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A b s t r a c t. We present an efficient procedure for constructing the so-called Gauss-Rys

quadrature formulas and the corresponding polynomials orthogonal on (−1, 1) with respect

to the even weight functionw(t;x) = exp(−xt2), where x a positive parameter. Such Gauss-

Rys quadrature formulas were investigated earlier e.g. by M. Dupuis, J. Rys, H.F. King [J.

Chem. Phys. 65 (1976), 111− 116; J. Comput. Chem. 4 (1983), 154− 157], D.W. Schwenke

[Comput. Phys. Comm. 185 (2014), 762 − 763], and B.D. Shizgal [Comput. Theor. Chem.

1074 (2015), 178 − 184], and were used to evaluate electron repulsion integrals in quan-

tum chemistry computer codes. The approach in this paper is based to a transformation of

quadratures on (−1, 1) with N nodes to ones on (0, 1) with only [(N +1)/2] nodes and their

construction. The method of modified moments is used for getting recurrence coefficients.

Numerical experiments are included.
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1. Introduction and preliminaries

The so-called Rys quadrature formulae have been introduced in 1976 by Dupius,

Rys and King [3] as an attractive method in computational quantum chemistry for

evaluating two-electron repulsion integrals,

(ij|kl) =
∫∫

φi(1)φj(1)
1

r12
φk(2)φl(2) dτ1 dτ2,

which appear in molecular quantum mechanical calculations involving Gaussian Car-

tesian basis functions. As it was explained in [3], [9], [25], and [27] it leads to the

calculation of one-dimensional integrals of the form

(ij|kl) =
∫ 1

0
fm(t) exp(−xt2) dt, (1.1)

where fm(t) are even algebraic polynomials of degree 2m and the weight function is

given by w(t;x) = exp(−xt2), where x a positive parameter. Because t 7→ w(t;x)
is an even weight function on (−1, 1), the previous integral can be expressed as a half

of the the corresponding integral over the symmetric interval (−1, 1).
The Rys quadrature formulas are Gaussian on the finite interval (−1, 1) with

respect to the exponential weight function w(t;x) = exp(−xt2). The corresponding

(monic) polynomials with respect to the weight w(t;x) we denote by πn(t;x), and

they are known as Rys polynomials ([3], [25], [27], [26]). These polynomials are

even or odd polynomials depending on the parity of n. They satisfy the three-term

recurrence relation

πk+1(t;x) = tπk(t;x)− βkπk−1(t;x), k = 1, 2, . . . , (1.2)

with π0(t;x) = 1 and π−1(t;x) = 0. The recursion coefficients depend on the

parameter x, βk = βk(x) > 0, k = 1, 2, . . . . The coefficient β0 in (1.2) may be

arbitrary, but is conveniently defined by (cf. [6], [12])

β0(x) =

∫ 1

−1
w(t;x) dt =

√
π

x
erf (

√
x) =

√
π − Γ (1/2, x)√

x
, (1.3)

where Γ(a, z) is the incomplete gamma function defined by Γ(a, z) =
∫∞
z ta−1e−t dt.

In the case x → 0, Rys formulas reduce to the well-known Gauss-Legendre rules.

Evidently, w(t; 0) = 1, and therefore (cf. [14, p. 148])

β0(0) = 2, βk(0) =
k2

4k2 − 1
, k = 1, 2, . . . , (1.4)
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and πk(t; 0) = P̂k(t) are monic Legendre polynomials. Note that

P̂k(t) =
2kk!

(k + 1)k
Pk(t) =

2k(
2k
k

)Pk(t), (1.5)

where Pk(t) are the standard Legendre polynomials (cf. [12, p. 132]).

When x → +∞, these quadratures have an asymptotic behaviour like Gauss-

Hermite quadratures [12, p. 325]. Let pk(t;x) be an orthonormal polynomial, i.e.,

pk(t;x) = γk(x)πk(t;x), for which we have

γk(x)
2

∫ 1

−1
exp(−xt2)πk(t;x)

2 dt = 1,

i.e.,

γk(x)
2

√
x

√
x∫

−
√
x

exp(−ξ2)πk

( ξ√
x
;x
)2

dξ = 1.

When x → +∞, we get

lim
x→+∞

√
xβk(x) =

√
k

2

and

lim
x→+∞

γk(x)

x1/4
πk

( ξ√
x
;x
)
=

2k/2√
k!
√
π
Ĥk(ξ),

where Ĥk(ξ) is the monic Hermite polynomial of degree k.

Also, it is interesting to see that the weight function w(t;x) = exp(−xt2) be-

longs to Szegő’s class (see Definition 2.2.1 in [12, p. 103]), because of

∫ 1

−1

logw(t;x)√
1− t2

dt =

∫ 1

−1

−xt2√
1− t2

dt = −πx

2
> −∞.

As a consequence of it is the following asymptotic property of the recurrence coeffi-

cients βk = βk(x) in (1.2) (cf. [10])

lim
k→∞

βk(x) = β∞(x) =
1

4
. (1.6)

In the sequel in this paper, we use the generalized hypergeometric function pFq,

defined by

pFq (a1, . . . , ap; b1, . . . , bq; z) =

∞∑

ν=0

(a1)ν · · · (ap)ν
(b1)ν · · · (bq)ν

zν

ν!
,
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where the Pochhammer symbol (λ)ν is given by

(λ)0 = 1, (λ)ν = λ(λ+ 1) · · · (λ+ ν − 1) =
Γ(λ+ ν)

Γ(λ)
,

and Γ(λ) is Euler’s gamma function defined by

Γ(λ) =

∫ ∞

0
tλ−1e−t dt for Re(λ) > 0.

In particular, the so-called Gauss hypergeometric functions 2F1 play a fundamental

role in the applied mathematics and mathematical physics. In Wolfram’s MATHE-

MATICA the function pFq is implemented as HypergeometricPFQ and suitable

for both symbolic and numerical calculation. For p = q + 1, it has a branch cut

discontinuity in the complex z plane running from 1 to ∞. When p ≤ q the above

series on the right-hand side converges for each z ∈ C. For some recent results on

this subject, especially on transformations, summations and some applications see

[20], [21], [22].

According to (1.2), the Rys N -point Gaussian formulas

I(f ;x) =

∫ 1

−1
w(t;x)f(t) dt = QN (f ;x) +RN (f), (1.7)

with the remainder term RN (f), are symmetric rules, which are exact for all polyno-

mials of degree at most 2N − 1, as well as for any odd function.

For example, for N = 2n this formula can be expressed in the form

Q2n(f ;x) =

n∑

k=1

Ak(f(τk) + f(−τk)), (1.8)

where τk = τ
(N)
k = τ

(N)
k (x), Ak = A

(N)
k = A

(N)
k (x) > 0, and

0 < τ1 < · · · < τn < 1.

If N = 2n + 1, the quadrature sum contains an additional term A0f(0), i.e.,

Q2n+1(f ;x) = A0f(0) +
n∑

k=1

Ak(f(τk) + f(−τk)), (1.9)

where A0 = A
(N)
0 = A

(N)
0 (x) > 0.
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Notice that the integral (1.1) can be computed exactly, except for rounding errors,

by using the previous quadrature formulas as

(ij, kl) =
1

2

∫ 1

−1
fm(t) exp(−xt2) dt =

1

2
QN (fm;x),

providing N ≥ m+ 1. Here,

1

2
QN (fm;x) =





N/2∑

k=1

A
(N)
k fm(τ

(N)
k ), N = 2n,

1

2
A

(N)
0 fm(0) +

(N−1)/2∑

k=1

A
(N)
k fm(τ

(N)
k ), N = 2n+ 1,

with a degree of precision d(N) = 2N − 1, which is equal to 4n∓ 1 in these cases,

respectively.

The authors of the previous mentioned papers [3], [25], [27], [26] interested also

in polynomials pk(t
2;x) = π2k(t;x), which are orthogonal on (0, 1).

A detailed discussion on methods for constructing Rys quadratures on (−1, 1),
as well as for constructing the so-called half range quadratures (with the same weight

function on (0, 1)), was recently presented by Shizgal [28], including a construc-

tion of orthogonal polynomials by using discretizing Stieltjes-Gautschi procedure

(cf. [12, 162–166]). The classical Chebyshev method of moments is ill-conditioned.

In this paper we will first give some numerical experiments to show that the

classical Chebyshev method is ill conditioned and almost inapplicable, and then we

give some possibilities for its application using recent advances in symbolic com-

putation and arithmetic of variable precision. However, the main part of our paper

is an efficient procedure for constructing the Gauss-Rys quadrature formulas and

the corresponding orthogonal polynomials based on a transformation of quadratures

on (−1, 1) with N nodes to ones on (0, 1) with only [(N + 1)/2] nodes and their

construction. The method of modified moments is used for getting recurrence coeffi-

cients. Numerical experiments are included.

2. Conditionality of the classical Chebyshev method

In a series of papers in the eighties of the last century (see [4], [6]), Walter

Gautschi developed the so-called constructive theory of orthogonal polynomials on

R, including effective algorithms for numerically generating orthogonal polynomi-

als (method of modified moments, discretized Stieltjes-Gautschi procedure, Lanczos

algorithm) and a detailed stability analysis of such algorithms, as well as several
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new applications of orthogonal polynomials. He also provided software necessary

for implementing these algorithms in Matlab (cf. [7]). This theory opened the door

for extensive computational work on orthogonal polynomials and many their appli-

cations.

In general, in numerical construction of recursion coefficients an important aspect

is the sensitivity of the problem with respect to small perturbation in the input. There

is a simple algorithm, due to Chebyshev, which transforms the first 2N moments to

2N desired recursion coefficients (method of moments)

µ = (µ0, µ1, . . . , µ2N−1) 7→ ρ = (α0, . . . , αN−1, β0, . . . , βN−1),

but its effectiveness depends critically on the conditioning of the mapping KN :
R
2N → R

2N (µ 7→ ρ). Usually it is ill-conditioned and practically, these calcula-

tions via moments in finite precision on a computer are quite ineffective because of

the explosive growth of rounding errors.

However, recent progress in symbolic computation and variable-precision arith-

metic now makes it possible to generate the coefficients in the three-term recurrence

relation for orthogonal polynomials directly by using the original Chebyshev method

of moments, but in a sufficiently high precision arithmetic in order to to overcome

the numerical instability.

Respectively symbolic/variable-precision software for orthogonal polynomials is

available: Gautschi’s package SOPQ in MATLAB (see Appendix B in [7]) and our

MATHEMATICA package OrthogonalPolynomials (see [2] and [18]), which is

downloadable from the Web site in the Mathematical Institute of the Serbian Academy

of Sciences and Arts: http://www.mi.sanu.ac.rs/˜gvm/.

As we mentioned, the map KN is usually ill-conditioned, i.e., its condition num-

ber is much larger than one, condKN ≫ 1. If the condition number is of order

10m, it roughly means a loss of m decimal digits in results when the input data

are perturbed by one units in the last digit. For example, if the working precision

is WP decimal digits, e.g., WP=MP≈ 16 and the condition number is 1010, then

results will be accurate to only about 16 − 10 = 6 digits! Here, MP denotes the

$MachinePrecision number (notation in the Wolfram’s package MATHEMAT-

ICA), which is equal to 15.9546 (≈ 16).

Remark 2.1. In the so-called machine floating-point arithmetic an important

number is eM = 2−n+1, where n is the number of binary bits used in the internal

representation of machine-precision floating-point numbers. It gives the difference

between 1 and the next-nearest number representable as a machine-precision number

(see [15, pp. 16–27]). Typical value of this number eM (machine epsilon, macheps

or unit roundoff) in the double precision arithmetic (n = 53) is ≈ 2.22045 × 10−16.

In the Wolfram MATHEMATICA this constant is denoted by $MachineEpsilon.
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In the sequel we consider the construction of the orthogonal polynomials πk(t;x)
defined by the recurrence relation (1.2), i.e., the constuction of the recurrence coeffi-

cients βk (here, αk = 0 because the weight is an even function on (−1, 1)).

In order to get N recurrence coefficients βk, we need the first 2N moments µk,

k = 0, 1, . . . , 2N − 1, which can be expressed in terms of incomplete gamma func-

tions,

µk =

∫ 1

−1
tke−xt2 dt =





x−(k+1)/2

[
Γ

(
k + 1

2

)
− Γ

(
k + 1

2
, x

)]
, k even.

0, k odd,

Taking concrete value of N and x, as well as the working precision WP, by using
our MATHEMATICA package OrthogonalPolynomials (see [2] and [18]), with
the following commands:

<< orthogonalPolynomials‘

mom[n_, x_]: =

Table[If[k==0,Sqrt[Pi] Erf[Sqrt[x]]/Sqrt[x],

If[OddQ[k],0,xˆ(-(1+k)/2)(Gamma[(1+k)/2]

-Gamma[(1+k)/2,x])]],{k,0,2n-1}];

momNx=mom[N,x];

{alpha,beta} = aChebyshevAlgorithmModified[momNx,

WorkingPrecision -> WP];

we get the sequence of the recurrence coefficients, denoted by beta (alpha is a

zero sequence), with the maximal relative error

errN (x; WP) = max
0≤k≤N−1

∣∣∣∣
βk(x)− β̂k(x)

β̂k(x)

∣∣∣∣ .

In the previous expression the exact values of the desired recurrence coefficients are

denoted by β̂k(x) and their values can be obtained using the same procedure, but with

the higher working precision WP1 (e.g., with WP1= 2WP).

Table 1. Maximal relative errors of the recurrence coefficients βk(x), k = 1, . . . , N − 1, for

N = 10 and four values of x in two different arithmetics

WP x = 1/10 x = 1 x = 10 x = 25

MP 8.66 × 103 1.4 × 10−14 3.× 10−15 0.× 10−16

30 2.51 × 10−25 1.4 × 10−28 0.× 10−30 0.× 10−30
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Table 2. Approximative values of the condition numbers of KN

N x = 1/10 x = 1 x = 10 x = 25

10 105 102 < 10 < 10

20 1038 1015 109 105

50 10130 1081 1034 1027

100 10304 10202 10108 1074

For a small value N = 10 we get the results with the maximal relative errors errN (x; WP)
presented in Table 1. As we can see in the the standard arithmetic, the effect of loss of dights

appears for small values of x (≤ 10). In particular, it is clear from the example with WP= 30,

the losses are two and five digits when x = 1 and x = 1/10, respectively. This means

that the corresponding condition numbers of the mapping K10 for x = 1 and x = 1/10 are

approximately equal to 102 and 105, respectively. In Table 2 we present the approximative

condition numbers of the mapping KN , obtained by numerical experiments for the same

values of x, in the construction of the recurrence coefficients βk(x), k = 0, 1, . . . , N − 1,

when N = 10, 20, 50 and 100.

Table 3. Maximal relative errors of the recurrence coefficients βk(x), k = 1, . . . , N − 1, for

N = 50 and four values of x in different arithmetics

WP x = 1/10 x = 1 x = 10 x = 25

30 1.65 × 101 2.93 × 10−4

40 5.21 × 10−6 7.62 × 10−14

50 8.04 × 10−17 2.63 × 10−24

60 4.68 × 1012 4.31 × 10−26 3.52 × 10−33

70 4.50 × 106 7.58 × 10−37

80 6.78 × 10−2

90 1.22 × 10−10

100 3.01 × 10−22

110 4.28 × 1012 9.81 × 10−30

120 2.69 × 103 1.61 × 10−41

130 1.87 × 10−2

140 1.85 × 10−9

150 1.01 × 10−18

Some characteristic values of the maximal relative errors errN (x; WP) obtained for N =
50 are presented in Table 3. For example, for getting all coefficients with more than 16
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exact decimal digits (i.e., with err50(x; WP) < 10−16) we need the working precision at least

WP= 150, 100, and 50, when x = 1/10, x = 1, and x ≥ 10, respectively. When we need

coefficients for N = 100, the corresponding mapping is very sensitive, with extremely high

condition numbers (see the last row in Table 2). For example, for small values of x ≤ 1/10
we need the working precision of several hundred, which is practically difficult to implement.

Therefore, in sequel we present an efficient procedure for constructing these coefficients.

3. Transformations of polynomials and quadratures to [0, 1]

Let πk(t;x) be orthogonal polynomials defined by the recurrence relation (1.2).

According to Theorem 2.2.1 [12, p. 102], we can consider two sequences of monic poly-

nomials:

1◦ pk(z;x) := π2k(
√
z;x), k = 0, 1, . . ., which are orthogonal with respect to the weight

function

z 7→ w1(z;x) =
w(

√
z;x)√
z

=
exp(−xz)√

z
on (0, 1);

2◦ qk(z;x) := π2k+1(
√
z;x)/

√
z, k = 0, 1, . . ., which are orthogonal with respect to the

weight function

z 7→ w2(z;x) =
√
z w(

√
z;x) =

√
z exp(−xz) on (0, 1).

Using these facts, the construction of the quadratures (1.8) and (1.9) can be significantly

simplified.

These (monic) polynoimials orthogonal on (0, 1) satisfy the following three-term re-

curence relations (see Theorem 2.2.12 in [12, p. 102]),

pk+1(z;x) = (z − ak)pk(z;x)− bkpk−1(z;x), k = 0, 1, . . . , (3.1)

qk+1(z;x) = (z − ck)qk(z;x)− dkqk−1(z;x), k = 0, 1, . . . , (3.2)

with p0(z;x) = q0(z;x) = 1 and p−1(z;x) = q−1(z;x) = 0. The recursion coefficients in

(3.1) and (3.2) can be expressed as

a0 = β1, ak = β2k + β2k+1, bk = β2k−1β2k (3.3)

and

c0 = β1 + β2, ck = β2k+1 + β2k+2, dk = β2kβ2k+1, (3.4)

respectively, where βk are coefficients in the three-term recurrence relation (1.2).

Quadrature formulas (1.8) and (1.9) on (−1, 1) can be also connected with the corre-

sponding ones on the interval (0, 1) (cf. [11], [13], [19], [17]).

Let PN be a linear space of all algebraic polynomials of degree at most N . A subset of

this space with only even polynomials will be denoted by P
e
N . We consider now two different

cases, one with even N , and the second one with odd N .
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CASE N = 2n. Since the symmetric formula (1.8) is exact for all odd functions and for

f ∈ P2N−1 as a Gussian rule, in our analysis it is enough to suppose that f ∈ P
e
2N−2. Then,

(1.8) reduces to

∫ 1

0

w(t;x)f(t) dt =

n∑

k=1

A
(N)
k f(τ

(N)
k ) (f ∈ P

e
4n−2),

i.e., after a change of variables t :=
√
y, we obtain

∫ 1

0

w(
√
y;x)g(y)

dy√
y
= 2

n∑

k=1

A
(N)
k g(τ

(N)2

k ) (g ∈ P2n−1), (3.5)

where g(y) := f(
√
y). As we can see, (3.5) represents a quadrature of Gaussian type with

respect to the weight function w1(y;x) = y−1/2 exp(−xy) on (0, 1),

∫ 1

0

y−1/2e−xyg(y) dy =

n∑

k=1

B
(n)
k g(y

(n)
k ) (g ∈ P2n−1), (3.6)

and parameters of (1.8) and (3.6) are in the following relations

τ
(2n)
k =

√
y
(n)
k , A

(2n)
k =

1

2
B

(n)
k , k = 1, . . . , n. (3.7)

CASE N = 2n+ 1. Suppose again that f ∈ P
e
2N−2 and g(z) := f(

√
z). Formula (1.9)

reduces to
∫ 1

0

w(t;x)f(t) dt =
1

2
A

(N)
0 f(0) +

n∑

k=1

A
(N)
k f(τ

(N)
k ) (f ∈ P

e
4n),

i.e., ∫ 1

0

w(
√
z;x)g(z)

dz√
z
= A

(N)
0 g(0) + 2

n∑

k=1

A
(N)
k g(τ

(N)2

k ) (g ∈ P2n),

which can be interpreted as the Gauss-Radau quadrature formula

∫ 1

0

e−xzg(z)
dz√
z
= C

(n)
0 g(0) +

n∑

k=1

C
(n)
k g(z

(n)
k ) (g ∈ P2n), (3.8)

and parameters of (1.9) and (3.8) are in the following relations

τ
(2n+1)
k =

√
z
(n)
k , A

(2n+1)
0 = C

(n)
0 , A

(2n+1)
k =

1

2
C

(n)
k , k = 1, . . . , n. (3.9)

On the other side it is well-known that the nodes z
(n)
k in the Gauss-Radau quadrature

formula (3.8) are exactly zeros of the polynomial qn(z;x) =
∏n

k=1(z − z
(n)
k ), which is

orthogonal with respect to the weight function (cf. [12, p. 329])

z 7→ z
e−xz

√
z

=
√
z e−xz = w2(z;x) on (0, 1),
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and the coefficients C
(n)
k can be expressed in terms of the Christoffel numbers (weight coef-

ficients) of the corresponding Gaussian formula

∫ 1

0

w2(z;x)g(z) dz =
n∑

k=1

W
(n)
k g(z

(n)
k ) +RG

n (g) (RG
n (P2n−1) = 0), (3.10)

i.e.,

C
(n)
0 = µ0 −

n∑

k=1

C
(n)
k , C

(n)
k =

W
(n)
k

z
(n)
k

, k = 1, . . . , n, (3.11)

where

µ0 =

∫ 1

0

e−xz

√
z

dz =

√
π

x
erf (

√
x).

Note that also β0 = µ0 (see (1.3)). The nodes and the weights in (3.8) can be also obtained

by a little modification of the Golub-Welsch algorithm (see Remark 5.1.5 in [12, p. 329]).

4. A stable construction of the Rys polynomials and the corresponding

polynomials orthogonal on (0, 1)

Instead of constructing the Rys polynomials πn(t;x), i.e., the recurrence coefficients

βn = βn(x) in (1.2), in this section we construct the polynomials pk(z;x) orthogonal on

(0, 1) with respect to the weight function z 7→ e−xz/
√
z, i.e., the coefficients ak and bk in

their recurrence relation (3.1). In this manner, the influence of numerical instabilities in the

process of construction can be significantly reduced. Also, in this way, when we construct

Gaussian quadratures, the dimensions of the corresponding Jacobi matrices are halved.

In a similar way, we can also consider the case of the Gauss-Rys quadrature formula (1.7)

for odd N , i.e., (1.8) when N = 2n + 1. In that case we first construct the coefficients ck
and dk in the recurrence relation (3.2) for the polynomials qk(z;x) orthogonal on (0, 1) with

respect to the weight function z 7→ √
z e−xz , and then we construct the Gaussian formula

(3.8), i.e., (3.10). Finally, using (3.11) and (3.9) we obtain the parameters in the Gauss-Rys

quadrature formula on (−1, 1) for N = 2n+ 1.

In the sequel we consider only the case with even number of nodes in the Gauss-Rys

quadrature formula (1.7).

For constructing the recurrence coefficients in (3.1), we use the method of modified mo-

ments developed by Gautschi [4] (see also [12, pp. 160–162]). In order to have the first n
coefficients ak and bk, k = 0, 1, . . . , n − 1, in (3.1), this method needs the first 2n modi-

fied moments of the weight function w1(t;x) = t−1/2 exp(−xt) on (0, 1) with respect to a

system of polynomials {φk} (deg φk = k) chosen to be close in some sense to the desired

orthogonal polynomials {pk} = {pk(t;x)}. We suppose that the polynomials φk are also

monic and satisfy a three-term recurrence relation

φk+1(t) = (t− aMk )φk(t)− bMk φk−1(t), k = 0, 1, . . . , (4.1)

where φ−1(t) = 0 and φ0(t) = 1, with given coefficients aMk ∈ R and bMk ≥ 0.
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Since for x = 0, πn(t; 0) are monic Legendre polynomials P̂n(t) given by (1.5), the

corresponding polynomials pk(t; 0) orthogonal with respect to the weight functionw1(t; 0) =
1/

√
t on (0, 1) are

pk(t; 0) = π2k(
√
t; 0) = P̂2k(

√
t ),

and therefore we just take these polynomials as φk(t) for calculating the modified moments

µM
k =

∫ 1

0

e−xt

√
t
P̂2k(

√
t) dt, k = 0, 1, . . . , 2n− 1. (4.2)

In this case for φk(t) = P̂2k(
√
t), it is easy to see that the recurrence coefficients aMk and

bMk in (4.1) can be expressed in the form

aMk =
8k2 + 4k − 1

(4k − 1)(4k + 3)
(k ≥ 0),

bMk =
4k2(2k − 1)2

(4k − 3)(4k − 1)2(4k + 1)
(k ≥ 1)





(4.3)

and bM0 = 2.

2.1. Calculation of modified moments (4.2)

For calculating the integrals (4.2) we use the following formula
∫ a

0

xα−1e−px2

P2n+ε

(x
a

)
dx =

(−1)naα((1− α+ ε)/2)n
2((α+ ε)/2)n+1

×2F2

(
α

2
,
α+ 1

2
;
1 + α− ε

2
− n,

α+ ε

2
+ n+ 1;−a2p

)
,

which holds for ε = 0 or 1; a > 0, Reα > −ε, where Pn is the Legendre polynomial.

(We note here that there is a mistake in [24, p. 429, Eq. 9] for this formula. Namely, the

denominator is given as 2((α+ ε)/2)n).

First we take a = 1, ε = 0, n = k, x =
√
t, and then p = x, so that we get

∫ 1

0

tα/2−1e−xtP2k(
√
t) dt =

(−1)k((1 − α)/2)k
(α/2)k+1

×2F2

(
α

2
,
1 + α

2
;
1 + α

2
− k,

2 + α

2
+ k;−x

)
,

which is possible to express in terms of the MeijerG-function, defined by (cf. [1, p. 207], [23])

Gm,n
p,q

(
z

∣∣∣∣
a1, . . . , ap
b1, . . . , bq

)
≡ Gm,n

p,q

(
z

∣∣∣∣
a1, . . . , an; an+1, . . . , ap
b1, . . . , bm; bm+1, . . . , bq

)

=
1

2πi

∫

L

m∏
ν=1

Γ(bν − s)
n∏

ν=1
Γ(1− aν + s)

q∏
ν=m+1

Γ(1− bν + s)
p∏

ν=n+1
Γ(aν − s)

zs ds,
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where an empty product is interpreted as 1, and parameters aν and bν are such that no pole

of Γ(bν − s), ν = 1, . . . ,m, coincides with any pole of Γ(1 − bµ + s), µ = 1, . . . , n. Here,

m and n are such that 1 ≤ m ≤ q and 1 ≤ n ≤ p. Roughly speaking, the contour L
separates the poles of functions Γ(b1 − s), . . . , Γ(bm − s) from the poles of Γ(1 − a1 + s),
. . . , Γ(1− an + s).

Using the known relation

2F2(a1, a2; b1, b2; z) =
Γ(b1)Γ(b2)

Γ(a1)Γ(a2)
G1,2

2,3

(
−z

∣∣∣∣
1− a1, 1− a2
0, 1− b1, 1− b2

)
,

we obtain that

2F2

(
α

2
,
1 + α

2
;
1 + α

2
− k,

2 + α

2
+ k;−x

)
=

Γ
(
1+α
2 − k

)
Γ
(
2+α
2 + k

)

Γ
(
α
2

)
Γ
(
1+α
2

)

×G1,2
2,3

(
x

∣∣∣∣
1− α

2 ,
1−α
2

0, 1−α
2 + k,−α

2 − k

)
.

Since Γ(z) = (−1)k(1− z)kΓ(z − k), putting z = (1 + α)/2, we have that

(−1)k
(
1−α
2

)
k(

α
2

)
k+1

· Γ
(
1+α
2 − k

)
Γ
(
2+α
2 + k

)

Γ
(
α
2

)
Γ
(
1+α
2

) =
(−1)k

(
1−α
2

)
k(

α
2

)
k+1

·
(−1)k

(
α
2

)
k+1(

1−α
2

)
k

= 1,

so that ∫ 1

0

tα/2−1e−xtP2k(
√
t) dt = G1,2

2,3

(
x

∣∣∣∣
1− α

2 ,
1−α
2

0, 1−α
2 + k,−α

2 − k

)
.

Now, using (1.5) and letting α → 1, we find the modified moments

µM
k =

∫ 1

0

e−xt

√
t
P̂2k(

√
t) dt =

4k(
4k
2k

)G1,2
2,3

(
x

∣∣∣∣
1
2 , 0

0, k,− 1
2 − k

)
. (4.4)

After some transformations again to hypergeometric functions, (4.4) can be successively

reduced to

µM
k =

4k(
4k
2k

) · (−1)kxk

(
k + 1

2

)
k+1

1F1

(
k +

1

2
; 2k +

3

2
;−x

)

=
4k(
4k
2k

) · (−1)kxk

(
k + 1

2

)
k+1

· Γ
(
2k + 3

2

)

Γ(k + 1)Γ
(
k + 1

2

)
∫ 1

0

e−xt(1− t)ktk−1/2 dt

=
2(−1)k(4x)k

k!
(
4k
2k

)
∫ π/2

0

e−x sin2 θ cos2k+1 θ sin2k θ dθ,
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i.e.,

µM
k =

(−1)kxk

k!
(
4k
2k

) e−
x

2

∫ π

0

e
x

2
cos θ sin2k θ cos

θ

2
dθ.

Typical graphics of the integrand t 7→ gk(t;x) = exp
(
1
2x cos θ

)
sin2k θ cos(θ/2) in

the last integral are displayed in Figure 1 for k = 10 and four different values of x. As

we can see for small values of x the corresponding graphics almost coincide. This is more

pronounced for larger values of x, when k increases! For x = 1 and k = 10, 50, and 100, the

corresponding graphics are presented in log-scale in Figure 2.
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g10(t; x)
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x = 12

Figure 1. Graphics of the integrand t 7→ g10(t;x) when t ∈ (0, π) for x = 0, 1, 5,

and 12
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Figure 2. Graphics of the integrand t 7→ gk(t;x) for k = 10, 50, and 100, when

x = 1 (left) and x = 20 (right)
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Due to such a behavior of the integrand gk(t; k), for the calculation of these integrals, i.e.,

the moments µM
k , k = 0, 1, . . . , 2n − 1, we can use the standard command NIntegrate

in MATHEMATICA, with the options

Method -> "DoubleExponential" and WorkingPrecision -> WP,

where WP is a given working precision.

2.2. Calculation of the recurrence coefficients in (3.1)

For constructing the first n recurrence coefficients ak and bk in (3.1), we need the first 2n
modified moments µM

k , k = 0, 1, . . . , 2n−1. It can be realised by using our MATHEMATICA

package OrthogonalPolynomials (see [2] and [18]), with the following commands:

<< orthogonalPolynomials‘

akM = Table[(8kˆ2+4k-1)/((4k-1)(4k+3)), {k,0,2n-1}];

bkM = Table[If[k==0,2,

4kˆ2(2k-1)ˆ2/((4k-3)(4k-1)ˆ2(4k+1))], {k,0,2n-1}];

mmom = Table[(-1)ˆkxˆk/(k!Binomial[4k,2k]) Exp[-x/2]

NIntegrate[Exp[x/2Cos[t]]Cos[t/2]Sin[t]ˆ(2k),{t,0,Pi},

Method -> "DoubleExponential",WorkingPrecision->WP],

{k,0,2n-1}];

{ak,bk} = aChebyshevAlgorithmModified[mmom,akM,bkM,

WorkingPrecision -> WP];

We only should specify n and x, as well as the working precision WP. Note that akM and

bkM are sequences aMk and bMk in the recurrence relation (4.1) given before by (4.3). The

command

aChebyshevAlgorithmModified

uses the sequence of modified moments mmom and these coefficients to produce the desired

recurrence coefficients ak and bk in (3.1). They are here represented by the sequences ak

and bk, respectively.

For example, for n = 100 and x = 1 (with WP=30) we obtain the first 100 recurrence

coefficients ak and bk, and the possibility to construct all Gauss-Rys quadratures up to 200
nodes. The complete procedure is very fast and stable (without loss of digits when x ≤ 12).

In the following, we list only first 40 coefficients with 28 decimal digits to save space.

Table 4. Recursion coefficients ak and bk, k = 0, 1, . . . , 39

k a_k b_k

0 0.2537041018036844625448723502 1.493648265624854050798934872

1 0.5373792317818343311648092673 0.06989448323719686660104213655
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2 0.5088543648049328195634540884 0.06694382463799212381759026850

3 0.5036185148731710539788182965 0.06384344918407713819293132109

4 0.5019938745601716425781061287 0.06315771549572163306561540561

5 0.5012656627209235306473558249 0.06289254381739260626916099460

6 0.5008753158401925754549764940 0.06276115121869348028052812923

7 0.5006415682912696352751969035 0.06268634753552187728219414176

8 0.5004904718869574858158601393 0.06263968213910593870857628629

9 0.5003871490265604407851901113 0.06260860467233826984741009414

10 0.5003133726497349718074610940 0.06258686458749663281381151355

11 0.5002588545340593903088835729 0.06257106035878361474655518637

12 0.5002174270517368961811931015 0.06255921066480815364035270788

13 0.5001852090986065491711008022 0.06255009742694455183111123831

14 0.5001596588862207782534635288 0.06254293813278381593606145390

15 0.5001390550436568693406917443 0.06253721136744076383625294430

16 0.5001221980760642391681209412 0.06253255879155858104318214511

17 0.5001082313347465218295666685 0.06252872753165050303015477962

18 0.5000965297722278505043622335 0.06252553499738454498490722366

19 0.5000866286528169614989982763 0.06252284667221131030622012411

20 0.5000781766168331283084794887 0.06252056168303926876952691533

21 0.5000709040320487398630938425 0.06251860318309014830357460457

22 0.5000646011945407899960674218 0.06251691179645254333420002898

23 0.5000591030247169864513378391 0.06251544105874081347798226923

24 0.5000542781369633600894004167 0.06251415418813184034409833247

25 0.5000500209104141991035355211 0.06251302176085563285086578656

26 0.5000462456546238935119933008 0.06251202001272816347760236945

27 0.5000428822605836199577684018 0.06251112958116198719038805349

28 0.5000398729200645720857349801 0.06251033456176085409705116290

29 0.5000371696235229776390103657 0.06250962179268973266527057242

30 0.5000347322323230509680165001 0.06250898030606311449573911216

31 0.5000325269793995347360217329 0.06250840090323910365269549261

32 0.5000305252928848649500338886 0.06250787582303561092076674024

33 0.5000287028655665404708471727 0.06250739848033725476554897325

34 0.5000270389131648663352815581 0.06250696325852718235169109127

35 0.5000255155788761115694622876 0.06250656534343873082084005862

36 0.5000241174521202341639647843 0.06250620058959874169085056054

37 0.5000228311771276721583432508 0.06250586541177945640590628453

38 0.5000216451326960352255092237 0.06250555669653009465893098529

39 0.5000205491687016109415823566 0.06250527172958916235080934420

Now, we will analyze the obtained numerical results in our example when n = 100 and

the parameter x runs over [0, 25]

Let âk and b̂k, k = 0, 1, . . . , n− 1, be exact values of the desired recurrence coefficients

in (3.1), and ak and bk, k = 0, 1, . . . , n − 1, be their numerical values obtained using our

procedure with the working precision WP.

With errn(WP) we denote the maximal relative error in the recurrence coefficients ak
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and bk, k = 0, 1, . . . , n− 1,

errn(WP) = max
0≤k≤n−1

{∣∣∣∣
ak − âk

âk

∣∣∣∣,
∣∣∣∣
bk − b̂k

b̂k

∣∣∣∣

}
.

Notice that for calculating this maximal relative error in recursive coefficients we need the

exact coefficients âk and b̂k, whose values can be well approximated with ones obtained by

some better precision WP1 (>WP). In our example (n = 100) we take WP1= 2WP.

Using two different arithmetics, WP= 30 and the standard double precision arithmetic

(WP=MP), we obtain the maximal relative errors of the recurrence coefficients errn(WP) for

x = 13, 15, 20, and 25, which are given in Table 5.

Table 5. Maximal relative errors of the recurrence coefficients errn(WP) for four values of

x in two different arithmetics

WP x = 13 x = 15 x = 20 x = 25

30 1.× 10−29 1.20 × 10−28 4.72 × 10−26 4.84 × 10−24

MP 7.× 10−15 2.60 × 10−13 7.14 × 10−11 3.43 × 10−9

As we can see from Table 5, for x = 13, 15, 20 and 25 we lose about one, two, four and

six decimal digits, respectively, but for x ≤ 12, as we mentioned before, the loss of digits

does not exist. Thus, in general, the accuracy of the obtained results (here, the recursion

coefficients ak and bk) depends on the working precision, but also on the condition number

of the mapping in the method of construction.

In our example, the method for x ≤ 12 is well-conditioned, because its condition number

is near 1. But, for larger x this condition number increases exponentially like 10m (for

example, for x = 25 it is about 106, i.e., m = 6). Roughly speaking, if we need the accuracy

of ℓ decimal digits in the recurrence coefficients ak and bk for each k < n, then we must use

WP= ℓ+m (cf. [16]).

2.3. Recursion coefficients ak and bk as functions of x

The procedure for calculating recurrence coefficients given in the previous subsection is

very fast, so that for a given n and a finite set X of some selected values of x in an interval,

we can calculate the recurrence coefficients ak = ak(x) and bk = bk(x), k = 0, 1, . . . , n−1,

for each x ∈ X .

Following Shizgal [28], we take

X =
{
xν =

ν

10

∣∣∣ ν = 0, 1, . . . , 250
}
.

After finding ak(xν) and bk(xν), k = 0, 1, . . . , n − 1, for each point x = xν , we use these

values to construct the corresponding interpolating functions for each of these coefficients, in
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notations ãk(x) and b̃k(x), which can be realized very easy in MATHEMATICA. In the sequel,

these interpolating functions will be denoted simply without the tilda-symbol.
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Figure 3. The coefficients x 7→ ak(x) for 0 ≤ k ≤ 7

0 5 10 15 20 25
x

0.500

0.502

0.504

0.506

ak(x)

k = 8

k = 9

k = 10

k = 11

k = 12

k = 13

Figure 4. The coefficients x 7→ ak(x) for 8 ≤ k ≤ 13

Graphics of the coefficientsx 7→ ak(x) in the recurrence relation (3.1) for k = 0, 1, . . . , 7
are presented in Figure 3, and in Figure 4 ones for k = 8, . . . , 13.
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Similarly, graphics of x 7→ bk(x) on [0, 25] are presented in Figures 5 and 6.
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Figure 5. The coefficients bk(x) for 1 ≤ k ≤ 7
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Figure 6. The coefficients x 7→ bk(x) for 8 ≤ k ≤ 13
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2.4. Recursion coefficients βk(x) in (1.2)

The coefficients βk(x) in the recurrence relation (1.2) can be obtained very easy by the

coefficients ak(x) and bk(x), thanks to the relation (3.3). Namely,

β0(x) =

√
π

x
erf (

√
x), β1(x) = a0(x),

β2k(x) =
bk(x)

β2k−1(x)
, β2k+1(x) = ak(x) − β2k(x), k = 1, 2, . . . .

Graphics of the coefficients x 7→ βk(x), k = 1, . . . , 12, are displayed in Figure 7.
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Figure 7. The coefficients x 7→ βk(x) for 1 ≤ k ≤ 12

In Figure 8 we present in details the graphics of these coefficients x 7→ βk(x), k =
1, . . . , 12, from where we see their behavior.

In some cases, by using our MATHEMATICA package OrthogonalPolynomialswe

can also obtain the recurrence coefficients in symbolic form, taking the option Algorithm

->Symbolic in the command aChebyshevAlgorithm. Often, however, the obtained

expressions for higher k become very complicated and useless. For example, taking N = 7
and replacing the last two lines in the MATHEMATICA côde in Section 2 by

momNx=mom[7,x];

{alpha,beta}=aChebyshevAlgorithm[momNx,Algorithm->Symbolic]

we obtain the expressions for the coefficients βk(x), k = 0, 1, . . . , 6.
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The first four of them are

β0(x) =

√
π erf (

√
x)√

x
, β1(x) =

√
π − 2Γ

(
3
2 , x
)

2
√
π x erf (

√
x)

,

β2(x) =
erf (

√
x)
[
3π − 4

√
π Γ
(
5
2 , x
)]

−
[√

π − 2Γ
(
3
2 , x
)]2

2
√
π x erf (

√
x)
[√

π − 2Γ
(
3
2 , x
)] ,

β3(x) =

√
π erf (

√
x)
{
3π − 15

√
π Γ
(
3
2 , x
)
+ 4

[
3
√
π − 2Γ

(
5
2 , x
)]

Γ
(
5
2 , x
)
−G(x)

}

x
[√

π − 2Γ
(
3
2 , x
)]{

erf (
√
x)
[
3π − 4

√
πΓ
(
5
2 , x
)]

−
[√

π − 2Γ
(
3
2 , x
)]2} ,

where G(x) = 4
[√

π − 2Γ
(
3
2 , x
)]

Γ
(
7
2 , x
)
, but expressions for β4(x), β5(x), and β6(x) are

very complicated.
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Figure 8. The coefficients x 7→ βk(x) for 1 ≤ k ≤ 12

The obtained coefficients in this symbolic form are not stable for numerical calculations

for small values of x, because their numerators and denominators tend to zero when x → 0.

However, the behavior of x 7→ βk(x) near the origin can be seen from the following series

expansions:

β0(x) = 2− 2x

3
+

x2

5
− x3

21
+

x4

108
− x5

660
+O

(
x6
)
,

β1(x) =
1

3
− 4x

45
+

8x2

945
+

16x3

14175
− 32x4

93555
− 1472x5

638512875
+O

(
x6
)
,
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β2(x) =
4

15
+

32x

1575
− 272x2

23625
− 10496x3

27286875
+

2283968x4

5320940625

− 4322816x5

558698765625
+O

(
x6
)
,

β3(x) =
9

35
+

4x

1225
+

3512x2

1414875
− 211408x3

214589375
− 2614112x4

67595653125

+
20139796928x5

1327240649109375
+O

(
x6
)
,

β4(x) =
16

63
+

256x

218295
+

61888x2

178783605
+

125433856x3

619485191325
− 8360266496x4

132693727981815

− 1485336470843392x5

567832952809381384125
+O

(
x6
)
,

β5(x) =
25

99
+

500x

891891
+

9640x2

88297209
+

344399920x3

13522982449977
+

315524646176x4

25436729988406737

− 737067432518720x5

229159500465556293633
+O

(
x6
)
,

β6(x) =
36

143
+

32x

102245
+

242576x2

5219709495
+

171547392x3

23636584496525
+

8755594304x4

6084056849405535

+
108699755410385408x5

178593382075926131188875
+O

(
x6
)
,

Note that the free terms in these expansions are, in fact, the recurrence coefficients for the

monic Legendre polynomials, βk = k2/(4k2 − 1), k ≥ 1 (see (1.4)).

Remark 4.1. From Figures 7 and 8 we can observe that the recurrence coefficients βk(x)
converge to the constant limit value 1/4 as k → ∞, which is in agreement with (1.6).

2.4. Construction of the Gaussian quadrature (3.6)

The obtained coefficients ak and bk, k = 0, 1, . . . , n − 1, in (3.1) enable us to simply

construct the parameters in the Gaussian formula (3.6) for each number of nodes less or equal

to n (in our example n = 100).

It is well known that the nodes yk = y
(n)
k = y

(n)
k (x), k = 1, . . . , n, in the Gaussian

formula (3.6), i.e.,

∫ 1

0

e−xy

√
y
g(y) dy =

n∑

k=1

B
(n)
k g(y

(n)
k ) (g ∈ P2n−1),

are eigenvalues of the symmetric tridiagonal Jacobi matrix, of order n associated with the
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weight function y 7→ w1(y;x),

Jn(w1( · ;x)) =




a0(x)
√
b1(x) O√

b1(x) a1(x)
√
b2(x)

√
b2(x) a2(x)

. . .

. . .
. . .

√
bn−1(x)

O
√
bn−1(x) an−1(x)




, (4.5)

and the weight coefficients (Christoffel numbers) Bk = B
(n)
k = B

(n)
k (x), k = 1, . . . , n, are

given by Bk = b0(x)v
2
k,1, k = 1, . . . , n, where vk,1 is the first component of the normalized

eigenvector vk (= [vk,1 . . . vk,n]
T) corresponding to the eigenvalue yk, Jn(w1( · ;x))vk =

ykvk , where vT
k vk = 1, k = 1, . . . , n.

0 5 10 15 20 25
x0.0

0.2

0.4

0.6

0.8

1.0

τk(x)

k = 1

k = 2

k = 3

k = 4

k = 5

k = 6

k = 7

k = 8

k = 9

k = 10

Figure 9. Positive nodes x 7→ τk(x), 0 ≤ x ≤ 25, of the 20-point Gauss-Rys quadrature

This eigenvalue problem can be easily solved by the Golub-Welsch procedure [8], which

is implemented in several packages including Gautschi’s SOPQ in MATLAB and our MATH-

EMATICA package OrthogonalPolynomials.

Thus, in our example, we can calculate Gaussian parameters (nodes and weights) for

each n (≤ 100), using our MATHEMATICA packageOrthogonalPolynomials, with the

command aGaussianNodesWeights. Then the parameters in the Gauss-Rys quadrature

formula (1.7) for even N = 2n, i.e.,

∫ 1

−1

w(t;x)f(t) dt =

n∑

k=1

Ak(x) [f(τk(x)) + f(−τk(x))] +R2n(f), (4.6)
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are given by

τk(x) = τ
(2n)
k (x) =

√
y
(n)
k (x), Ak(x) = A

(2n)
k (x) =

1

2
B

(n)
k (x), k = 1, . . . , n.

In this way, following our example from Subsection 2.2, we are able to construct the

Gauss-Rys quadrature formulas (4.6), with even number of nodes up to 2n ≤ 200.

5 10 15 20 25
x10-11

10-9

10-7

10-5

0.001

0.100

Ak(x)

k = 1

k = 2

k = 3

k = 4

k = 5

k = 6

k = 7

k = 8

k = 9

k = 10

Figure 10. The weights x 7→ Ak(x), 0 ≤ x ≤ 25, of the 20-point Gauss-Rys quadrature

The nodes τk(x) and Ak(x) for the 20-point Gauss-Rys quadrature formulas are pre-

sented in Figures 9 and 10, respectively. Graphics of the weights are given in the log-scale.

The Gauss-Rys quadratures for odd nodes (N = 2n+ 1) can be obtaineded in a similar

way, constructing the polynomials qk(z;x) := π2k+1(
√
z;x)/

√
z, k = 0, 1, . . ., which are

orthogonal on (0, 1) with respect to the weight function z 7→ w2(z;x) =
√
z exp(−xz), and

the corresponding Gauss-Radau quadratures on (0, 1).
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