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A b s t r a c t. The main aim of this paper is to investigate approximation and conver-
gence of degenerate (a, k)-regularizedC-resolvent families in locally convex spaces. We con-
tinue our previous research of non-degenerate case [Numer. Funct. Anal. Appl. 35 (2014),
1579−1606], following the multivalued linear operators approach to abstract degenerate dif-
ferential equations. We also consider Laguerre expansions of degenerate (a, k)-regularized
C-resolvent families.
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1. Introduction and preliminaries

As mentioned in the abstract, the main aim of this paper is to prove some Trotter-
Kato-type formulae for degenerate (a, k)-regularized C-resolvent families in locally
convex spaces (cf. [4], [6]–[7], [9], [18] and [21]–[22] for the basic references on

∗ This research was supported by grant 174024 of Ministry of Science and Technological Devel-
opment, Republic of Serbia.



70 M. Kostić

approximation of abstract degenerate differential equations), as well as to investi-
gate the Laguerre expansions of degenerate (a, k)-regularized C-resolvent families
(cf. [1] for the study of Laguerre expansions of non-degenerate strongly continuous
semigroups in Banach spaces). In the second section of paper, we repeat some known
facts and definitions from the theory of multivalued linear operators and remind our-
selves of the notion of an (a, k)-regularized C-resolvent family subgenerated by a
multivalued linear operator ([15]). In the third section of paper, we reconsider our
previously established results from [12] in this new setting (the proofs of our struc-
tural results are very similar to those of [12] and therefore omitted), while in the
fourth section of paper we take up the study of Laguerre expansions of degenerate
(a, k)-regularized C-resolvent families.

We use the standard notation throughout the paper. By E we denote a Hausdorff
sequentially complete locally convex space, SCLCS for short; the abbreviation ~
stands for the fundamental system of seminorms which defines the topology of E.
Unless stated otherwise, the seminorms belonging ~ will be denoted by p, q, r, . . ..
By L(E) we denote the space of all continuous linear mappings from E into E.
Let B be the family of bounded subsets of E and let pB(T ) := supx∈B p(Tx),
p ∈ ~, B ∈ B, T ∈ L(E). Then pB(·) is a seminorm on L(E) and the system
(pB)(p,B)∈~×B induces the Hausdorff locally convex topology on L(E). Recall that
L(E) is sequentially complete provided that E is barreled. Henceforth A denotes a
closed single-valued linear operator acting on E and C ∈ L(E) denotes an injective
operator which satisfiesCA ⊆ AC. The domain and range ofA are denoted byD(A)
and R(A), respectively. If (Al)l∈N0 (((Rl(t))t≥0)l∈N0) is a sequence of closed linear
operators on E (strongly continuous operator families in L(E)), then we also write
A ((R(t))t≥0) in place of A0 ((R0(t))t≥0). We refer the reader to [10] for the basic
material concerning integration in SCLCSs and vector-valued analytic functions.

The Gamma function is denoted by Γ(·) and the principal branch is always used
to take the powers. The convolution like mapping ∗ is given by

f ∗ g(t) :=

∫ t

0
f(t− s)g(s) ds.

Set 0α := 0 and gα(t) := tα−1/Γ(α) (α > 0, t > 0). For every n ∈ N, put
Nn := {1, . . . , n}.

We use repeatedly the following condition for the function k(t):

(P1) k(t) is Laplace transformable, i.e., it is locally integrable on [0,∞) and there
exists β ∈ R so that

k̃(λ) = L(k)(λ) := lim
b→∞

∫ b

0
e−λtk(t) dt :=

∫ ∞
0

e−λtk(t) dt
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exists for all λ ∈ C with Reλ > β. Put abs(k) := inf{Reλ : k̃(λ) exists}.

For more details about the Laplace transform of functions with values in Banach
and sequentially complete locally convex spaces, the reader may consult [3], [10] and
[15].

2. Multivalued linear operators in locally convex spaces

In this section, we will present some necessary definitions from the theory of
multivalued linear operators. For more details about this topic, we refer the reader to
the monographs by R. Cross [8] and A. Favini-A. Yagi [9].

A multivalued map A : E → P (E) is said to be a multivalued linear operator
(MLO) in E, (MLO) for short, iff the following holds:

(i) D(A) := {x ∈ E : Ax 6= ∅} is a linear subspace of E;

(ii) Ax+Ay ⊆ A(x+ y), x, y ∈ D(A) and λAx ⊆ A(λx), λ ∈ C, x ∈ D(A).

It is well known that λAx + ηAy = A(λx + ηy) holds for every x, y ∈ D(A)
and for every λ, η ∈ C with |λ| + |η| 6= 0. If A is an MLO, then A0 is a linear
manifold in E and Ax = f +A0 for any x ∈ D(A) and f ∈ Ax. Define R(A) :=
{Ax : x ∈ D(A)}. Then the set N(A) := A−10 = {x ∈ D(A) : 0 ∈ Ax} is called
the kernel of A. The inverse A−1 of an MLO is defined by D(A−1) := R(A) and
A−1y := {x ∈ D(A) : y ∈ Ax}. It can be easily seen that A−1 is an MLO in E, as
well as thatN(A−1) = A0 and (A−1)−1 = A. IfN(A) = {0}, i.e., ifA−1 is single-
valued, then A is said to be injective. If A, B : E → P (E) are two MLOs, then we
define its sum A+ B by D(A+ B) := D(A) ∩D(B) and (A+ B)x := Ax+ Bx,
x ∈ D(A + B). It is clear that A + B is likewise an MLO. We write A ⊆ B iff
D(A) ⊆ D(B) and Ax ⊆ Bx for all x ∈ D(A).

Let A : E → P (E) and B : E → P (E) be two MLOs. The product of A
and B is defined by D(BA) := {x ∈ D(A) : D(B) ∩ Ax 6= ∅} and BAx :=
B(D(B) ∩ Ax). Then BA : E → P (E) is an MLO and (BA)−1 = A−1B−1. The
scalar multiplication of an MLO A : E → P (E) with the number z ∈ C, zA for
short, is defined by D(zA) := D(A) and (zA)(x) := zAx, x ∈ D(A). It is clear
that zA : E → P (E) is an MLO and (ωz)A = ω(zA) = z(ωA), z, ω ∈ C.

The integer powers of an MLO A : E → P (E) are defined recursively as fol-
lows: A0 =: I; if An−1 is defined, set

D(An) :=
{
x ∈ D(An−1) : D(A) ∩ An−1x 6= ∅

}
,

and
Anx :=

(
AAn−1

)
x =

⋃
y∈D(A)∩An−1x

Ay, x ∈ D(An).
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We say that an MLO A : E → P (E) is closed iff for any nets (xτ ) in D(A) and
(yτ ) inE such that yτ ∈ Axτ for all τ ∈ I we have that the suppositions lim

τ→∞
xτ = x

and lim
τ→∞

yτ = y imply x ∈ D(A) and y ∈ Ax.

Our standing assumptions henceforth will be that A is an MLO in E, as well as
that C ∈ L(E) is injective and CA ⊆ AC. Then the C-resolvent set of A, ρC(A)
for short, is defined as the union of those complex numbers λ ∈ C for which

(i) R(C) ⊆ R(λ−A);

(ii) (λ−A)−1C is a single-valued bounded operator on E.

The operator λ 7→ (λ − A)−1C is called the C-resolvent of A (λ ∈ ρC(A)); the
resolvent set ofA is defined by ρ(A) := ρI(A), R(λ : A) ≡ (λ−A)−1 (λ ∈ ρ(A)).

We need the following lemma from [15].

Lemma 2.1. We have(
λ−A

)−1
CA ⊆ λ

(
λ−A

)−1
C − C ⊆ A

(
λ−A

)−1
C, λ ∈ ρC(A).

The operator (λ−A)−1CA is single-valued on D(A) and

(λ−A)−1CAx = (λ−A)−1Cy,

whenever y ∈ Ax and λ ∈ ρC(A).

Suppose that Ω is a locally compact, separable metric space, and µ is a locally
finite Borel measure defined on Ω. Let A be a closed MLO, let f : Ω → E and
g : Ω → E be µ-integrable, and let g(x) ∈ Af(x), x ∈ Ω. Then we know that∫

Ω f dµ ∈ D(A) and
∫

Ω g dµ ∈ A
∫

Ω f dµ. In the remaining part of paper, Ω will
always be an appropriate subspace of R and µ will always be the Lebesgue measure
defined on Ω.

Definition 2.1. Suppose that 0 < τ ≤ ∞, k ∈ C([0, τ)), k 6= 0, a ∈ L1
loc([0, τ)),

a 6= 0, A : E → P (E) is an MLO, C ∈ L(E) is injective and CA ⊆ AC.
Then it is said that a strongly continuous operator family (R(t))t∈[0,τ) ⊆ L(E) is an
(a, k)-regularized C-resolvent family with a subgeneratorA iffR(t)C = CR(t) and
R(t)A ⊆ AR(t) (t ∈ [0, τ)), as well as

t∫
0

a(t− s)R(s)y ds = R(t)x− k(t)Cx, whenever t ∈ [0, τ) and (x, y) ∈ A.
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We will occasionally use the following condition:( t∫
0

a(t− s)R(s)x ds,R(t)x− k(t)Cx

)
∈ A, t ∈ [0, τ), x ∈ E. (2.1)

Applying the Laplace transform, we can prove the following result ([15]).

Theorem 2.1. Let (R(t))t≥0 ⊆ L(E) be a strongly continuous operator family
such that there exists ω ≥ 0 satisfying that the family {e−ωtR(t) : t ≥ 0} is equicon-
tinuous, and let ω0 > max(ω, abs(|a|), abs(k)). Suppose that A is a closed MLO in
E and CA ⊆ AC.

(i) Assume that A is a subgenerator of the global (a, k)-regularized C-resolvent
family (R(t))t≥0 satisfying (2.1) for all x = y ∈ E. Then, for every λ ∈ C
with Reλ > ω0 and ã(λ)k̃(λ) 6= 0, the operator I − ã(λ)A is injective,
R(C) ⊆ R(I − ã(λ)A),

k̃(λ)
(
I − ã(λ)A

)−1
Cx =

∞∫
0

e−λtR(t)x dt, (2.2)

(x ∈ E, Reλ > ω0, ã(λ)k̃(λ) 6= 0),{
1

ã(λ)
: Reλ > ω0, k̃(λ)ã(λ) 6= 0

}
⊆ ρC(A) (2.3)

and R(s)R(t) = R(t)R(s), t, s ≥ 0.

(ii) Assume (2.2)−(2.3). ThenA is a subgenerator of the global (a, k)-regularized
C-resolvent family (R(t))t≥0 satisfying (2.1) for all x = y ∈ E and

R(s)R(t) = R(t)R(s), t, s ≥ 0.

We refer the reader to [15] for the notion of an exponentially equicontinuous, an-
alytic (a, k)-regularizedC-resolvent family (R(t))t≥0 subgenerated by a multivalued
linear operator.

3. Approximation and convergence of (a, k)-regularized C-resolvent
families subgenerated by multivalued linear operators

The following important result on approximation of abstract vector-valued Laplace
transform in locally convex spaces will be frequently used in this paper (cf. [13, The-
orem 2.10]).
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Theorem 3.1. Let fn ∈ C([0,∞) : E), n ∈ N, let the set {e−ωtfn(t) : n ∈
N, t ≥ 0} be bounded for some ω ∈ R and let λ0 ≥ ω. Then the following assertions
are equivalent:

(i) The sequence (f̃n) converges pointwise on (λ0,∞) and the sequence (fn) is
equicontinuous at each point t ≥ 0.

(ii) The sequence (fn) converges uniformly on compact subsets of [0,∞).

If (ii) holds and lim
n→∞

fn(t) = f(t), t ≥ 0, then one has lim
n→∞

f̃n(λ) = f̃(λ), λ > λ0.

Making use of Theorem 2.1 and Theorem 3.1, we can simply prove an extension
of [12, Theorem 2.3] for (a, k)-regularized C-resolvent families subgenerated by
multivalued linear operators:

Theorem 3.2. Assume that, for every n ∈ N0, |an|(t) and kn(t) satisfy (P1)
and that An is a closed subgenerator of an (an, kn)-regularized Cn-resolvent family
(Rn(t))t≥0 which satisfies (2.1) with a(t), R(t) and k(t) replaced respectively by
an(t), Rn(t) and kn(t) (n ∈ N0). Assume further that there exists a number ω ≥
supn∈N0

max(0, abs(|an|), abs(kn)) such that, for every p ∈ ~, there exist cp > 0
and rp ∈ ~ with

p
(
e−ωtRn(t)x

)
≤ cprp(x), t ≥ 0, x ∈ E, n ∈ N0. (3.1)

Let λ0 ≥ ω. Put T := {λ > λ0 : ãn(λ)k̃n(λ) 6= 0 for all n ∈ N0}. Then the
following assertions are equivalent:

(i) lim
n→∞

k̃n(λ)(I− ãn(λ)An)−1Cnx = k̃(λ)(I− ã(λ)A)−1Cx, λ ∈ T, x ∈ E
and the sequence (Rn(t)x)n is equicontinuous at each point t ≥ 0 (x ∈ E).

(ii) lim
n→∞

Rn(t)x = R(t)x, t ≥ 0, x ∈ E, uniformly on compacts of [0,∞).

Keeping in mind Lemma 2.1 and Theorem 2.3, it is almost straightforward to
formulate an extension of [12, Theorem 2.4] for (a, k)-regularized C-resolvent fam-
ilies subgenerated by multivalued linear operators, as well; the only thing worth not-
ing is that, in the proof of last mentioned theorem, we can replace the sequence
(AnHn(λ′)x)n∈N with the sequence

(k̃n(λ′)ãn(λ′)−1[ãn(λ′)−1(ãn(λ′)−1 −An)−1Cnx− Cnx])n∈N.

Theorem 3.3. Assume that, for every n ∈ N0, |an|(t) and kn(t) satisfy (P1)
and that An is a closed subgenerator of an (an, kn)-regularized Cn-resolvent family
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(Rn(t))t≥0 which satisfies (2.1) with a(t), R(t) and k(t) replaced respectively by
an(t), Rn(t) and kn(t) (n ∈ N0). Assume further that there exists a number

ω ≥ sup
n∈N0

max(0, abs(|an|), abs(kn))

such that, for every seminorm p ∈ ~, there exist a number cp > 0 and a seminorm
rp ∈ ~ such that (3.1) holds. Let λ0 ≥ ω, and let T be defined as above. Assume
that the following conditions hold:

(ii) For every bounded sequence (xn)n∈N in E, one has sup
n∈N

p(Cnxn) <∞.

(iii) There exists λ′ ∈ T such that

R

((
1

ã(λ′)
−A

)−1

C

)

is dense in E, as well as that the sequences

(k̃n(λ′)ãn(λ′)−1)n∈N and (ãn(λ′)−1)n∈N

are bounded.

(iv) For every ε > 0 and t ≥ 0, there exist δ ∈ (0, 1) and n0 ∈ N such that

min(t,s)∫
0

∣∣an(max(t, s)− r)− an(min(t, s)− r)
∣∣dr

+

max(t,s)∫
min(t,s)

∣∣an(max(t, s)− r)
∣∣ dr < ε,

provided |t− s| < δ, s ≥ 0 and n ≥ n0.

Then

lim
n→∞

k̃n(λ)
(
I − ãn(λ)An

)−1
Cnx = k̃(λ)

(
I − ã(λ)A

)−1
Cx, λ ∈ T, x ∈ E,

is equivalent to say that lim
n→∞

Rn(t)x = R(t)x, t ≥ 0, x ∈ E, uniformly on com-

pacts of [0,∞).
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Suppose now that A is a closed MLO, CA ⊆ AC, λ ∈ ρC(A), R(C) and
D(A) are dense in E. Then the set ((λ−A)−1C)k(D(An)) is dense in E for every
k ∈ N0 and n ∈ N ([15]). Keeping this in mind, the conclusions from [12, Remark
2.5(ii)] can be formulated in our context; the same holds for the parts (i) and (iii) of
this remark. Since subordination principles established in [5] and [20] hold in our
framework ([15]), Theorem 3.3 can be used for proving the following extension of
[12, Theorem 2.6]:

Theorem 3.4. Suppose α > 0, β ≥ 1,A is a closed subgenerator of an exponen-
tially equicontinuous (gα, gβ)-regularized C-resolvent family (R(t))t≥0 satisfying
(2.1) with a(t) = gα(t) and k(t) = gβ(t), andR(C) as well asD(A) are dense inE.
Let (αn)n∈N be an increasing sequence of positive real numbers with limn→∞ αn =
α, and let γn = αn/α (n ∈ N). Then, for every n ∈ N, the operator A is a subgen-
erator of an exponentially equicontinuous (gαn , g1+γn(β−1))-regularizedC-resolvent
family (Rn(t))t≥0 satisfying (2.1) with a(t) = gαn(t), k(t) = g1+γn(β−1)(t) and
(R(t))t≥0 replaced by (Rn(t))t≥0. Furthermore, limn→∞Rn(t)x = R(t)x, t ≥ 0,
x ∈ E, uniformly on compacts of [0,∞).

If A is a subgenerator of an (a, k)-regularized C-resolvent family (R(t))t∈[0,τ),
l ∈ N and xj ∈ Axj−1 for 1 ≤ j ≤ l, then we can prove inductively that, for every
t ∈ [0, τ),

R(t)x = k(t)Cx0 +
l−1∑
j=1

(
a∗,j ∗ k

)
(t)Cxj +

(
a∗,l ∗R(·)xl

)
(t).

Furthermore, for every x = x0 ∈ D(Al), we can find a sequence (xj)1≤j≤l such that
xj ∈ Axj−1 for 1 ≤ j ≤ l. With this in view, it is very simple to extend the asser-
tion of [12, Theorem 2.7] to (a, k)-regularized C-resolvent families subgenerated by
multivalued linear operators.

Theorem 3.5. Assume that, for every n ∈ N0, |an|(t) and kn(t) satisfy (P1)
and that A is a closed subgenerator of an (an, kn)-regularized Cn-resolvent family
(Rn(t))t≥0 which satisfies (2.1) with a(t), R(t) and k(t) replaced respectively by
an(t), Rn(t) and kn(t) (n ∈ N0). Denote by an,k(t) the k-th convolution power
of the function an(t) (k ∈ N). Assume further that there exists a number ω ≥
supn∈N0

max(0, abs(|an|), abs(kn)) such that, for every seminorm p ∈ ~, there exist
a number cp > 0 and a seminorm rp ∈ ~ such that (3.1) holds. Let λ0 ≥ ω. Suppose
that l ∈ N and the following holds:

(i) lim
n→∞

k̃n(λ)(I − ãn(λ)A)−1Cnx = k̃(λ)(I − ã(λ)A)−1Cx for λ ∈ T and

x ∈ D(Al).
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(ii) The sequences (kn(t))n, ((an∗kn)(t))n, . . . , and ((an,l−1∗kn)(t))n are equicon-
tinuous at each point t ≥ 0.

(iii) The sequence (Cnx)n is bounded for any x ∈ D(Al).

(iv) The condition (iv) of Theorem 3.3 holds with the function an(t) replaced by
an,l(t).

Then, for every x ∈ D(Al), one has lim
n→∞

Rn(t)x = R(t)x, t ≥ 0, uniformly on

compacts of [0,∞).

In [15, Theorem 5.12], we have proved the Hille-Yosida theorem for degenerate
(a, k)-regularized C-resolvent families. Using this theorem and the argumentation
contained in the proof of [12, Theorem 2.8], we can prove the following:

Theorem 3.6. Assume that, for every n ∈ N0, |an|(t) and kn(t) satisfy (P1), An
is a closed MLO, and

λ0 > ω ≥ sup
n∈N0

max(0, abs(|an|), abs(kn)).

Assume that limn→∞ ãn(λ) = ã(λ), λ ∈ T and limn→∞ k̃n(λ) = k̃(λ), λ ∈ T.
Suppose that L(E) 3 k̃(λ)(I − ã(λ)A)−1C, λ ∈ T, and for every n ∈ N, An
is a subgenerator of an (an, kn)-regularized Cn-resolvent family (Rn(t))t≥0 which
satisfies (2.1) with a(t), R(t) and k(t) replaced respectively by an(t), Rn(t) and
kn(t). Let (3.1) hold for t ≥ 0, x ∈ E and n ∈ N, and let

lim
n→∞

k̃n(λ)
(
I − ãn(λ)An

)−1
Cnx = k̃(λ)

(
I − ã(λ)A

)−1
Cx, x ∈ E, λ ∈ T.

Suppose, further, that for each λ ∈ T there exists an open ball

Ωλ ⊆ {z ∈ C : Re z > λ0},

with center at point λ and radius 2ελ > 0, so that ãn(z)k̃n(z) 6= 0, z ∈ Ωλ, n ∈ N0.
Then the following holds:

(i) For each r ∈ (0, 1], A is a subgenerator of a global (a, k ∗ gr)-regularized C-
resolvent family (Rr(t))t≥0 satisfying (2.1) as well as that, for every seminorm
p ∈ ~,

p
(
Rr(t+h)x−Rr(t)x

)
≤ 2cprp(x)hr

rΓ(r)
max

(
eω(t+h), 1

)
, t ≥ 0, h > 0, x ∈ E,

and that, for every seminorm p ∈ ~ and bounded set B ∈ B, the mapping
t 7→ pB(Rr(t)), t ≥ 0, is locally Hölder continuous with exponent r.
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(ii) IfA is densely defined, thenA is a subgenerator of a global (a, k)-regularized
C-resolvent family (R(t))t≥0 satisfying (2.1) and that the family {e−ωtR(t) :
t ≥ 0} is equicontinuous.

Suppose that A is an MLO, CA ⊆ AC and ρC(A) 6= ∅. Then, for every λ ∈
ρC(A), we have A0 = N((λI − A)−1C), which implies that the operator (λI −
A)−1C is injective iff A is single-valued. Although the resolvent equation(
λ−A

)−1
C2x−

(
µ−A

)−1
C2x = (µ− λ)

(
λ−A

)−1
C
(
µ−A

)−1
Cx, x ∈ E

holds for any λ, µ ∈ ρC(A), the non-injectivity of operator (λI −A)−1C in multi-
valued case does not permit us to state a satisfactory extension of [12, Corollary 2.10]
for degenerate resolvent families. The assertion of [12, Proposition 2.11(i)] can be
formulated in our context (cf. Lemma 2.1), which is not the case with the assertions
of [12, Proposition 2.11(ii)] and [12, Proposition 2.12].

The author has recently analyzed abstract degenerate Volterra equations of non-
scalar type in [14]. The interested reader may try to prove some results on approxima-
tion and convergence of degenerate (A, k)-regularized C-(pseudo)resolvent families
introduced in this paper (cf. [12, Theorem 2.16, Theorem 2.17] for non-degenerate
case), as well as degenerate (a, k)-regularized C-resolvent families introduced in the
papers [16]–[17].

4. Laguerre expansions of degenerate (a, k)-regularized C-resolvent families

In this section, we shall present the basic results about Laguerre expansions of
degenerate (a, k)-regularized C-resolvent families in locally convex spaces (cf. the
recent paper by L. Abadias and P. J. Miana [1] for C0-semigroup case).

We start by recalling that Rodrigues’ formula gives the following representation
of generalized Laguerre polynomials

Lαn(t) ≡ et
t−α

n!

dn

dtn
(
e−ttn+α

)
, t ∈ R

(
n ∈ N0, α > −1

)
.

If α /∈ −N and n ∈ N0, then we define

lαn(t) ≡ 1

Γ(n+ α+ 1)

dn

dtn
(
e−ttn+α

)
, t > 0.

The reader may consult [1, Section 2] for the most important properties of functions
lαn(t) (α /∈ −N, n ∈ N0). For example, it is well known that

lαn(t) ∼ gα+1(t), t→ 0+ ; lαn(t) ∼ (−1)ne−tgn+α+1(t), t→ +∞, (4.1)
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and
dk

dtk
lαn(t) = lα−kn+k(t), t > 0, k ∈ N0. (4.2)

The following theorem can be deduced by using the argumentation contained in the
proof of [1, Theorem 3.3], stated in the Banach space case (cf. [19, Theorem 3,
Section 4.23] for scalar-valued case).

Theorem 4.1. Suppose that f : (0,∞)→ E is a differentiable mapping, α > −1
and for each seminorm p ∈ ~ we have

∫∞
0 e−ttαp(f(t))2 dt <∞. Then

f(t) =
∞∑
n=0

n!Lαn(t)

Γ(n+ α+ 1)

∞∫
0

e−ssαLαn(s)f(s) ds, t > 0.

Since∫ ∞
0

e−ssαLαn(s)f(s) ds =

∫ ∞
0

dn

dsn
(
e−ssn+α

)f(s)

n!
ds

=
n∑
k=0

(−1)n−k
(
n

k

)
(n+ α) · · · (n+ α− (k − 1))

∫ ∞
0

e−ssn+α−k f(s)

n!
ds

and
(n+ α) · · · (n+ α− (k − 1))

Γ(n+ α+ 1)
=

1

Γ(n+ α+ 1− k)
,

for any n, k ∈ N0 with k ≤ n and α > −1, we immediately obtain the following
corollary of Theorem 4.1.

Corollary 4.1. Suppose that f : (0,∞) → E is a differentiable mapping, α >
−1 and for each seminorm p ∈ ~ we have

∫∞
0 e−ssαp(f(s))2 ds < ∞. Then, for

every t > 0, the following equality holds:

f(t) =
∞∑
n=0

n∑
k=0

Lαn(t)(−1)n−k
(
n
k

)
Γ(n+ α+ 1− k)

∞∫
0

e−ssn+α−kf(s) ds. (4.3)

Before proceeding further, let us observe that the last formula can be rewritten in
the following equivalent way:

f(t) =
∞∑
n=0

Lαn(t)

∞∫
0

lαn(s)f(s) ds.
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Suppose now that (R(t))t≥0 is an exponentially equicontinuous (a, k)-regularized
C-resolvent family with a closed subgenerator −A, the functions k(t) and |a|(t)
satisfy (P1), the family {e−ωtR(t) : t ≥ 0} is equicontinuous for some ω ≥ 0,
ω0 ≡ max(ω, abs(|a|), abs(k)) < 1/2 and α > −1. If, in addition, k̃(1)ã(1) 6= 0,
then Theorem 2.3 implies that, for every α ∈ N0 and x ∈ E,

∞∫
0

e−ssn+α−kR(s)x ds

= (−1)n+α−k

(
dn+α−k

dλn+α−k
(
LR(·)x

)
(λ)

)
λ=1

= (−1)n+α−k

(
dn+α−k

dλn+α−k

[
k̃(λ)

ã(λ)

( 1

ã(λ)
+A

)−1
Cx

])
λ=1

; (4.4)

then one can use the product rule, the following identity from [15]

dn

dλn
(
λ+A

)−1
Cx = (−1)nn!

(
λ+A

)−n−1
Cx, n ∈ N0, x ∈ E,

the equation (4.4), as well as the well known Faà di Bruno’s formula

dn

dxn
f(g(x)) =

∑ n!

m1!m2! · · ·mn!
f (m1+m2+···+mn)(g(x))

n∏
j=1

(
g(j)(x)

j!

)mj

,

where the summation is taken over those multi-indices (m1,m2, . . . ,mn) ∈ Nn0 for
which m1 + 2m2 + · · ·+ nmn = n, in order to express the right hand side of (4.3),
with f(t) = R(t)x, t > 0, in terms of subgenerator −A (notice, however, that it
is very difficult to express the value of

∫∞
0 e−ssn+α−kR(s)x ds in terms of −A,

if α /∈ N0 and n ∈ N0). At any rate, the obtained representation formula is very
complicated, practically almost irrelevant, but can be simplified in some cases; for
example, if k(t) = 1 and a(t) = gϑ(t) for some ϑ > 0, then we have

dn

dλn

[
k̃(λ)

ã(λ)

( 1

ã(λ)
+A

)−1
Cx

]
=

dn

dλn

[
λϑ−1

(
λϑ +A

)−1
Cx

]

= (−1)nλ−(n+1)
n+1∑
k=1

bϑk,n+1λ
ϑk
(
λϑ +A

)−k
Cx, n ∈ N0, x ∈ E, Reλ > ω0,
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where the numbers bϑk,n+1 are given by the following recurrence relations:

bϑ1,1 = 1,

bϑk,n = (n− 1− kϑ)bϑk,n−1 + ϑbϑk−1,n−1, 1 ≤ k ≤ n, n = 2, 3, . . . ,

bϑk,n = 0, k > n, n = 1, 2, . . . ,

cf. the formulae [5, (2.16)–(2.17)].
Laguerre expansions can be elegantly used for proving some representation for-

mulae for solutions of abstract non-degenerate differential equations of first order
whose solutions are goverened by fractionally integrated semigroups and exponen-
tial ultradistribution semigroups of Beurling class. Furthermore, we can consider
Laguerre expansions of certain classes of semigroups that are strongly continuous
for t > 0, like semigroups of class (C(k)) and semigroups of growth order r > 0. For
more details about the above-mentioned topics, we refer the reader to [11].

In [2], L. Abadias and P. J. Miana have recently analyzed the Hermite expansions
of non-degenerate C0-groups and cosine operator functions in Banach spaces. The
interested reader may try to reconsider the results from [2] for some other classes of
(non-)degenerate resolvent operator families.
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