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A b s t r a c t. We consider the symmetric traveling salesman problem (TSP) with in-
stances represented by complete graphs with distances between cities as edge weights. Com-
putational experiments with randomly generated instances on 50 and 100 vertices with the
uniform distribution of integer edge weights in interval [1, 100] show that there exists a cor-
relation between the sequences of the spectral radii of the distance matrices and the lengths
of optimal tours obtained by the well known TSP solver Concorde. In this paper we give a
partial theoretical explanation of this correlation.

AMS Mathematics Subject Classification (2000):
Key Words: Traveling salesman problem, Spectra of graphs, Spectral radius, Concorde

TSP solver.

1. Introduction

The traveling salesman problem (TSP) is one of the best-known NP-hard com-
binatorial optimization problems. There is an extensive literature on both theoretical
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and practical aspects of the TSP (see e.g. Lawler et al. [12], Gutin and Punnen [10],
Applegate et al. [1]). The symmetric traveling salesman problem, which will be con-
sidered in this paper, consists of finding a Hamiltonian cycle of the minimal length in
a weighted complete undirected graph without loops.

Computational experiments with instances on 50 and 100 vertices with the uni-
form distribution of integer edge weights in interval [1, 100] show that there exists a
correlation between the sequences of spectral radii of distance matrices and lengths
of optimal tours obtained by the well known TSP solver Concorde. In this paper we
give a partial theoretical explanation of this correlation.

Let λ1, . . . ,λn be eigenvalues of the distance matrix D. The k-th spectral mo-
ment Mk of D is defined by the expression Mk = λk

1 + · · ·+ λk
n.

In paper [4] we have extended our previous work on estimating the length of an
optimal solution of the TSP using spectral moments of the weight matrix [5]. Namely,
in some numerical experiments with TSP instances with up to 14 vertices which were
carried out in 1987, it has been noted that there exists a strong correlation between
spectral moments M3,M4,M5 and M6 of the distance matrix and the length of an
optimal solution of the TSP with values of correlation coefficients between 0.8 and
0.9 [2]. A partial theoretical explanation of these empirical results has been given in
[5]. New numerical experiments which will be reported in this paper are related to
TSP problems with 50 and 100 vertices.

For numerical experiments we use the software package Concorde TSP Solver,
a program for solving the symmetric traveling salesman problem. It was written by
David Applegate, Robert E. Bixby, Vašek Chvátal, and William J. Cook, in ANSI
C, and is freely available for academic use [1]. Concorde is widely regarded as the
fastest TSP solver currently in existence.

In this paper we use the same TSP instances as in [3] and [4]. For dimension
n = 50 we have generated randomly two sets S(1) and S(2), each consisting of
hundred TSP instances with integer weights uniformly distributed in interval [1, 100].
The second set is used in our experiments as a control set. We considered also sets
S(3) and S(4) each with hundred instances of dimension n = 100.

The Frobenius norm of a square matrix is the square root of the sum of squares of
all entries of the matrix. When dividing a matrix by its Frobenius norm, the sum of
squares of all entries becomes equal to 1. We shall say that the matrix transformed in
this way is normalized and we shall assume that the matrices of the considered TSP
instances are normalized. In normalized matrices we have M0 = n (as in all matrices
of order n), M1 = 0 (as in all matrices with zero trace) and M2 = 1 and this fact was
the reason to use normalization.

A matrix is called non-negative (positive) if all its entries are non-negative (pos-
itive). The distance matrix D is a symmetric non-negative matrix. The Perron-
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Frobenius theory of non-negative matrices can be applied to matrix D similarly as
it is applied to the theory of graph spectra [9].

Eigenvalues λ1, ...,λn of D are reals. The largest eigenvalue λ1 is called the
spectral radius or the index of D. The whole spectrum lies in the interval (−λ1,λ1].
(In the theory of graph spectra eigenvalue −λ1 appears only in the case when a com-
ponent with the largest eigenvalue of the underlying graph of the considered matrix
is bipartite, [9], p. 87).

Let S1, S2, . . . , Sn be row sums of matrix D. These row sums play the role
of vertex degrees in the corresponding weighted graph. Let S, Smin, Smax be the
average, the minimal and the maximal of these row sums, respectively. By the Perron-
Frobenius theory we have (cf. [9], p. 85)

Smin ≤ S ≤ λ1 ≤ Smax. (1)

We have used standard tools from mathematical statistics which are appropriate
when studying hidden complex connections between apparently non-related quanti-
ties. In particular, we use the following correlation coefficients.

The coefficient of linear correlation between two sequences of length s is defined
by

CBC =
1

√
νBνC

s

i=1

(bi −mB)(ci −mC),

where bi, ci,mB,mC , νB, νC are values, mean values and variances of the corre-
sponding sequences B and C, respectively.

The Spearman correlation coefficient SBC is defined as the linear correlation
coefficient between the ranked variables. For each bi, ci their ranks rgbi, rgci are
determined and we have

SBC =
1

√
νrgBνrgC

s

i=1

(rgbi −mrgB )(rgci −mrgC ),

where rgB = (rgbi) and rgC = (rgci).
The rest of the paper is organized as follows. Section 2 presents numerical results

of computer experiments. In Section 3 we show that instead of spectral moments it
is sufficient to consider just the spectral radius. In Section 4 we present several facts
showing that spectral graph theory is relevant in considering the TSP. Using previ-
ously presented results we show in Section 5 that the average length of Hamiltonian
cycles is also relevant. Section 6 contains concluding remarks.
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2. Summary of numerical results

The original strong correlation between spectral moments and the length of an op-
timal tour (noted in [2] and [5]) looked very promising for estimation of the later. This
was a motivation to undertake numerical experiments [4] with instances of higher di-
mension.

We have computed the linear correlation coefficient between spectral moments
Mk and the length of an optimal tour d for the sets of instances S(1) and S(2) for k
= 3, 4, 5, 10, 30, 35, 40, 45, 50 and for sets S(3) and S(4) for k = 3, 4, 5, 10, 30, 35,
40, 45, 50, 60, 70, 80, 90, 100. The values of the linear correlation coefficient vary
between 0.4154 and 0.5201 and are given in a table in [4].

The values are almost constant for all considered values of k within a set of
instances and vary to some extent between the sets.

Correlation coefficients have gone down to a value of about 0.5 when compared
to old results in [2] and [5] for instances with up to 14 vertices.

With this moderate correlation it is not reasonable to estimate the length of an
optimal tour by spectral moments since standard techniques provide good results
(solving relaxation tasks for lower bounds and applying heuristics for upper bounds).
Nevertheless, it is challenging to explain the obtained computational results.

We shall explain these data first by analyzing the value domains of several rele-
vant quantities of considered TSP instances:

The Frobenius norm of the non-normalized distance matrix varies
for set S(1) in interval [2800.4775, 2950.9178],
for set S(2) in interval [2773.2238, 2955.8643],
for set S(3) in interval [5685.1920, 5863.9294],
for set S(4) in interval [5699.4554, 5886.6838].

Other data are related to normalized matrices.

The length d of an optimal tour varies
for set S(1) in interval [0.0583, 0.0957],
for set S(2) in interval [0.0600, 0.1031],
for set S(3) in interval [0.0377, 0.0531],
for set S(4) in interval [0.0352, 0.0540].

The largest eigenvalue λ1 varies
for set S(1) in interval [0.8506, 0.8745],
for set S(2) in interval [0.8567, 0.8722],
for set S(3) in interval [0.8610, 0.8714],
for set S(4) in interval [0.8618, 0.8716].
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Let µ be the maximal modulus of other eigenvalues. We have µ < λ1 and the
quantity µ varies

for set S(1) in interval [0.1334, 0.1673],
for set S(2) in interval [0.1339, 0.1608],
for set S(3) in interval [0.0986, 0.1104],
for set S(4) in interval [0.0969, 0.1129].

The sum T of the weights of an instance (the sum of entries in the, say, upper
triangle in the normalized weight matrix) varies

for set S(1) in interval [21.1575, 21.7300],
for set S(2) in interval [21.2742, 21.6681],
for set S(3) in interval [42.9270, 43.4221],
for set S(4) in interval [42.9459, 43.4452].

We see that Frobenius norms are very big. Because of normalization of all dis-
tance matrices, optimal tour lengths, eigenvalues and quantities T are very small.

3. From moments to spectral radius

Having in view the intervals of variation of eigenvalue λ1 and of the quantity
µ from Section 2, the term λk

1 is dominant in the expression for spectral moments
Mk = λk

1 + · · · + λk
n in all considered TSP instances. Actually, this means that we

can assume Mk ≈ λk
1 already for very small values of k (say k ≥ 3).

There are several results in the literature (see, for example, [8], section 3.7. Spec-
tra of Random Graphs, [13], Appendix B: Eigenvalues of Random Graphs) that in
random symmetric matrices with identical probability distribution for entries in the
upper triangle the second largest eigenvalue should be small, which explains why in
our matrices λ1 is much greater than µ.

The fact that the correlation coefficient between Mk and the length of an optimal
tour is independent of k is explained by a very small interval to which λ1 belongs.

We see that really important parameter is the largest eigenvalue λ1. It is well-
known that the largest eigenvalue (also known as the spectral radius) plays an im-
portant role in the theory of graph spectra [9],[14]. It was the purpose of the paper
[4] to establish that the spectral radius is also relevant in the theory of the traveling
salesman problem.

Therefore in [4] we have computed linear correlation coefficients KK and Spear-
man correlation coefficients SKK between λ1 and optimal tour lengths:

for set S(1): KK= 0.5197, SKK= 0.5504,
for set S(2): KK= 0.4157, SKK= 0.3689,
for set S(3): KK= 0.4190, SKK= 0.3907,
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for set S(4): KK= 0.4902, SKK= 0.4563.

The values are again around 0.5 just as for spectral moments.

4. Using the theory of graph spectra

The theory of graph spectra [9] was appearing sporadically in treating the travel-
ing salesman problem (see, for example, [6], [7]). Very interesting observations are
described in an unpublished doctoral dissertation [11] by O. Halskau.

In this section we shall show, using several facts from the theory of graph spectra,
that the spectral radius λ1 of the distance matrix is approximately equal to the average
length of Hamiltonian cycles for the considered TSP instance.

Consider an undirected regular graph of degree r with n vertices. The number
Nk of walks of length k in this graph is Nk = nrk. For a complete graph Kn we
have Nk = n(n − 1)k. Since the spectrum of Kn consists of a simple eigenvalue
n− 1 and of the eigenvalue −1 of the multiplicity n− 1, for the spectral moment we
get Mk = (n− 1)k + (n− 1)(−1)k.

In an undirected weighted graph the weight of a walk by definition is equal to the
product of weights of edges of which the walk consists. Let D = ||dij ||n1 any square
symmetric matrix and let Dk = ||d(k)ij ||n1 . By a well-known result (see, for example,

[9], p. 44) the quantity d
(k)
ij is equal to the sum of weights of all walks of length k

starting at vertex i and terminating in vertex j. It follows that the spectral moment
Mk, being equal to the trace of Dk, is equal to the sum of weights of all closed walks
of length k.

Let now D = ||dij ||n1 be the normalized weight matrix representing a TSP in-
stance with largest eigenvalue λ1. Consider an auxiliary weighted graph with the
weight matrix D∗ = ||λ1/(n − 1)||n1 with zeros on the diagonal and off diagonal
entries λ1/(n− 1). Since the weight of any edge is equal to λ1/(n− 1), the weight
of any walk of length k is equal to (λ1/(n− 1))k.

As already established we have Mk ≈ λk
1 for matrix D.

The k-th spectral moment for matrix D∗ can be calculated and for sufficiently
large n estimated as

Mk = ((n− 1)k + (n− 1)(−1)k)(λ1/(n− 1))k

= λk
1 + (−1)k(λ1/(n− 1))k(n− 1)

≈ λk
1.

On the basis of this estimation we could consider, for the moment, the weighted
graph with the weight matrix D∗ instead of the original weighted graph. Since matri-
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ces D and D∗ assimptotically have equal spectral moments, we can expect that other
quantities for these matrices behave similarly.

The length of any Hamiltonian cycle for D∗ is nλ1/(n−1) and this is at the same
time the average length of all Hamiltonian cycles w.r.t. matrix D∗.

Since for sufficiently large n we have nλ1/(n−1) ≈ λ1, we arrive at the conclu-
sion that one should expect a correlation between the average length of Hamiltonian
cycles and the length of an optimal tour w.r.t. original matrix D.

This will be confirmed in another way and computationally verified in the next
section.

O. Halskau has used in [11] the spectral decomposition of the weight matrix to
derive several bounds for relevant quantities. For example, it is proved that the sum
E = |λ1| + |λ2| + · · · + |λn| is an upper bound for the length of any Hamiltonian
cycle ([11], p.90). (Recall that the first term reflects the average length of Hamiltonian
cycles.) Quantity E is known as the energy of a graph (or matrix) (see, for example,
[9], p. 237, where it is considered in the context of the adjacency matrix of a graph
and in this case is relevant in Chemistry).

5. Average length of hamiltonian cycles

The average length of Hamiltonian cycles in a TSP instance will be computed
exactly in another way in this section.

Let D = ||dij ||n1 be a normalized weight matrix representing a TSP instance. For
any i, j (i < j) the edge with the weight dij belongs to (n− 2)! Hamiltonian cycles.
The number of Hamiltonian cycles is equal to 1

2(n− 1)!. Let dh be the length of the
Hamiltonian cycle h. Then the average length dh of Hamiltonian cycles is equal to

dh =
2

(n− 1)!



h

dh =
2

(n− 1)!



i<j

dij(n− 2)! =
2

n− 1



i<j

dij =
2

n− 1
T.

For the average value S of row sums of matrix D we obviously have

S =
2T

n
.

Example 5.1. Considering the first instance in the set S(1) we find in computed
data λ1 = 0.862, d = 0.0788, T = 21.4029. Now we obtain S = 0.856 and
dh = 0.8735. It is interesting that nλ1/n − 1 = 50

49 × 0.862 = 0.8796, thus quite
close to dh.

By formula (1) we see that λ1 is close to S and because S is proportional to
T we have computed linear correlation coefficients KK and Spearman correlation
coefficients SKK between T and optimal tour lengths:
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S(1): KK= 0.5362, SKK= 0.5382;
S(2): KK= 0.4113, SKK= 0.3576;
S(3): KK= 0.4051, SKK= 0.3862;
S(4): KK= 0.4632, SKK= 0.4390.

Hence we see that there exists a notable correlation between the average length
of Hamiltonian cycles and the length of an optimal tour.

6. Conclusions

It started with an intriguing observation from 1987 that the correlation coefficient
between the length of an optimal tour and spectral moments for TSP instances up to
14 vertices lays between 0.8 and 0.9. Recent experiments with instances on 50 and
100 vertices have reduced this value to about 0.5. Hence, there exists a moderate,
but for our purpose significant correlation between sequences of spectral moments
and sequences of the optimal tour lengths. More precisely, in spite of obtaining a
moderate correlation, the discovery that such apparently quite disconnected quantities
are in some connection, is significant.

Since in distance matrices, generated randomly in the described way, the largest
eigenvalue is much greater than the moduli of other eigenvalues, it turns out that it
is sufficient to consider just the largest eigenvalue instead of the spectral moment.
Hence, the spectral radius and the length of an optimal tour are in correlation also
with a correlation coefficient of about 0.5.

Using several facts from the theory of graph spectra, we found a close relation
between the largest eigenvalue and the average length of all Hamiltonian cycles in a
TSP instance. In this way we established a notable correlation between the average
length of Hamiltonian cycles and the length of an optimal tour. At the moment we do
not see a direct (without using spectral graph theory) explanation of this fact.
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