellite communication [32], and biology [29]. Related applica-
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tions in computer science and process analysis were reported in [36–39] and [40,41],

respectively.

Unexpected applications of graph energies are in engineering, in complex system

design and analysis [42–47]. Especially worth mentioning is their use in construction

of spacecrafts [44].

Another unexpected area of application are pattern recognition and object identi-

fication [48–52]. These approaches may be of some value for military purposes. On

the other hand, face recognition [52] may be of interest to police.

For the authors of this article, most pleasing was to learn that Laplacian graph

energy found such an unexpected application as image analysis and processing [53–

57]. The inventors of Laplacian energy [17] are especially delighted with the fact that

it is used for classifying high resolution satellite images [56].

Some attempts to use graph energies in medicine have also appeared in the lit-

erature [58–62]. Less mysterious are applications to epidemics [62] and neuronal

[58,61] networks. Connecting a graph-energy-like quantity to Alzheimer disease [60]

sounds like science fiction. The bizarre idea of using minimum robust domination

energy for “disruption of cell wall fatty acid biosynthesis in Mycobacterium tubercu-

losis ” [59] is beyond our comprehension.

5. Concluding remarks

The concept of graph energy was proposed in 1978 by Ivan Gutman in a humble

and difficult-to-find article [1]. After a latent period of about 25 years, the math-

ematical community recognized the value of this concept, leading to the discovery

of numerous new results. A plethora (well over one hundred) of variants of graph

energy has been introduced. All this resulted in a rapid growth of published papers,

which nowadays exceeds two per week.

Graph energies found unexpected applications in such areas of science and engi-

neering as crystallography, air transportation, satellite communication, face recogni-

tion, comparison of protein sequences, construction of spacecrafts, processing of high

resolution satellite images. Also some applications in medicine have been attempted.
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