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1. Introduction

Let G be a simple graph with n vertices. The characteristic polynomial x 7→
det(xI − A) of a (0, 1)-adjacency matrixA ofG is called the characteristic polyno-
mial ofG and denoted byPG(x). The eigenvalues ofA (i.e., the zeros of det(xI−A))
and the spectrum ofA (which consists of the n eigenvalues) are also called the eigen-
values and the spectrum of G, respectively. The eigenvalues of G are usually de-
noted by λ1, λ2, . . . , λn; they are real because A is symmetric. We shall assume that
λ1 ≥ λ2 ≥ · · · ≥ λn and use the notation λi = λi(G) for i = 1, 2, . . . , n. The
largest eigenvalue is also called the index of the graph.

The eigenvalues of A are the numbers λ satisfying Ax = λx for some non-zero
vector x ∈ IRn. Each such vector x is called an eigenvector of the matrix A (or of
the labelled graph G) belonging to the eigenvalue λ.

Other kinds of graph eigenvalues and eigenvectors will be considered in Sec-
tion 3.

As usual, Kn, Cn and Pn denote respectively the complete graph, the cycle and
the path on n vertices. Further, Km,n denotes the complete bipartite graph on m+ n
vertices.

The well known computer package AutoGraphiX (AGX) [6] uses the variable
neighborhood search [25] to solve extremal problems in graph theory.

We describe how AGX, in its very first application [5], has influenced substan-
tially the study of graph energy.

AGX helped very much in creating the spectral graph theory based on the signless
Laplacian [14] and created some non-trivial conjectures on the largest eigenvalue of
a graph [2].

Papers [5] and [2] belong to a series of over twenty papers with a common sub-
title Variable neighborhood search for extremal graphs [3], while [14] is outside the
series but in the same spirit2. All three papers had a ground-breaking impact on the
corresponding subjects.

Next three sections are devoted to these three cases.

2. Case 1: Graph energy

The energy of a graph is the sum of absolute values of eigenvalues of the adja-
cency matrix of the graph. This definition was given by Ivan Gutman in 1978 [21].
Motivation came from theoretical chemistry but the intention was to initiate mathe-

2 The paper [14] contains the following acknowledgement: We are grateful to P. Hansen who ac-
cepted our challenge to create some conjectures related to signless Laplacian eigenvalues using the
programming package AGX, and to his collaborator M. Aouchiche whose experiments led to the for-
mulation of the conjectures.
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matical studies of this graph invariant. No significant work on this subject appeared
in about next twenty years.

As stated a little bit mysteriously in Preface of [27], “sometime around the turn
of the century, a dramatic change occurred, and graph energy started to attract the
attention of a remarkably large number of mathematicians, all over the globe”. The
author will offer below his explanation of this phenomenon. Anyhow, the number of
published papers on graph energy is nowadays of order of several hundred. Only in
years 2008-2011 the average number of such papers was around 50 per year.

The energy is a non-smooth function and this fact, together with a discrete char-
acter of the underlying structure (graphs), makes it difficult, but also challenging, to
study problems which appear. For example, the authors of [27] emphasize, as they
call, Grand Open Problem (see p.192) to characterize graphs on n vertices with max-
imal energy. For n = 4k2, k integer, extremal graphs should be strongly regular with
parameters

(n, (n+
√
n)/2, (n+

√
n)/4, (n+

√
n)/4)

if they exist [28]. It has been proved in [22] that such graphs exist for n = 4, 16, 36
and they are unique while for n = 64, 100, 144 these extremal graphs are not unique.

Note that strongly regular graphs have three distinct eigenvalues. In general, tools
from calculus suggest that extremal graphs should have a small number of distinct
eigenvalues but then the discrete structure of graphs prevents to find solution: simply
– desired graphs do not exist [11].

In our opinion the paper [5] (reference [53] in the book [27]) had an essential
influence on the further development of the subject3, as already stated in our review
[9]. This paper offered several conjectures on graph energy obtained by the use of
the computer package AutoGraphiX for finding extremal graphs with respect to given
graph invariants.

Among other things, a conjecture on unicyclic graphs with maximal energy (Con-
jecture 7.6 on p. 153 in the book) attracted much attention. The conjecture was dif-
ficult to prove (22 pages in the book). This conjecture was unusual and attractive for
a mathematician. While a mathematician (perhaps not a chemist) would expect that

3 The story behind the publication of this paper is as follows. I met Professor Pierre Hansen at
an International Colloquium for Graph Theory in April 1997 in Dornföld a.d. Heide, Germany. The
colloquium was dedicated to H. Sachs on the occasion of his 70-th birthday. P. Hansen was presenting
his AutoGraphiX system. Since there was no experience with this system, I suggested to Hansen some
extremal eigenvalue problems with trees with known solutions as first test examples. The test was
successful and Hansen invited me in March 1998 to visit his institut in Montreal to work with AGX. I
new that there had been no results on graph energy for many years, that it was difficult for a human to
guess conjectures about it and that the existence of a new package AGX is a great opportunity to obtain
conjectures. When AGX really produced very interesting and unexpected conjectures, we immediately
contacted Ivan Gutman and this led, after some additional work, to publication of [5].
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the cycle is extremal, the computer found that, with a finite number of exceptions, the
graph consisting of a hexagon with an appended path is extremal.

The paper [5] established that among graphs on 10 vertices maximal energy has a
strongly regular graph (complement of the Petersen graph). This attracted researchers
working in the area of strongly regular and related graphs and we now have the
Koolen-Moulton upper bound [28] for the energy of graphs with n vertices. The
order of magnitude in this bound (n2/3) was numerically predicted in [5].

3. Case 2: Inequalities for signless Laplacian eigenvalues

By a spectral graph theory we understand, in an informal sense, a theory in which
graphs are studied by means of the eigenvalues of some graph matrix M . This theory
is called M–theory. Hence, there are several spectral graph theories (for example,
the one based on the adjacency matrix, then based on the Laplacian, etc.). In that
sense, the common title “Towards a spectral theory of graphs based on the signless
Laplacian” of the papers [15], [16], [17] indicates the intention to build such a spectral
graph theory (the one which uses the signless Laplacian without explicit involvement
of other graph matrices).

Recall that, given a graph, the matrixQ = D+A is called the signless Laplacian,
where A is the adjacency matrix and D is the diagonal matrix of vertex degrees. The
matrix L = D −A is known as the Laplacian of G.

We shall start with some definitions related to a general M–theory.
Let G be a simple graph with n vertices, and let M be a real symmetric matrix

associated to G. The characteristic polynomial det(xI −M) of M is called the M–
characteristic polynomial (or M–polynomial) of G and is denoted by MG(x). The
eigenvalues ofM (i.e., the zeros of det(xI−M)) and the spectrum ofM (which con-
sists of the n eigenvalues) are also called the M–eigenvalues ofG and the M–spectrum
of G, respectively. The M–eigenvalues of G are real because M is symmetric, and
the largest eigenvalue is called the M–index of G.

In particular, if M is equal to one of the matrices A, L and Q (associated to
a graph G on n vertices), then the corresponding eigenvalues (or spectrum) are
called the A–eigenvalues (or A–spectrum), L–eigenvalues (or L–spectrum) and Q–
eigenvalues (or Q–spectrum), respectively. Throughout the paper, these eigenvalues
will be denoted by λ1 ≥ λ2 ≥ · · · ≥ λn, µ1 ≥ µ2 ≥ · · · ≥ µn and q1 ≥ q2 ≥ · · · ≥
qn, respectively. They are the roots of the corresponding characteristic polynomials
PG(x) = det(xI − A), LG(x) = det(xI − L) and QG(x) = det(xI − Q) (note,
PG(x) stands for AG(x)). The largest eigenvalues, i.e. λ1, µ1 and q1, are called the
A–index, L–index and Q–index (of G), respectively.

Together with Q–theory we shall frequently consider the relevant facts from A–
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theory and L–theory as mostly developed spectral theories and therefore useful in
making comparisons between theories.

There are several ways to establish inequalities for Q–eigenvalues. This area of
investigation is very promising like is the case of the other spectral theories.

Paper [14] is devoted to inequalities involving Q–eigenvalues. It presents 30
computer generated conjectures in the form of inequalities for Q–eigenvalues. The
conjectures were obtained by the system AGX and the paper [14] contributed sub-
stantially in building the spectral graph theory based on the signless Laplacian.

Conjectures that are confirmed by simple results already recorded in the literature,
explicitly or implicitly, are identified. Some of the remaining conjectures have been
resolved by elementary observations; for some quite a lot of work had to be invested.
The conjectures left unresolved appear to include some difficult research problems.

We shall present here, following the paper [15] just a part of many important
results obtained by considering the generated conjectures. See also [14] and [17].

One of difficult conjectures (Conjecture 24) has been confirmed in [7] by a long
sequence of lemmas. The corresponding result reads:

Theorem 3.1. The minimal value of the least Q–eigenvalue among connected
non–bipartite graphs with prescribed number of vertices is attained for the odd–
unicyclic graph obtained from a triangle by appending a hanging path.

Many of the inequalities contain eigenvalues of more than one graph matrix. In
particular, largest eigenvalues λ1, µ1 and q1 of matrices A,L and Q, respectively,
satisfy the following inequalities:

µ1 ≤ q1, 2λ1 ≤ q1.
First equality holds if and only if the graph is bipartite. See [14] for references
(Conjectures 10 and 11).

These inequalities imply that any lower bound on µ1 is also a lower bound on
q1 and that doubling any lower bound on λ1 also yields a valid lower bound on q1.
Similarly, upper bounds on q1 yield upper bounds on µ1 and λ1. Paper [32] checks
whether known upper bound on µ1 hold also for q1 and establishes that many of them
do hold.

Best upper bounds for q1 under some conditions are given in an implicit way by
the following two theorems. First we need a definition.

A graph G with the edge set EG is called a nested split graph4 if its vertices can
be ordered so that jq ∈ EG implies ip ∈ EG whenever i ≤ j and p ≤ q.

The following theorem can be proved in the same way as the corresponding result
in A–theory [13].

4 This term was used in [14] with an equivalent definition. The present definition is used in [12],
where the graphs in question were called graphs with a stepwise adjacency matrix.
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Theorem 3.2. Let G be a graph with fixed numbers of vertices and edges, with
maximal Q–index. Then G does not contain, as an induced subgraph, any of the
graphs: 2K2, P4 and C4. Equivalently, G is a nested split graph.

Moreover, we also have [13]:

Theorem 3.3. Let G be a connected graph with fixed numbers of vertices and
edges, with maximal Q–index. Then G does not contain, as an induced subgraph,
any of the graphs: 2K2, P4 and C4. Equivalently, G is a nested split graph.

Theorems 3.2 and 3.3 have been announced in [13] and complete proofs appear in
[14]. The result has been repeated indepedently in [35]. In particular, by Theorem 3.3
we easily identify the graphs with maximal Q–index within trees, unicyclic graphs
and bicyclic graphs (of fixed number of vertices). Namely, each of these sets of
graphs has a unique nested split graph (see [14]). The result for bicyclic graphs has
been again indepedently rediscovered in [18].

We see that both the A–index and Q–index attain their maximal values for nested
split graphs. The question arises whether these extremal nested split graphs are the
same in both cases. For small number of vertices this is true as existing graph data
show. However, among graphs with n = 5 vertices and m = 7 edges there are two
graphs (No. 5 and No. 6 for n = 5 in Appendix of [13]) with maximal Q–index
while only one of them (No. 5) yields maximal A–index. In fact, for any n ≥ 5 and
m = n+ 2 there are two graphs with a maximal Q–index [35].

In the next theorem we demonstrate another use of Theorem 3.3 by providing an
analogue of Hong’s inequality from A–theory (see [26]) to Q–theory.

Theorem 3.4. Let G be a connected graph on n vertices and m edges. Then

q1(G) ≤
√

4m+ 2(n− 1)(n− 2).

The equality holds if and only if G is a complete graph.

The proof appears in [15].
Next one can prove an inequality relating the algebraic connectivity (the second

smallest L–eigenvalue) and the second largest Q-eigenvalue of a graph.

Theorem 3.5. Let a be the second smallest L–eigenvalue and q2 the second
largest Q–eigenvalue of a graph G with n (n ≥ 2) vertices. We have a ≤ q2 + 2 with
equality if and only if G is a complete graph.

The proof appears in [15].
Theorem 3.5 confirms Conjecture 19 of [14].
We can treat in a similar way Conjecture 20 of [14] as well.
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Theorem 3.6. Let a be the second smallest L–eigenvalue and q2 the second
largest Q–eigenvalue of a non–complete graph G with n (n ≥ 2) vertices. We have
a ≤ q2.

The proof appears in [15].
The question of the equality in Theorem 3.6. remains unsolved.
A new set of conjectures involving the largest Q–eigenvalue appears in [23]. The

Q-index is considered in connection with various structural invariants, such as diam-
eter, radius, girth, independence and chromatic number, etc. Out of 152 conjectures,
generated by computer (i.e. the system AGX), many of them are simple or proved
in [23], so that only 18 remained unsolved. An additional conjecture of this type
has been resolved in [24]; it is proved that q1(G) ≤ 2n(1 − 1/k), where k is the
chromatic number, thus improving an analogous inequality for the A-index (cf. [10],
p. 92).

4. Case 3: Some difficult conjectures on the largest eigenvalue

The conjectures from the paper [2] are related to the maximal value of the irreg-
ularity and spectral spread in n-vertex graphs and to a Nordhaus-Gaddum type upper
bound for the index. None of the conjectures has been resolved so far. We present
partial results and provide some indications that the conjectures are very hard.

Let G be a graph with n vertices and m edges. Let λ1(G) = λ1, λn(G) = λn
be the largest and the least eigenvalue of G respectively. Let λ1(G) = λ1. If G
is connected, there is a positive eigenvector belonging to λ1. The unique positive
eigenvector of λ1 is the principal eigenvector of G.

The difference between the index and the average vertex degree is called the
irregularity of a graph [8].

The quantity λ1 − λn is called the spectral spread of the graph.
The union of (disjoint) graphs G and H is denoted by G∪H , while mG denotes

the union of m disjoint copies of G.
The join G∇H of (disjoint) graphs G and H is the graph obtained from G and

H by joining each vertex of G with each vertex of H .
We shall continue by giving definitions of some specific notions.
A complete split graph with parameters n, q (q ≤ n), denoted by CS(n, q), is

a graph on n vertices consisting of a clique on q vertices and a stable set on the
remaining n− q vertices in which each vertex of the clique is adjacent to each vertex
of the stable set.

A fanned complete split graph with parameters n, q, t (n ≥ q ≥ t) , denoted
by FCS(n, q, t), is a graph (on n vertices) obtained from a complete split graph
CS(n, q) by connecting a vertex from the stable set by edges to t other vertices of
the stable set.
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A pineapple with parameters n, q (q ≤ n), denoted by PA(n, q), is a graph on n
vertices consisting of a clique on q vertices and a stable set on the remaining n − q
vertices in which each vertex of the stable set is adjacent to a unique vertex of the
clique.

A fanned pineapple of type i (i = 1, 2) with parameters n, q, t (n ≥ q ≥ t)
, denoted by FPAi(n, q, t), is a graph (on n vertices) obtained from a pineapple
PA(n, q) by connecting a vertex from the stable set by edges to t vertices of the

1) clique, with 0 ≤ t ≤ q − 2, for i = 1,
2) stable set, with 0 ≤ t < n− q, for i = 2.
We have FPAi(n, q, 0) = PA(n, q) for i = 1, 2.
The following conjectures related to the index of a graph have been formulated

after some experiments with the system AutoGraphiX (AGX).

Conjecture 4.1. The most irregular connected graph on n (n ≥ 10) vertices is
a pineapple PA(n, q) in which the clique size q is equal to dn2 e+ 1.

This assertion has been established by AGX for n = 10, 11, . . . , 17. For smaller
values of n the maximal graph is again a pineapple (reduced to a star for n = 5, 6, 7).

Conjecture 4.2. Given n, the maximal value of the spectral spread of a graph on
n vertices is obtained for a complete split graph CS(n, q) with an independent set of
size n− q = dn3 e.

Conjecture 4.3. Maximal graphs on n vertices for the function λ1 + λ1 are
complete split graphs CS(n, q) with the clique size equal or close to n/3.

More precisely, for any simple graph G, with complement Ḡ, spectral radius
λ1(G) and n vertices we have

λ1(G) + λ1(Ḡ) ≤ 4

3
n− 5

3
−


f1(n) if n (mod 3) ≡ 1,

0 if n (mod 3) ≡ 2,

f2(n) if n (mod 3) ≡ 0,

where

f1(n) =
3n− 2−

√
9n2 − 12n+ 12

6
and f2(n) =

3n− 1−
√

9n2 − 6n+ 9

6
.

This bound is sharp and attained if and only if G or Ḡ is a complete split graph
with an independent set on bn3 c vertices (and also on dn3 e vertices if n (mod 3) ≡ 2).

We shall describe in some detail the use of AGX in formulating Conjecture 4.3.
Additional experiments have shown that maximal graphs for λ1 + λ1 for given n

and m are complete split graphs or fanned complete split graphs with a few excep-
tions.
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When looking for extremal graphs with the system AutoGraphiX (AGX), using
the variable neighborhood search metaheuristic, we defined the objective function
as λ1(G) + λ1(Ḡ) to be maximized over the class of all graphs having from 4 to
24 vertices. To be coherent in our investigations, we required the graph G, but not
necessarily its complement Ḡ, to be connected. This constraint is without loss of
generality because of the fact that at least one of the complementary graphs G and Ḡ
is connected.

For a fixed number of vertices n, the extremal graph G is composed of a clique
on q vertices and a stable set with s vertices in which every vertex is connected to all
vertices of the clique. When we observed the values of q and s for different graphs,
we found the following:

q =

{
bn3 c if n (mod 3) ≡ 1

n
3 if n (mod 3) ≡ 0

and s =

{
d2n3 e if n (mod 3) ≡ 1

2n
3 if n (mod 3) ≡ 0.

While the experiments show regularity for the cases n (mod 3) ≡ 0 and n (mod 3) ≡
1, it was not the case when n (mod 3) ≡ 2. Sometimes we have q = bn3 c and
s = d2n3 e and other times, we have q = dn3 e and s = b2n3 c. We decided to examine
the two cases interactively on AGX for every n, and we observed that the objective
function has the same value in both cases

(
q = bn3 c or q = dn3 e

)
.

AGX did not find any conjecture on the relation between the objective function
λ1(G) + λ1(Ḡ) and the number of vertices when using all the presumably extremal
graphs obtained by AGX. But when we separated the set of graphs into three subsets,
with n (mod 3) ≡ 0 for the first subset, n (mod 3) ≡ 1 for the second one and
n (mod 3) ≡ 2 for the third one, AGX did not find anything about the two first
subsets but suggested the following linear relation for the third one (n (mod 3) ≡ 2)

λ1(G) + λ1(Ḡ) =
4

3
n− 5

3
.

Conjecture 4.3 suggests a result of Nordhaus-Gaddum type. Such results have a
long history.

In 1956, Nordhaus and Gaddum [30] proved that

2
√
n ≤ χ(G) + χ(Ḡ) ≤ n+ 1

and

n ≤ χ(G) · χ(Ḡ) ≤ (n+ 1)2

4
.
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Finck [19] showed that these bounds were sharp (taking ceilings if necessary)
and characterized extremal graphs. Similar bounds were obtained for a large number
of graph invariants by a variety of authors. Let i(G) denote a graph invariant, i.e.,
a function defined for all graphs and whose value is independent of vertex or edge
labelling. Classical Nordhaus-Gaddum relations are of the following form:

l1(n) ≤ i(G) + i(Ḡ) ≤ u1(n)

and
l2(n) ≤ i(G) · i(Ḡ) ≤ u2(n)

in more general form, the lower and upper bounding functions may depend on several
variables.

Nosal [31] and Amin and Hakimi [1] independently proved that

n− 1 ≤ λ1(G) + λ1(Ḡ) ≤
√

2(n− 1).

The lower bound is attained if and only if the graph is regular.
It is proved in [29] that

λ1(G) + λ1(Ḡ) ≤
√(

2− 1

k
− 1

k̄

)
n(n− 1),

where k and k̄ are the size of a maximal clique in G and Ḡ respectively.
Little can be found in the literature concerning the spectral spread of a graph. All

graphs whose spectral spread does not exceed 4 are determined in [33]. The spectral
spread of unicyclic graphs has been studied in [36].

However, Conjecture 4.2 did appear in the literature (cf. [20]) but remained un-
solved. It is noted in [20] that the conjecture has been verified by computer for graphs
up to 9 vertices.

The difficulty in proving Conjectures 4.2 and 4.3 is that we have almost no lem-
mas on the behavior of the corresponding invariant under local graph transformations.
Experiments with computer packages such as GRAPH, newGRAPH and AGX would
be useful in producing conjectures for such lemmas (e.g. adding an edge, rotating an
edge etc.). However, for the irregularity of a graph (involved in Conjecture 4.1) we
do have such lemmas (see Section 6 of [2]).

The common characteristic of the three conjectures is that the graph invariant
involved is the sum or the difference of two invariants which behave differently when
varying some parameters (e.g. the number of edges).

See the monograph [34] for some recent results on the three conjectures which
remained unresolved.
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5. Conclusion

We have described three examples of a ground-breaking impact of the variable
neighborhood search, implemented within the system AutoGraphiX (AGX), on in-
vestigations in graph theory, in particular, in spectral graph theory.

The paper [5] enabled a ground-breaking development of research in the area of
graph energy with several hundreds of papers published as a consequence.

The paper [14] helped very much in creating the spectral graph theory based on
the signless Laplacian, again with several hundreds of papers published.

The paper [2] is of somewhat different character. It provided conjectures difficult
to resolve. The papers published on these conjectures are not numerous because the
conjectures are really difficult.

Acknowledgement. The author is grateful to Ivan Gutman and Dragan Stevanović,
who gave some useful comments related to this paper.
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vanović, Variable neighborhood search for extremal graphs, 16. Some conjectures
related to the largest eigenvalue of a graph, Europ. J. Oper. Res. 191 (3) (2008), 661–
676.

[3] M. Aouchiche, G. Caporossi, P. Hansen, C. Lucas, Variable Neighborhood Search for
Extremal Graphs 28: AutoGraphiX After Fifteen Years, February 2013, Les Cahiers
du GERAD, G-2013-12.

[4] D. Cao, H. Yuan, The distribution of eigenvalues of graphs, Linear Algebra Appl. 216
(1995), 211–224.
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[9] D. Cvetković, Review of the book: X. Li, Y. Shi, I. Gutman, Graph Energy, Springer,
New York, 2012, XII + 266, MATCH Commun. Math. Comput. Chem., 70 (2013),
471–472.
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[13] D. Cvetković, P. Rowlinson, S. K. Simić, Signless Laplacians of finite graphs, Linear
Algebra Appl. 423 (1) (2007), 155–171.
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