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A b s t r a c t. Let G be a graph with vertex set V(G) and edge set E(G). For

v ∈ V(G), by dG(v) is denoted the degree of the vertex v. A graph in which not all vertices

have equal degrees is said to be irregular. Different quantitative measures of irregularity

have been proposed, of which the Albertson index irr(G) =
∑

uv∈E(G) |dG(u) − dG(v)| is

the most popular. We compare irr(G) with the recently introduced sigma-index σ(G) =
∑

uv∈E(G)[dG(u) − dG(v)]
2 and show that in the general case these are incomparable.

Graphs in which |dG(u)− dG(v)| = 1 holds for all uv ∈ E(G) are called stepwise irregular

(SI). Several methods for constructing SI graphs are described.
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1. Introduction

Let G be a simple undirected connected graph with vertex set V(G) and edge set

E(G), Let |V(G)| = n and |E(G)| = m, in which case G is said to be an (n,m)-
graph. The degree of a vertex v ∈ V(G) is the number of edges incident with v and it

is denoted by dG(v). A vertex of degree one is said to be pendent. An edge incident

to a pendent vertex is said to be also pendent.
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A graph G is regular if all its vertices have the same degree, otherwise it is irreg-

ular. In many applications and problems it is of importance to know how irregular a

given graph is, i.e., to have a quantitative measure of graph irregularity [16, 42].

There have been several attempts to determine how irregular a graph is [16, 13,

10, 11, 12, 17, 35], but these have not been captured by a single parameter. It seems

that the oldest numerical measure of graph irregularity was proposed by Collatz and

Sinogowitz [19] and was defined as

λ1 −
2m

n
,

where λ1 is the largest eigenvalue of the adjacency matrix, usually referred to as the

spectral radius of the underlying graph [20, 44]. Recall that the spectral radius of

a simple (n,m)-graph satisfies max{d,
√
∆} ≤ λ1 ≤ ∆, where ∆ is the maximal

vertex degree and d(G) = 2m/n the average degree of the graph G. It follows, that

if a graph is regular, then λ1 = 2m/n and λ1 > 2m/n otherwise.

A somewhat more straightforward measure of irregularity was put forward by

Bell [14], who proposed that the variance Var(G) of the vertex degrees

Var(G) =
1

n

∑

v∈V(G)

dG(v)
2 −





1

n

∑

v∈V(G)

dG(v)





2

. (1.1)

serves for this purpose.

It can be easily seen that the Bell irregularity index, Eq. (1.1), can be written as

Var(G) =
1

n
M1(G) −

(

2m

n

)2

,

where M1(G) is the classical first Zagreb index [29, 40, 15], defined as

M1(G) =
∑

v∈V(G)

dG(v)
2 =

∑

uv∈E(G)

[

dG(u) + dG(v)
]

.

Several additional measures of graph irregularity were proposed [24, 38, 43], but

until now these have not attracted much attention.

The imbalance of an edge e = uv ∈ E(G), defined as

imb(e) = |dG(u)− dG(v)| ,

appears implicitly in a paper by Albertson and Berman [9], in the context of Ramsey

problems, and later in [18]. In [8], Albertson defined the irregularity of G as the sum
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of imbalances of all edges, i.e.,

irr(G) =
∑

e∈E(G)

imb(e) =
∑

uv∈E(G)

|dG(u)− dG(v)| . (1.2)

Eventually, the Albertson index irr became the most popular and most thoroughly

investigated irregularity measure, see [2, 3, 32, 30, 30, 33, 27, 34, 45, 25, 21, 36, 37,

39, 46]. Recently, a variant of the Albertson index, named “total irregularity”, was

considered [47, 7, 1, 41, 4, 5, 6, 22, 23], defined as
∑

{u,v}⊆V(G)

|dG(u)− dG(v)| .

Trying to avoid the absolute value calculation in the Albertson index, Eq. (1.2),

one naturally arrived at the irregularity index σ(G), defined as [31]

σ(G) =
∑

uv∈E(G)

[

dG(u)− dG(v)
]2

. (1.3)

In contrast to the Albertson index, the σ-index can be expressed in terms of the earlier

much studied second Zagreb index M2(G) [40, 15] and the forgotten index F (G)
[26], namely

σ(G) = F (G)− 2M2(G),

where

F (G) =
∑

v∈V(G)

dG(v)
3 =

∑

uv∈E(G)

[

dG(u)
2 + dG(v)

2
]

and

M2(G) =
∑

uv∈E(G)

dG(u) dG(v) .

Because of the close similarity between the Albertson index, Eq. (1.2) and the

σ-index, Eq. (1.3), it is reasonable to expect that they are consistent with regard to

measuring graph irregularity. Thus, it could be expected that the condition

irr(G1) ≥ irr(G2) ⇔ σ(G1) ≥ σ(G2) (1.4)

is satisfied by any pair of graphs G1, G2.

In what follows, we point out that relation (1.4) is not generally valid. This casts

serious doubts on the true meaning of what one refers to as “irregularity”, and the

attempts to measure it by means of a single parameter.

If condition (1.4) would not hold for the graphs G1 and G2, then the two mea-

sures irr and σ would infer different orderings of their irregularity. If so, then the

irregularity measures irr and σ would be inconsistent with regard to G1 and G2, i.e.,

would be mutually inconsistent in the general case.
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2. Inconsistence between Albertson and σ-Index

In this section we consider the inconsistency cases for the Albertson and σ-

indices, i.e., seek for pairs of graphs for which

irr(G1) > irr(G2) and σ(G1) < σ(G2)

holds. This condition can be rewritten in the form:

[

irr(G1)− irr(G2)
][

σ(G1)− σ(G2)
]

< 0 . (2.1)

We first focus our attention to trees, that is connected (n, n− 1)-graphs.

In order to find a pair of n-vertex trees satisfying inequality (2.1), let T1(n) be

a tree without vertices of degree greater than 3, with Albertson index as large as

possible. Such a tree possesses only vertices of degree three and pendent vertices.

Their numbers are denoted by n3 and n1, respectively.

It is easy to see that the imbalance of edges connecting two degree–three vertices

is zero, and the imbalance of the pendent edges is 2. Therefore, irr(T1(n)) = 2n1

and σ(T1(n)) = 22 n1.

Because of n1 +n3 = n and n1 +3n3 = 2(n− 1), we get n1 = n/2− 1. Thus,

the tree T1(n) must possess an even number of vertices, and

irr(T1(n)) = n+ 2 and σ(T1(n)) = 2n+ 4 . (2.2)

Let T2(n) be an n-vertex tree with vertices of degree greater than 3, with Albert-

son index as small as possible. This tree must possess a single vertex of degree 4,

four pendent vertices, and n − 5 vertices of degree 2. Denote by p4 the number of

pendent vertices attached to the degree 4 vertex of T2(n). It is easy to verify that

irrespective of the actual value of the parameter n,

irr(T2(n)) =















4× 2 + 4× 1 + 0× 3 = 12 if p4 = 0
3× 2 + 3× 1 + 1× 3 = 12 if p4 = 1
2× 2 + 2× 1 + 2× 3 = 12 if p4 = 2
1× 2 + 1× 1 + 3× 3 = 12 if p4 = 3

(2.3)

and

σ(T2(n)) =















4× 22 + 4× 12 + 0× 22 = 20 if p4 = 0
3× 22 + 3× 12 + 1× 32 = 24 if p4 = 1
2× 22 + 2× 12 + 2× 32 = 26 if p4 = 2
1× 22 + 1× 12 + 3× 32 = 32 if p4 = 3

(2.4)



Note on irregular graphs 9

Substituting Eqs. (2.2)–(2.4) back into (2.1), we get

[

irr(T1(n)− irr(T2(n))
][

σ(T1(n))− σ(T2(n))
]

=















2(n − 10)(n − 8) if p4 = 0
2(n − 10)(n − 10) if p4 = 1
2(n − 10)(n − 12) if p4 = 2
2(n − 10)(n − 14) if p4 = 3 .

Bearing in mind that n must be an even integer, we see that the condition (2.1) can

be satisfied only if p4 = 3 and only for n = 12.

In Fig. 1 is depicted a tree T1(12) (of the two possible), as well as the unique tree

T2(12) with p4 = 3. These are the smallest possible examples of trees for which the

Albertson and σ indices are inconsistent.

1 2T T

Figure 1. Two 12-vertex trees inconsistent with regard to Albertson and σ-index:

irr(T1) = 14 , irr(T2) = 12 whereas σ(T1) = 28 , σ(T2) = 32.

In an analogous manner we may construct pairs of connected unicyclic, bicyclic,

and higher–cyclic graphs for which the Albertson and σ indices are inconsistent. The

species depicted in Fig. 2 are the smallest possible of their kind.

1

1

2

2

U

B

U

B

n-5 n-2

a ab b

n=a+b-1 n=a+b+3

Figure 2. Unicyclic and bicyclic graphs inconsistent with regard to Albertson and σ-

index: irr(U1) = 12 , irr(U2) = 10 whereas σ(U1) = 22 , σ(U2) = 26; irr(B1) =

8 , irr(B2) = 10 whereas σ(B1) = 16 , σ(B2) = 14. These values hold for any

feasible choices of the parameters a, b and n.
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3. Stepwise irregular graphs

A graph G in which the imbalance imb(e) of any edge e ∈ E(G) is unity, is

referred to as a stepwise irregular (SI) graph [28]. Evidently, among graphs with

non-zero imbalance, the stepwise irregular species have minimal irregularity. In the

recent paper [28], it was shown how SI graphs can be systematically constructed,

provided that a single SI graph with pendent vertices is known. This we refer to as:

Construction method 1 [28]

Let v be a pendent vertex of the graph G1, adjacent to the vertex u, see Fig. 3. If

the graph G1 is stepwise irregular (in which case the degree of the vertex u must be

2), then also the graph G∗
1 is stepwise irregular. Since G∗

1 possesses a pendent vertex,

adjacent to a vertex of degree 2, the construction of SI graphs can be continued.

G G
11

u v

*

Figure 3. Construction of SI graphs according to the method from the paper [28]

In this section, we point out a few additional general methods for constructing SI

graphs.

Construction method 2

Let v be a vertex of the graph G2 having degree 2, adjacent to the vertices u1 and

u2, see Fig. 4. If the graph G2 is stepwise irregular so that the vertices u1 and u2 are

both of degree 3, then also the graph G∗
2 is stepwise irregular. Since G∗

2 possesses a

vertex of degree 2, adjacent to two vertices of degree 3, the construction of SI graphs

can be continued.

G G
22

u

u v

*

1

2

Figure 4. Construction of SI graphs according to the method 2
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Construction method 3

Let v be a vertex of the graph G3 having degree 3, adjacent to the vertices u1,

u2, and u3, see Fig. 5. If the graph G3 is stepwise irregular so that the vertices u1,

u2, and u3 are all of degree 4, then also the graph G∗
3 is stepwise irregular. Since G∗

3

possesses a vertex of degree 3, adjacent to three vertices of degree 4, the construction

of SI graphs can be continued.

G G
33

u

u

u

v

*

1

3

2

Figure 5. Construction of SI graphs according to the method 3

A connected graph is said to be bidegreed if some of its vertices are of degree ∆

and the other vertices are of degree δ, ∆ > δ > 0. A bidegreed bipartite graph is

called semiregular if each vertex in the same part of bipartition has the same degree.

Construction method 4

Denote by Kp,q the complete bipartite graph with n = p+ q vertices and m = pq

edges. Complete bipartite graphs with p 6= q form a subset of semiregular graphs. If

q = p + 1, then the graphs Kp,p+1 are semiregular and stepwise irregular. It is easy

to see that the 3-vertex star K1,2 and the 5-vertex bicyclic graph K2,3 are the smallest

stepwise irregular graphs. Both of them are semiregular.

Recall that the cyclomatic number of a connected graph G with n vertices and m

edges is γ(G) = m− n + 1. A cubic graph is a regular graph of degree 3. A cubic

graph of order n has m = 3
2n edges, i.e., it is an (n, 32n)-graph.

Construction method 5

Stepwise irregular graphs can be constructed from cubic graphs or cubic multi-

graphs. Let G be a connected (multi)graph, and denote by S(G) its subdivision graph.

If G is a cubic regular (n, 32n)-graph, with cyclomatic number γ(G), then S(G) will

be a bidegreed semiregular stepwise irregular (52n, 3n)-graph with degree set {2, 3},

having the same cyclomatic number as G.

In Fig. 6 is depicted a sequence of small bidegreed and tridegreed SI graphs,

denoted by Hn, where the subscript n stands for their order.
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H

HH

H

H

H H

HH3 5 7 8 9

10 10 11 12

*

Figure 6. Stepwise irregular graphs with small cyclomatic numbers

The cyclomatic number of the graphs Hn is small, γ = 0, 1, 2, or 3. Among them,

H3
∼= K1,2, H7, and H11 are trees, H8 and H12 are unicyclic graphs, H5

∼= K2,3 and

H9 are bicyclic graphs, whereas H10 and H∗
10 are tricyclic. The graphs H3, H5, H10,

and H∗
10 are semiregular. The graphs H5 and H∗

10 are subdivision graphs of the cubic

multigraphs J2 and J∗
4 , depicted in Fig. 7, whereas H10 is the subdivision graph of

the complete graph K4 (which is regular of degree 3).

KJ J2 44

*

Figure 7. Cubic graphs from which the SI graphs H5, H10, and H∗
10 are constructed

In the recent paper [28], the following two results were stated:

Theorem 10. [28] There exist stepwise irregular bicyclic graphs whose order is

any positive odd integer, except 1, 3, 5, 7, 9, and 11.

Theorem 11. [28] There exist connected stepwise irregular graphs of any order,

except 1, 2, 4, 5, and 6.
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Considering the SI graphs shown in Fig. 7, and bearing in mind the graphs H5

and H9, the following minor correction to these theorems need to be made:

Theorem 10 (corrected). There exist stepwise irregular bicyclic graphs whose

order is any positive odd integer, except 1, 3, 7, and 11.

Theorem 11 (corrected). There exist connected stepwise irregular graphs of any

order, except 1, 2, 4, and 6.
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[43] T. Réti, E. Tóth–Laufer, On the construction and comparison of graph irregularity

indices, Kragujevac J. Sci. 39 (2017), 53–75.
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