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(Presented at the 5th Meeting, held on June 24, 2016)

A b s t r a c t. In this paper we give a survey of some of our results on Fredholm operators,

generalized inverses, measures of noncompactness and from fixed point theory.

AMS Mathematics Subject Classification (2010): Primary: 47A55, 40H05, 54H25, 47H10,

54H25, 47A05, 15A04.

Key Words: Fredholm operators, generalized inverses, measures of noncompactness,

fixed point theory.

1. Fredholm operators

A Fredholm operator is an operator that arises in the Fredholm theory of integral

equations. It is named in honor of Erik Ivar Fredholm.

1.1. Introduction and preliminaries

Let X and Y be infinite-dimensional Banach spaces, and B(X,Y ) (K(X,Y ))
the set of all bounded (compact) linear operators from X into Y . We shall write

B(X) instead ofB(X,X). For an element T in B(X,Y ) letN(T ) andR(T ) denote,

respectively, the null space and the range of T . Recall that the reduced minimum

modulus of T , γ(T ), is defined by

γ(T ) = inf{‖Tz‖/dist (z,N(T )) : dist (z,N(T )) > 0}.
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R(T ) is closed if and only if γ(T ) > 0.

For T in B(X,Y ) set α(T ) = dimN(T ) and β(T ) = dimX/R(T ). Recall that

an operator T ∈ B(X,Y ) is semi-Fredholm ifR(T ) is closed and at least one of α(T )
and β(T ) is finite. For such an operator we define an index i(T ) by i(T ) = α(T ) −
β(T ). It is well known that the index is a continuous function on the set of semi-

Fredholm operators. Let Φ+(X,Y ) (Φ−(X,Y )) denote the set of upper (lower)

semi-Fredholm operators, i.e., the set of semi-Fredholm operators with α(T ) < ∞,

(β(T ) <∞). An operator T is Fredholm if it is both upper semi-Fredholm and lower

semi-Fredholm. Let Φ(X,Y ) denote the set of Fredholm operators, i.e., Φ(X,Y ) =
Φ+(X,Y ) ∩ Φ−(X,Y ). We shall write Φ(X) instead of Φ(X,X), and Φ±(X)
instead of Φ±(X,X).

The semi-Fredholm radii of the operator T are

r+(T ) = sup{ǫ ≥ 0 : T − λI ∈ Φ+(X) for |λ| < ǫ},

r−(T ) = sup{ǫ ≥ 0 : T − λI ∈ Φ−(X) for |λ| < ǫ}.

The fact that K(X) is a closed two-sided ideal in B(X) enables us to define

the Calkin algebra over X as the quotient algebra C(X) = B(X)/K(X); C(X)
is itself a Banach algebra in the quotient algebra norm

‖T‖e ≡ ‖T +K(X)‖ = inf
K∈K(X)

‖T +K‖.

We shall use π to denote the natural homomorphism of B(X) onto C(X); π(T ) =
T + K(X), T ∈ B(X). Let re(T ) = lim ‖π(T n)‖1/n be the essential spectral

radius of T . An operator T ∈ B(X) is said to be a Riesz operator if and only if

re(T ) = 0, i.e., if and only if π(T ) is quasinilpotent in C(X). Let R(X) denote the

set of Riesz operators in B(X).
We denote by A a complex Banach algebra with identity 1. If a ∈ A, then ρ(a),

σ(a), r(a) denote the resolvent set, spectrum and the spectral radius of a, respec-

tively; acc σ(a) and iso σ(a) denote the sets of all accumulation and isolated points

of σ(a), respectively. The symbols qNil(A), Inv (A) and Idem (A) denote the sets

of all quasinilpotent, invertible and idempotent elements of A, respectively.

Let us recall that the Fredholm operators Φ(X) constitute a multiplicative open

semigroup in B(X), and by the Atkinson theorem [10, Theorem 3.2.8] we have

Φ(X) = π−1(Inv C(X)).

Thus, T ∈ Φ(X) if and only if there are S ∈ B(X) and K1,K2 ∈ K(X) such that

TS = I −K1 and ST = I −K2.

Such an operator S, if it exists, is called a Fredholm inverse of T .
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Recall that if T ∈ B(X), then a(T ) ( d(T ) ), the ascent (descent) of T ∈ B(X),
is the smallest non-negative integer n such that N(T n) = N(T n+1) (R(T n) =
R(T n+1)). If no such n exists, then a(T ) = ∞ ( d(T ) = ∞ ).

For T in B(X) set N∞(T ) = ∪nN(T n), R∞(T ) = ∩nR(T
n) An operator T

is called upper semi-Browder if T ∈ Φ+(X) and a(T ) <∞; T is called lower semi-

Browder if T ∈ Φ−(X) and d(T ) <∞ [71, Definition 7.9.1]. Let B+(X) (B−(X))
denote the set of upper (lower) semi-Browder operators. An operator in a Banach

space is called semi-Browder if it is upper semi-Browder or lower semi-Browder.

Let B(X) denote the set of Browder operators, i.e., B(X) = B+(X) ∩ B−(X).
If M and N are two closed subspaces of the Banach space X we set

δ(M,N) = sup{dist (u,N) : u ∈M, ‖u‖ = 1}

and
δ̂(M,N) = max [δ(M,N), δ(N,M)].

δ̂ is called the gap (or opening) between the M and N [28, 71, 95, 172].

1.2. Semi Browder operators and perturbations

Let us recall that B+(X) and B−(X) are open subsets in B(X), but not stable

under finite-rank perturbations [10, pp. 13–14]. In [155], among other things, we

generalize the well-known Grabiner theorem [67, Theorem 2], and our result [154,

Theorem 1] on the perturbations of semi-Fredholm operators with finite ascent or de-

scent. Now our arguments are based on the observation that both [67, Theorem 2] and

[154, Theorem 1] have been presented in the global form, i.e., they have been stated

for all semi-Fredholm operators with finite ascent or descent, while the perturbation

results have been in the local form, i.e., they have depended on the particular choice

of semi-Fredholm operator.

Theorem 1.1 ([155]). Suppose that T, S ∈ B(X) and TS = ST . Then

T ∈ B+(X) and re(S) < r+(T ) =⇒ T + S ∈ B+(X),

and

T ∈ B−(X)and re(S) < r−(T ) =⇒ T + S ∈ B−(X).

Let us remark that the commutativity condition in Theorem 1.1 is essential, even

for finite dimensional perturbation S [10, pp. 13–14].

Corollary 1.1. Suppose that T ∈ B(X), S ∈ R(X) and TS = ST . Then

T ∈ B+(X) =⇒ T + S ∈ B+(X).

and

T ∈ B−(X) =⇒ T + S ∈ B−(X).
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Now as a corollary, we get the main result of S. Grabiner [67, Theorem 2].

Corollary 1.2. Suppose that T ∈ B(X), S ∈ K(X) and TS = ST . Then

T ∈ B+(X) =⇒ T + S ∈ B+(X).

and
T ∈ B−(X) =⇒ T + S ∈ B−(X).

Recall that the perturbation classes associated with Φ+(X) and Φ−(X) are de-

noted, respectively, by P (Φ+(X)) and P (Φ−(X)), i.e.,

P (Φ+(X)) = {T ∈ B(X) : T + S ∈ Φ+(X) for all S ∈ Φ+(X)}

and

P (Φ−(X)) = {T ∈ B(X) : T + S ∈ Φ−(X) for all S ∈ Φ−(X)}.

Now as a corollary, we get the main result [154, Theorem 1].

Corollary 1.3. Suppose that T, K ∈ B(X) and TK = KT . Then

T ∈ B+(X) and K ∈ P (Φ+(X)) =⇒ T +K ∈ B+(X).

and

T ∈ B−(X) and K ∈ P (Φ−(X)) =⇒ T +K ∈ B−(X).

The sets of upper (lower) semi-Browder operators and Browder operators define,

respectively, the corresponding spectra, i.e., for T ∈ B(X) set

σab(T ) = {λ ∈ C : T − λI 6∈ B+(X)},

σdb(T ) = {λ ∈ C : T − λI 6∈ B−(X)}.

σeb(T ) = {λ ∈ C : T − λI 6∈ B(X )}.

It is clear that σeb(T ) = σab(T ) ∪ σdb(T ). σeb(T ) is the well known Browder´s es-

sential spectrum of T [122, 171]. σab(T ) and σdb(T ) are non-empty compact subsets

of the set of complex plane C, respectively, called the Browder´s essential approxi-

mate point spectrum of T and Browder´s essential defect spectrum of T [144, 154];

Let σ(T ), σa(T ) and σd(T ) denote, respectively, the spectrum, approximate point

spectrum and approximate defect spectrum of an element T of B(X); recall that

σa(T ) =

{
λ ∈ C : inf

||x||=1
||(T − λI)x|| = 0

}

and

σd(T ) = {λ ∈ C : T − λI is not onto} .
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It is well known that

σeb(T ) =
⋂

TK=KT, K∈K(X)

σ(T +K).

Recall that [144, 154]

σab(T ) =
⋂

TK=KT, K∈K(X)

σa(T +K)

and

σdb(T ) =
⋂

TK=KT, K∈K(X)

σd(T +K).

Let S be a subset of B(X). A subset △ of σ(T ) is said to remain invariant under

perturbations of T by operators in S if △ ⊂ ∩S∈Sσ(T + S).

Theorem 1.2 ([155]). Suppose that T ∈ B(X). Then σab(T ) (σdb(T )) is the

largest subset of the approximate point (defect) spectrum of T which remains invari-

ant under perturbations of T by Riesz operators R which commute with T , i.e.,

σab(T ) =
⋂

TS=ST, S∈R(X)

σa(T + S)

and

σdb(T ) =
⋂

TS=ST, S∈R(X)

σd(T + S).

Now as a corollary we get the well known theorem of D. Lay [122, Theorem 4]

or M. A. Kaashoek and D. C. Lay [93, Theorem 4.1] for bounded operators.

Corollary 1.4. Suppose that T ∈ B(X). Then σeb(T ) is the largest subset of the

spectrum of T which remains invariant under perturbations of T by Riesz operators

R which commute with T .

Finally, as a corollary we get a theorem of M. Schechter [171, Theorem 2.6].

Corollary 1.5. An operator S ∈ B(X) satisfies

σeb(T + S) = σeb(T ),

for all T ∈ B(X) which commute with S if and only if S ∈ R(X).
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1.3. V0(X),V(X) and corresponding spectra

For A ∈ B(X) set

k(A) = dim
N(A)

N(A)
⋂
R∞(A)

.

V(X) = {A ∈ B(X) : R(A) is closed subspace and k(A) <∞},

and

V0(X) = {A ∈ V(X) : k(A) = 0}.

Let us remark that k(T ) = n < ∞ precisely when T has Kaashoek’s property

P (I, n) (see [92, pp. 452–453]) or when T has almost uniform descent [68, Defi-

nition 1.3]. In particular k(T ) = 0 if and only if N(T ) ⊂ R∞(T ), or when T is

hyperexact (cf. [72, 73, 74]).

It is well known that Φ+(X) ∪ Φ−(X) ⊂ V(X); V0(X) and V(X) are neither

semigroups nor open or closed subsets of B(X). An operator T ∈ V0(X) (V(X))
is called semi-regular, s-regular, Kato regular, Kato non-singular, . . . (essential semi

regular, essential s-regular, . . . ). The semi-Fredholm and semi-Browder operators

are closely related to semi-regular and essentially semi-regular operators which (un-

der various names) were intensively studied. From a number of equivalent proper-

ties, at the beginning we point out the following Kato–type decomposition theorem

[135, 136, 151] for operators in V(X) which is related to Kato’s theorem for semi-

Fredholm operators [95].

Let T|M denote the restriction of T to the subspace M of X.

Theorem 1.3 (Kato decomposition [135, 136, 151]). We have T ∈ V(X) if and

only if R(T ) is closed and there exist closed subspaces X1,X2 ⊂ X invariant with

respect to T such that X = X1 ⊕X2, dimX1 < ∞, T |X1
is nilpotent and T |X2

∈
V0(X2).

Let us remark that if T ∈ B(X) is a lower semi-Browder operator then the space

X2 in the Kato decomposition is determined uniquely and X2 = R∞(T ). Thus T |X2

is onto.

If M ⊂ X, then M denotes the closure of M in X.

Now, set

σg(A) = {λ ∈ C : A−λI 6∈ V0(X)} and σgb(A) = {λ ∈ C : A−λI 6∈ V(X)}.

Now we recall some results for σg(T ) and σgb(T ).

Theorem 1.4 ([135, 136, 151]). Let T ∈ B(X) and f be an analytic function

defined on a neighbourhood of the spectrum of T . Then

σg(f(T )) = f{σg(T )} and σgb(f(T )) = f{σgb(T )}.



From Fredholm operators to fixed point theory 39

Theorem 1.5 ([151]). Suppose that T ∈ B(X). Then

σgb(T ) =
⋂

TK=KT,K∈K(X)

σg(T +K) =
⋂

TK=KT,K∈F (X)

σg(T +K).

Let

σk(A) =
{
λ ∈ C : A− λI 6∈ Φ+(X)

⋃
Φ−(X)

}
,

be the Kato spectrum of A ∈ B(X) [96].

Corollary 1.6 ([151]). Suppose that T ∈ B(X). Then:

(1) λ ∈ σg(T )\σgb(T ) if and only if λ is an isolated point of σg(T ), 0 < k(T−λ) <
∞ and R(T − λ) is closed,

(2) σgb(T ) ⊂ σek(T ),

(3) ∂σek(T ) ⊂ ∂σgb(T ) and σgb(T ) is nonempty,

(4) σgb(T ) = σgb(T
∗).

Corollary 1.7 ([151]). Let T ∈ V(X). Then the following statements are equiv-

alent:

(1) T = V + F , where α(V ) = 0, F is finite rank and V F = FV ;

(2) there exists a finite rank projection P,PT = TP and α(T|N(P )) = 0;

(3) there exists ǫ > 0 such that α(T + λ) = 0 for 0 < |λ| < ǫ;

(4) a(T ) <∞.

Let us mention that the mappings A → σg(A) and A → σgb(A) are not upper

semi-continuous at A (in general, see [151, Remark 4.4]).

Theorem 1.6 ([151]). Let T, Tn ∈ B(X) and TTn = TnT for each positive

integer n. Then

lim supσg(Tn) ⊂ σg(T ) and lim supσgb(Tn) ⊂ σgb(T ).

Remark 1.1. If T ∈ B(X), then C \ σgb(T ) is an open set in C. Further, let U
be a connected component of C\σgb(T ) and G = {λ ∈ C\σgb(T ) : k(T −λ) 6= 0}.

A complex number λ ∈ G ∩ U is called a jumping point in U . If λ ∈ U is a jumping

point, then by Theorem 1.3, there is an T–invariant finite dimensional subspace Nλ

in X such that T − λ is nilpotent on it. Consistent with the matrix case we define the

(algebraic) multiplicity of the jumping point λ to be dimNλ.
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Theorem 1.7 ([151]). Let T ∈ B(X) and let U and G be as above. Then the

functions

λ 7→ N∞(T − λ) +R∞(T − λ) and λ 7→ N∞(T − λ) ∩R∞(T − λ)

are constant on U , while the functions

λ 7→ R∞(T − λ) and λ 7→ N∞(T − λ)

are constant on U \G.

Now, suppose that the connected component U contains zero. Then the points in

G ∩ U can be ordered in such a way that

|λ1(T )| ≤ |λ2(T )| ≤ · · · < v(T ),

where each jump appears consecutively according to its multiplicity. If there are only

p (= 0, 1, 2, . . .) such jumps, we put |λp+1(T )| = |λp+2(T )| = v(T ).
Let S denote the closed unit ball of X. Let q(T ) = sup{ǫ ≥ 0 : TS ⊃ ǫS} be

the surjection modulus of T . For each r = 1, 2, . . ., set

qr(T ) = sup{q(T + F ) : rankF < r}.

Theorem 1.8 ([151]). Let T ∈ B(X), 0 ∈ U , and let U , G, and W ≡
N∞(T − λ) + R∞(T − λ), λ ∈ U be as above. Then for each jumping point

λr(T ), r = 1, 2, . . ., we have

|λr(T )| = lim
k
qr((T|W )k)1/k.

Corollary 1.8 ([151]). If T ∈ V(X), then v0(T ) = limk γ((T|W )k)1/k.

Theorem 1.9 ([117]). Let T be an operator on a Banach space X. Then the

following conditions are equivalent:

(1) T ∈ V(X),

(2) there exists a closed subspace M of X such that TM ⊂M , T |M is lower semi-

Fredholm and the induced operator T̃ : X/M 7→ X/M is upper semi-Fredholm,

(3) there exists a closed subspace M of X such that TM ⊂ M , T |M is lower

semi-Browder and the induced operator T̃ : X/M 7→ X/M is upper semi-Browder,

(4) there exists a closed subspace M of X such that TM ⊂ M , T |M is surjective

and the induced operator T̃ : X/M 7→ X/M is upper semi-Browder,

(5) there exists a closed subspace M of X such that TM ⊂ M , T |M is lower

semi-Browder and the induced operator T̃ : X/M 7→ X/M is bounded below.
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It is well known that if T ∈ V(X) and K is a compact operator commuting with

T then T +K ∈ V(X).

Theorem 1.10 ([117]). Let T, S ∈ B(X), TS = ST and let T ∈ V(X). Let

T̂ = T |R∞(T ) and let T̃ : X/R∞(T ) 7→ X/R∞(T ) be the induced operator by T .

Then
re(S) < min(r−(T̂ ), r+(T̃ )) implies T + S ∈ V(X).

Corollary 1.9 ([117]). Let T ∈ V(X), S ∈ B(X), TS = ST and S is a Riesz

operator (i.e., re(S) = 0). Then T + S ∈ V(X).

Corollary 1.10 ([117]). Let T ∈ B(X). Then

σgb(T ) =
⋂
σg(T + S)

where the intersection is taken over all Riesz operators in X commuting with T .

Remark 1.2. The reduced minimum modulus of T ∈ B(X), γ(T ), plays an

important role in the perturbation theory of linear operators. Also the behavior of the

sequence {γ(T n)1/n}, is extremely important.

If T ∈ B(X) is a semi-Fredholm operator then there is an ǫ > 0 such that both

dimN(T − λ) and codimR(T − λ) are constant on 0 < |λ| < ǫ. We can define

δ+(T ) = sup{ǫ ≥ 0 : T − λI ∈ Φ+(X) and α(T − λ) = const for 0 < |λ| < ǫ},

δ−(T ) = sup{ǫ ≥ 0 : T − λI ∈ Φ−(X) and β(T − λ) = const for 0 < |λ| < ǫ}.

Let us remark that r+(T ) ≥ δ+(T ) and r−(T ) ≥ δ−(T ).
Recall that an operator T ∈ B(X) is bounded below if and only ifR(T ) is closed

andN(T ) = {0}, i.e., if and only if the minimum modulus of T , µ(T ) = inf{‖Tx‖ :
x ∈ X, ‖x‖ = 1} > 0; an operator T ∈ B(X) is surjective if and only ifR(T ) = X,

i.e., if and only if q(T ) > 0.

For T ∈ B(X) set

µr(T ) = sup{µ(T + F ) : rank F < r},

and gr(T ) = max{µr(T ), qr(T )}. If T is semi-Fredholm either α(T+λ) or β(T+λ)
(the nullity or the defect) is constant (= n) for λ in the semi-Fredholm domain of T
except at a discrete set of jump points which may be ordered by their moduli

|λ1(T )| ≤ |λ2(T )| ≤ · · · < max{δ+(T ), δ−(T )},

where each jump appears consecutively according to its multiplicity.

Theorem 1.11 ([167], Theorem 1.1). Let T be a semi-Fredholm operator. Then

for each jumping point λr(T ), r = 1, 2, . . ., we have

|λr(T )| = lim
k→∞

gkn+r(T
k)1/k,

where gr(T ) = max{µr(T ), qr(T )}.
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1.4. Regular elements in a Calkin algebra

Let A denote a complex Banach algebra with identity 1. An element a ∈ A is

said to be regular provided there is an element b ∈ A such that a = aba. We say that

a is decomposably regular provided the b in the preceding equation can be chosen to

be an invertible element in A [70]. Let A−1 denote the set of all invertible elements

in A. Set Â = {a ∈ A : a ∈ aAa} and A• = {a ∈ A : a2 = a}.

For a subset M of A let δM and clM denote, respectively, the boundary and the

closure of M . We present some results from [149] were we studied the set of regular

elements in the Calkin algebra C(X).

Theorem 1.12 ([149]). IfX is a Banach space then B̂(X)+K(X) = π−1(Ĉ(X)).

Note that the corresponding result for “decomposable regularity” fails: if T ∈
B(X) is Fredholm with non zero index then

π(T ) ∈ C(X)−1 ⊂ C(X)•C(X)−1, but T /∈ B(X)•B(X)−1 +K(X);

however

Theorem 1.13 ([149]). If X is a Banach space then

B(X)•Φ(X) +K(X) = π−1(C(X)•C(X)−1)

and

B̂(X) ∩ cl Φ(X) +K(X) = π−1(Ĉ(X) ∩ clC(X)−1).

It follows that

B̂(X) ∩ cl Φ(X) +K(X) = B(X)•Φ(X) +K(X).

We can be more precise:

Theorem 1.14 ([149]). If X is a Banach space then

B̂(X) ∩ cl Φ(X) = B(X)•Φ(X).

Corollary 1.11. Let X be a Banach space and A ∈ B̂(X). Then the following

conditions are equivalent:

A ∈ δΦ(X),

A = PB, P ∈ B(X)• \ Φ(X) and B ∈ Φ(X),

A = CQ, Q ∈ B(X)• \ Φ(X) and C ∈ Φ(X),
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For any Hilbert space X, let dimH X denote the Hilbert dimension of X, that is,

the cardinality of an orthonormal basis of X. We set nulH(T ) = dimH N(T ) and

defH(T ) = dimH R(T )
⊥ for T ∈ B(X). If X is a separable Hilbert space, then

with connection according to Theorem 1.12 we have

Theorem 1.15 ([149]). Let X be a separable Hilbert space. Then

B̂(X) ∩ cl Φ(X)

= Φ(X) ∪ {T ∈ B(X) : nulH(T ) = defH(T ) and R(T ) is closed}.

2. Generalized inverses

If A ∈ Φ(X,Y ) there exists B ∈ Φ(Y,X) such that

ABA = A and BAB = B.

Hence,
(AB)2 = AB and (BA)2 = BA.

The B could be considered as a generalized inverse of A.

2.1. Moore–Penrose inverse

Let Cm×n be the set of allm×n complex matrices. LetA ∈ Cm×n, and consider

the Moore-Penrose equations:

AGA = A, GAG = G, (AG)∗ = AG, and (GA)∗ = GA.

Penrose [138, Theorem 1] has proved that the four equations above have a unique

solution for any A, which he called the generalized inverse of A and denoted by

G = A†. The concept of a generalized inverses of an arbitrary matrix A ∈ Cm×n

is originally due to Moore [134] 1920 (called by him the general reciprocal ). Rado

[141] has proved the equivalence of Moore’s and Penrose’s result, and today this

inverse is known as Moore-Penrose inverse, or M–P inverse, for short, of A.

Let us recall that for any A ∈ Cm×n we have (A†)† = A, (A∗)† = (A†)∗,

(A∗A)† = A†(A†)∗, but, in general, A†A 6= AA†.

Let H and K be infinite-dimensional complex Hilbert spaces. It is well known

(see eg., [27, 71]) that A ∈ B(H,K) has closed range if and only if there exists a

unique operator A† ∈ B(K,H) called the Moore-Penrose inverse (pseudoinverse) of

A which satisfies the following properties:

AA†A = A, A†AA† = A†, (AA†)∗ = AA† and (A†A)∗ = A†A.

Let A be a complex Banach algebra with identity 1. The element a ∈ A is (von

Neumann) regular if a ∈ aAa. The set of all regular elements in A will be denoted
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by Â. Recall that an element a in A is hermitian if ‖exp(ita)‖ = 1 for all real

t [178]. In connection with the Moore-Penrose generalized inverse, we [145, 148]

have studied the set of elements a in A for which there exists an x in A satisfying the

following conditions:

axa = a, xax = x, ax and xa are hermitian. (2.1)

By [145, Lemma 2.1] there is at most one x such that the equations in (2.1) hold. The

unique x is denoted by a† and called the Moore-Penrose inverse of a. Let A† denote

the set of all elements in A which have Moore-Penrose inverses. Clearly A† ⊂ Â,

and if A is a C∗-algebra then A† = Â [75, Theorem 6]. Given an element a ∈ A let

La denote the left regular representation of a, i.e., La(x) = ax, x ∈ A. If a ∈ A†,

then it is known that ‖a†‖ = 1/γ(La) (see [145, Theorem 2.3]).

2.2. Continuity of the Moore-Penrose inverse

Contrary to the usual inverse of a square matrix, it is well known that the Moore-

Penrose generalized inverse of a matrix is not necessarily a continuous function of

the elements of the matrix.

Example 2.1 ([175]). Let

A =

[
1 0
0 0

]
and E =

[
0 0
0 1

]
.

For each ǫ 6= 0 we have

(A+ ǫE)† =

[
1 0
0 ǫ

]†
=

[
1 0
0 ǫ

]−1

=

[
1 0
0 ǫ−1

]
.

Hence A+ ǫE → A, (ǫ → 0), but limǫ→0(A+ ǫE)† does not exist.

The following theorem gives necessary and sufficient conditions for the continu-

ity of the Moore-Penrose inverse of matrix.

Theorem 2.1 ([175]). If An ∈ Cm×n, A ∈ Cm×n, and An → A, then

A†
n → A† ⇔ ∃n0 : rankAn = rankA for n ≥ n0.

The continuity of the Moore-Penrose inverse of an operator on Hilbert spaces has

been studied by Izumino [87].
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Theorem 2.2 ([87], Proposition 2.3). Let H and K be Hilbert spaces. Let An be

a sequence in B(H,K), A ∈ B(H,K), and An → A. If A†
n and A† exist, then the

following conditions are equivalent:

A†
n → A†,

sup
n

‖A†
n‖ <∞,

A†
nAn → A†A,

AnA
†
n → AA†.

We showed that some of the upper results could be presented in general Banach

algebras.

Theorem 2.3 ([148], Theorem 2.5). Let A be a complex Banach algebra, {an}
be a sequence in A†, and let an → a ∈ A†. Then the following conditions are

equivalent:

a†n → a†,

sup
n

‖a†n‖ <∞, δ̂(N(L
a†n
), N(La†)) → 0, δ̂(R(L

a†n
, R(La†)) → 0,

a†nan → a†a and δ̂(N(L
a†n
), N(La†)) → 0,

ana
†
n → aa† and δ̂(R(L

a†n
), R(La†)) → 0.

If A is a C∗–algebra, then the upper results could be presented in a simpler form.

Theorem 2.4 ([76], Theorem 6 & [153], Theorem 2.2). Let A be a C∗–algebra,

{an} be a sequence in A†, and let an → a ∈ A†. Then the following conditions are

equivalent:

a†n → a†,

sup
n

‖a†n‖ <∞,

a†nan → a†a,

ana
†
n → aa†.

2.3. Drazin and Koliha Drazin inverses

Let us recall that if S is an algebraic semigroup (or associative ring), then an

element a ∈ S is said to have a Drazin inverse [59] if there exists x ∈ S such that

am = am+1x for some non-negative integerm, (2.2)

x = ax2, and ax = xa. (2.3)
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If a has a Drazin inverse, then the smallest non-negative integer m in (2.2) above

is called the index i(a) of a. It is well known that there is at most one x such that

equations (2.2) and (2.3) hold. The unique x is denoted by ad and called the Drazin

inverse of a. If i(a) = 1, then ad is denoted by a# and is called the group inverse of

a. Recall that if a has a Drazin inverse, then ad also has a Drazin inverse, i(ad) ≤ 1,

(ad)d = a2ad and ((ad)d)d = ad. If S is an associative ring and a ∈ S has a Drazin

inverse then a may always be written as

a = c+ n,

where c, n ∈ S, c has a Drazin inverse, i(c) ≤ 1, cn = nc = 0, and ni(a) = 0. The

elements c and n are unique; c is called the core of a, and n the nilpotent part of a.

Let us mention that in this case

c = a2ad and n = a− a2ad.

We shall refer to c+ n as the core nilpotent decomposition of a.

A square matrix always has Drazin inverse. Let X be an infinite-dimensional

complex Banach space. Then an operator T ∈ B(X) has a Drazin inverse T d if and

only if it has finite ascent and descent [99].

The Drazin inversedefined for semigroups is an important theoretical and practi-

cal tool in algebra and analysis. When we pass from a semigroup to a ring or a topo-

logical algebra A, the Drazin inverse of a ∈ A in its original form is also restrictive.

We denote by A a complex Banach algebra with identity e. Following Koliha

[100], we say that a ∈ A is generalized Drazin invertible (Koliha–Drazin invertible,

KD invertible) if there exists b ∈ A such that

ab = ba, ab2 = b, a2b− a ∈ qNil(A).

Such an element b, if it exists, is unique, it is called the generalized Drazin inverse

(Koliha–Drazin inverse, KD inverse) of a, and is denoted by aD, or by aKD. If

a2b − a is in fact nilpotent, then aD is the conventional Drazin inverse of a. The

Koliha–Drazin index ik(a) of a is equal to m = i(a) if a2b− a is nilpotent of index

m, otherwise ik(a) = ∞.

By AKD we denote the set of all KD invertible elements of A.

The basic existence results for KD inverse are summarized in the following lemma

[100, Theorem 4.2].

Lemma 2.1. Let a ∈ A. The following conditions on a are equivalent.

(i) a is KD invertible.

(ii) 0 /∈ acc σ(a).

(iii) There is p ∈ Idem(A) commuting with a such that

ap ∈ qNil(A) and a+ p ∈ Inv (A).
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If (iii) is satisfied, the KD inverse of a is given by

aD = (a+ p)−1(e− p).

The element p from the preceding lemma is given by

p = e− aDa.

It follows that p = 0 if 0 ∈ ρ(a); if 0 ∈ iso σ(a), p is the spectral idempotent of a
corresponding to 0; we will write p = aπ.

2.4. Continuity of the Drazin and the KD inverses

It is well known that the Drazin inverse of a matrix is not necessarily a continuous

function of the elements of the matrix.

Example 2.2. (a) Let (cf. [25, Example 2])

An =




1/n 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0


 and A =




0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0




Then

Ad
n =




n n2 0 0
0 0 0 0
0 0 0 0
0 0 0 0


 and Ad =




0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


 .

Hence An → A, rank An = rank A, and i (An) = i (A), but Ad
n 6→ Ad.

(b) In a Banach algebra A let a be nilpotent of index 3, and therefore Drazin

invertible with ad = 0 (cf. [103]). Each an = a + e/n is Drazin invertible with

adn = (a+ e/n)−1 = ne− n2a+ n3a2. We have an → a, however adn 6→ ad as the

sequence ‖adn‖ is unbounded. This phenomenon is already well known for matrices.

The following theorem gives necessary and sufficient conditions for the continu-

ity of the Drazin inverse of a matrix.

Theorem 2.5 ([25, 26]). Suppose that An, A ∈ Cm×m, and An → A. Let

A = C+N and An = Cn+Nn, n = 1, 2, . . . , be the core nilpotent decompositions

of A and An, n = 1, 2, . . . , respectively. Then

Ad
n → Ad ⇔ ∃n0 : rankCn = rankC for n ≥ n0.
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We study [103] the continuity of the generalized Drazin inverse for elements of

Banach algebras and bounded linear operators on Banach spaces. This work extends

the results obtained by the second author on the conventional Drazin inverse [156].

The main result on the continuity of the KD inverse in a Banach algebra is expressed

in the following theorem.

Theorem 2.6 ([103]). Let an and a be KD invertible elements of the Banach

algebra A such that an → a, and let pn and p be the spectral projections of an and

a corresponding to 0. Then the following conditions are equivalent:

aDn → aD;

sup
n

‖aDn ‖ <∞;

sup
n
r(aDn ) <∞;

inf
n
d(0, σ(an) \ {0}) > 0;

there is r > 0 such that {λ : 0 < |λ| < r} ⊂ ρ(a) ∩
( ∞⋂

n=1

ρ(an)
)
;

aDn an → aDa;

pn → p.

Now we focus our attention on one aspect of the continuity of the finite index

Drazin inverse, namely on a generalization of a theorem due to Campbell and Meyer.

Theorem 2.7 ([103]). Let An, A ∈ B(X) be Drazin invertible operators such

that An → A, that the indices i(An) are bounded, and that the spectral projections

Pn, P of An, A, corresponding to 0 are of finite rank. Then Ad
n → Ad if and only if

there exists n0 such that rankPn = rankP for all n ≥ n0.

The preceding theorem implies the main result of Campbell and Meyer (Theorem

2.5) on the continuity of the Drazin inverse for matrices.

2.5. Differentiation of the Drazin and the KD inverses

The differentiability of the Drazin inverse for matrices was studied by Campbell

[24] and Hartwig and Shoaf [77]. Drazin [60] considered the differentiation of the

(finite index) Drazin inverse in associative rings, using a general derivative in the ring.

We [111] studied the differentiability of the generalized Drazin inverse for a function

A(t) from a real interval into the space B(X) of all bounded linear operators on a

Banach space X. As a special case of our results we get a theorem due to Campbell

[24].
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In this section, J will denote an interval, t0 an element of J , and A : J 7→ B(X)
an operator valued function. By A′(t) we denote the derivative of A(t) at t, and by

AD(t) the KD inverse A(t)D . Using the preceding result on the continuity of the

Drazin inverse, we proved our main theorem on differentiability.

Theorem 2.8 ([111]). Let the function A : J 7→ B(X) satisfy the following

conditions:

(i) A(t) is KD invertible for all t ∈ J,

(ii) A(t) is differentiable at t0.
Then AD(t) is differentiable at t0 if and only if AD(t) is continuous at t0. In this

case the derivative (AD)′(t0) is given by

(AD)′(t0) =
1

2πi

∫

Γ
λ−1R(λ;A(t0))A

′(l0)R(λ;A(t0)) dλ,

where Γ is a Cauchy cycle relative to (C \ {0}, σ(A(t0)) \ {0})), and we obtain the

following series expansion for (AD)′:

(AD)′ = −ADA′AD +

∞∑

n=0

PAnA′(AD)n+2 +

∞∑

n=0

(AD)n+2A′AnP, (2.4)

where A, AD, A′, P stand for A(t0), A
D(t0), A

′(t0), P (t0), respectively.

Hartwig and Shoaf [77, Eq. (3.10)] used holomorphic calculus to give a formula

for the derivative of the Drazin inverse of a complex matrix in terms of the spectral

components of A(t).
In the case that the operators A(t) have the conventional Drazin inverse and the

indices of A(t) are uniformly bounded, we are able to obtain a stronger result.

Theorem 2.9 ([111]). Let A(t) be an operator valued function defined on an

interval J with A(t) Drazin invertible for all t ∈ J and differentiable at t0 ∈ J .

Suppose that the indices i(A(t)) are uniformly bounded and the spectral projections

P (t) are of finite rank. Then Ad(t) is differentiable at t0 if and only if there is δ > 0
such that

rankP (t) = rankP (t0) whenever |t− t0| < δ.

From the preceding theorem we recover the main result of [24] on the differentia-

bility of the matrix Drazin inverse. Recall that C(t) = A(t)(I−P (t)) is the so-called

core operator of A(t); the rank of C(t) is called the core rank of A(t).

Corollary 2.1 ([24], Theorem 4). Let A(t) be a p × p matrix valued function

differentiable at t0. Then Ad(t) is differentiable at t0 if and only if the core rank of

A(t) is constant in a neighborhood of t0.
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Let us remark that our approach differs from the one adopted by Campbell in

[24], who derived his theorem from the known differentiation result for the Moore–

Pen rose inverse and from the relation between the Drazin inverse Ad of a p × p
matrix A and the Moore–Penrose inverse A† of A:

Ad = Ap(A2p+1)†Ap.

In the case that the Drazin indices i(A(t)) are finite and uniformly bounded, the

preceding theorem subsumes the differentiation formula of Campbell [24, Theorem

2] the summation then becomes finite. Let us observe that Campbell’s proof is based

on the differentiation of the defining equations in the case that A has the Drazin index

1, that is, on the differentiation of the equations

AAdA = A, AdAAd = Ad, AAd = AdA.

Hartwig and Shoaf obtained Campbell’s formula from a difference relation [77, (4.16)].

Under the assumption of finite and uniformly bounded indices, formula (2.4) formally

agrees with Drazin’s result [60, Theorem 2], which is derived for the (finite index)

Drazin inverse in associative rings.

We note that if i(A) ≤ 1, formula (2.4) reduces to

(Ad)′ = −AdA′Ad + PAA′(Ad)2 + (Ad)2A′AP.

For matrices this yields [24, Theorem 1].

Throughout this section let Ω be an open set in the complex plane, and A(λ) a

continuous function on Ω whose values are bounded linear operators on X.

From Theorem 2.8 we obtain the following main result on holomorphic behavior

of AD(λ).

Theorem 2.10 ([112], Theorem 5.1). Let A(λ) be holomorphic at λ0 ∈ Ω and

KD invertible for all λ ∈ Ω0 ⊂ Ω, where Ω0 is a neighbourhood of λ0. Let C(λ) be

the core part of A(λ), λ ∈ Ω0. Then the following conditions are equivalent:

(i) AD(λ) is a holomorphic function at λ0,

(ii) AD(λ) is a continuous function at λ0,

(iii) there exist closed subspaces Mλ0
and Nλ0

of X and a neighbourhood Uλ0
⊂ Ω0

of the point λ0 such that R(C(λ)) ⊕Mλ0
= X and N(C(λ)) ⊕ Nλ0

= X for all

λ ∈ Uλ0
.

In the special case when the spectral projections are of finite rank we have the

following corollary.

Theorem 2.11 ([112], Theorem 5.2). LetA(λ) be holomorphic and KD invertible

for all λ ∈ Ω with the spectral projections P (λ) of finite rank. Then the following

conditions are equivalent:
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(i) AD(λ) is holomorphic,

(ii) dimR(P (λ)) is constant on each connected component of Ω.

Let us remark that if A ∈ B(X) is a finite rank operator, then A has the conven-

tional Drazin inverse. From Theorem 2.11 we deduce the following result.

Theorem 2.12 ([112], Theorem 5.2). Let A(λ) be holomorphic in Ω and let

A(λ) be a finite rank operator for all λ ∈ Ω. Hence A(λ) is Drazin invertible for all

λ ∈ Ω. Let C(λ) be the core part of A(λ), λ ∈ Ω0. Then the following conditions

are equivalent:

(i) AD(λ) is holomorphic,

(ii) dimR(C(λ)) is constant on each connected component of Ω.

When the family A(λ) is commuting, we have the following specialization.

Theorem 2.13 ([112], Theorem 5.2). Let Ω be open, bounded and connected,

and let A(λ) be holomorphic and Drazin invertible for all λ ∈ Ω. Let C(λ) be

the core part of A(λ). Suppose further that the family A(λ) is commuting, that

is, A(λ)A(µ) = A(µ)A(λ) for all λ, µ ∈ Ω. Then the following conditions are

equivalent:

(i) AD(λ) is holomorphic,

(ii) R(C(λ)) and N(C(λ)) are constant on Ω.

2.6. Perturbations of the Drazin and KD inverses

Let us point up that the important applications of perturbation of the Drazin in-

verse are to, e.g. singular perturbations of autonomous linear systems of differential

equations and perturbations of continuous semigroups of bounded linear operators.

The perturbation properties of the Drazin inverse for matrices were investigated

Yimin Wei and Guorong Wang [176]. In [163] we study the perturbation of the

generalized inverse introduced recently by Koliha. We start in the Banach algebra

setting, and then move to bounded linear operators. Let a ∈ A be KD invertible.

Following [176], we say that b ∈ A obeys the condition (W) at a if

b− a = aaD(b− a)aaD and ‖aD(b− a)‖ < 1.

Let us remark that the condition

b− a = aaD(b− a)aaD

is equivalent to the condition

b− a = aaD(b− a) = (b− a)aaD.

The basic auxiliary results are summarized in the following lemma.



52 V. Rakočević

Lemma 2.2 ([163]). Let a ∈ A be KD invertible, and let b ∈ A obey the condi-

tion (W) at a. Then

(i) b = a(1 + aD(b− a));
(ii) b = (1 + (b− a)aD)a;

(iii) 1 + aD(b− a) and 1 + (b− a)aD are invertible, and

(1 + aD(b− a))−1aD = aD(1 + (b− a)aD)−1.

Theorem 2.14 ([163]). Let a ∈ A be KD invertible, and let b ∈ A obey the con-

dition (W) at a. Then b is KD invertible, bbD = aaD, bD = (1+aD(b−a))−1aD =
aD(1 + (b− a)aD)−1 and ik(a) = ik(b).

Let us remark that as a direct corollary of Theorem 2.14 we obtain the known

result for matrices [176, Theorem 1]. The next corollary is a generalization of [176,

Theorem 3.2].

Corollary 2.2 ([163]). Let a ∈ A be KD invertible and let b ∈ A obey the

condition (W) at a. Then b is KD invertible, and we have

‖bD − aD‖

‖aD‖
≤

‖aD(b− a)‖

1− ‖aD(b− a)‖
.

Corollary 2.3 ([163]). Let a ∈ A be KD invertible, and let b ∈ A obey the

condition (W) at a. Then b is KD invertible, and we have

‖aD‖

1 + ‖aD(b− a)‖
≤ ‖bD‖ ≤

‖aD‖

1− ‖aD(b− a)‖
.

Corollary 2.4 ([163]). Let a ∈ A be KD invertible, b ∈ A obey the condition

(W) at a, and ‖aD(b−a)‖ < 1/2. Then b is KD invertible, and a obeys the condition

(W) at b.

Corollary 2.5 ([163]). Let a ∈ A be KD invertible, let b ∈ A obey the condition

(W) at a and let ‖aD‖‖b− a‖ < 1. Then b is KD invertible and we have

‖bD − aD‖

‖aD‖
≤

kD(a)‖b − a‖/‖a‖

1− kD(a)‖(b − a)‖/‖a‖
,

where kD(a) = ‖a‖‖aD‖ is defined as the condition number with respect to the KD

inverse.

We continue with some algebraic properties of KD inverse. Let us remark that it

is well known that if a, b ∈ A are Drazin (KD) invertible, then ab is not necessary

Drazin (KD) invertible, and if ab is Drazin (KD) invertible, then in general (ab)D 6=
bDaD. In the next propositions we show that if b obeys the condition (W) at a we

can be more precise.



From Fredholm operators to fixed point theory 53

Proposition 2.1 ([163]). Let a ∈ A be KD invertible and let b ∈ A obey the

condition (W) at a. Then:

abD has a group inverse and (abD)# = baD;

bDa has a group inverse and (bDa)# = aDb;

baD has a group inverse and (baD)# = abD;

aDb has a group inverse and (aDb)# = bDa.

Proposition 2.2 ([163]). Let a ∈ A be KD invertible and let b1, b2 ∈ A obey the

condition (W) at a. Then b1b2 is KD invertible and (b1b2)
D = bD2 b

D
1 .

As a corollary we have the following result.

Corollary 2.6 ([163]). Let a ∈ A be KD invertible and let b ∈ A obey the

condition (W) at a. Then ab and ba are KD invertible, (ab)D = bDaD and (ba)D =
aDbD.

We give some applications of Theorem 2.14, and extend the results obtained by

Yimin Wei and Guorong Wang [176]. We shall consider error bounds for the KD

inverse in B(X).
Let us consider the equation

Ax = b,

where A is KD invertible. We study the sensitivity of the solution x to variation in

the data b and A, provided that b and x are in R(AD).

Theorem 2.15 ([163]). Let A ∈ B(X) be KD invertible and let b, c ∈ R(AD).
If x, y ∈ R(AD) satisfy Ax = b and Ay = c, then

‖y − x‖

‖x‖
≤ kD(A)

‖c − b‖

‖b‖
.

Theorem 2.16 ([163]). Let A ∈ B(X) be KD invertible, let B ∈ B(X) obey

the condition (W) at A, and let b ∈ R(AD). If x, y ∈ R(AD) satisfy Ax = b and

By = b, then

‖y − x‖

‖x‖
≤ kD(A)

‖AD(B −A)‖

1− ‖AD(B −A)‖
.

Theorem 2.17 ([163]). Let A ∈ B(X) be KD invertible, let B ∈ B(X) obey the

condition (W) at A, and let b, c ∈ R(AD). If x, y ∈ R(AD) satisfy Ax = b and

By = c, then

‖y − x‖ ≤
‖AD‖

1− ‖AD(B −A)‖
(‖AD(B −A)‖‖b‖ + ‖c− b‖).
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Theorem 2.18 ([160]). Let a ∈ AKD, and let b ∈ A. Then the following condi-

tions are equivalent:

b ∈ AKD and bπ = aπ.

aπb = baπ, baπ ∈ qNil(A) and b+ aπ ∈ Inv(A),

1 + aD(b− a) ∈ Inv(A), aπb = baπ and baπ ∈ qNil(A),

b ∈ AKD, 1 + aD(b− a) ∈ Inv(A) and bD = (1 + aD(b− a))−1aD,

bD − aD = aD(a− b)bD.

Corollary 2.7 ([160]). Let A ∈ B(X)KD, and let B ∈ B(X). Then the follow-

ing conditions are equivalent:

(i) B ∈ B(X)KD and π(Bπ) = π(Aπ).

(ii) π(AπB) = π(BAπ), BAπ ∈ R(X) and B +Aπ ∈ Φ(X).

(iii) I +AD(B −A) ∈ Φ(X), π(AπB) = π(BAπ) and BAπ ∈ R(X).
(iv) B ∈ B(X)KD, I +AD(B −A) ∈ Φ(X) and

BD = CAD +K,

where K ∈ K(X) and C ∈ B(X) is a Fredholm inverse of I +AD(B −A).
(v) B ∈ B(X)KD and

BD −AD = AD(A−B)BD + F,

where F ∈ K(X).

In [29] we studied the Drazin inverse and generalized Drazin inverse of a closed

linear operator A and obtain explicit error estimates in terms of the gap between

closed operators and in terms of the gap between ranges and nullspaces of opera-

tors. The results are used to derive a theorem on the continuity of the Drazin inverse

and generalized Drazin inverse for closed operators and to describe the asymptotic

behaviour of operator semigroups.

2.7. KD inverse and commuting Riesz perturbations

It is well known in the theory of Fredholm operators that Fredholm, semi-Fredholm,

Browder and semi-Browder operators are stable under commuting Riesz perturba-

tions. In [160] we establish similar related results for KD (Koliha–Drazin) invertible

operators with finite nullity. Let us point out that whereas Fredholm, semi-Fredholm,

Browder and semi-Browder operators have closed range, this need not be the case for

KD invertible operators in general.
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Theorem 2.19 ([160]). Suppose that T ∈ B(X)KD, α(T ) < ∞, S ∈ R(X),
and TS = ST . Then:

T + S ∈ B(X)KD.

Furthermore, there is a finite rank operator F ∈ B(X) such that

(T + S)π = T π + F and T πF = FT π,

and

(T + S)D = [I + (T + T π)−1(S + F )]−1TD − (T + T π + S + F )−1F.

Let us remark that Theorem 2.19 fails to hold if we do not assume that T and

S are commuting operators. It can be shown by means of an old and well-known

Yood’s example [182, p. 599] (see also [160]).

The next example shows that if we assume α(T ) = ∞ then Theorem 2.19 does

not hold in general.

Example 2.3 ([160]). Let X be an infinite dimensional Banach space, T = O ∈
B(X), and S ∈ K(X) be such that σ(S) is an infinite subset of C. Now, α(T ) =
dimX = ∞, TS = ST , but σ(T + S) = σ(S) implies that T + S is not KD

invertible.

The next example shows that in general we cannot obtain α(T + S) < ∞ in

Theorem 2.19.

Example 2.4 ([160]). Let BW : ℓ2 7→ ℓ2 be the weighted backward shift on ℓ2

defined by
BW (x1, x2, x3, . . . ) = (x2, 2

−2x3, 3
−2x4, . . . ).

It is easy to see that BW is a compact operator, α(BW ) = 1 and σ(BW ) = {0}.

Thus BW is KD invertible and α(BW ) <∞, but α(BW + (−BW )) = α(O) = ∞.

2.8. Idempotents

In the theory of generalized inverses idempotents play a very important role.

LetR andK be subspaces of a Hilbert spaceH , and let PR and PK denote the ort-

hogonal projections of H onto these subspaces. Buckholtz has proved that the oper-

ator PR − PK is invertible if and only if H is the direct sum of R and K [22, 23].

In this case there exists a linear idempotent M with range R and kernel K , and

‖PKPR‖ < 1. In [157] we give a precise value of ‖M‖, get a sharper estimate of a

result of Vidav [179], and prove that ‖PKPR‖ is equal to the gap between R and K⊥.

Theorem 2.20 ([157]). Let M be a bounded linear idempotent operator on a

Hilbert space H with range R and kernel K . Then

‖M‖ =
1√

1− ‖PKPR‖2
. (2.5)
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Corollary 2.8. If PR and PK are projections onto the range and the null space

of a bounded idempotent operator M then ‖PRPK‖ =
√

‖M‖2 − 1/‖M‖.

Following Kato [96, p. 197] for any closed subspaces R, K of H we define the

gap (or opening) between R and K by gap (R,K) = ‖PR − PK‖. Now we obtain a

relation between the norm of PRPK and the gap between R and K⊥.

Corollary 2.9. If PR and PK are projections onto the range and the null space

of a bounded idempotent operator M , then ‖PRPK‖ = ‖PR − P⊥
K‖.

Corollary 2.10. Let M be a bounded linear idempotent operator on a Hilbert

space H . Then ‖M‖ = ‖I −M‖.

Remark 2.1. Theorem 2.20 is not new. Identity 2.5 is due to Ljance [121]; see

also [140, 180]. Hence in [157] we offer a new proof of an old theorem. Labrousse

[120] was unawere of the work of Ljance [121], and he proved (2.20) with the squared

norm of PKPR replaced by the square norm of PR − P⊥
K , not a straightforward

exercise. Let us remark that V. Pták [140] mentioned that T. Ando and B. Sz. Nagy

called his attention to the fact that this result had been contained in a paper of Ljance

[121]. Pták admitted the journal had not been accesible to him, and gave a proof of

this result. Finally, 2.10 is due to Del Pasqua [57]; see also [96]. Ljance [121] was

unawere of the work of Del Pasqua [57], and he also proved (2.10).

In [109] we study norms of idempotents in C∗-algebras. The results of Ljance,

Vidav, Buckholtz and Wimmer on idempotent operators in Hilbert spaces are consid-

ered in the setting of C∗-algebras, and simpler new proofs, based on algebraic and

spectral–rather than spatial–arguments, are given. We give an application to projec-

tions with respect to a-involutions.

We denote by A a C∗-algebra with unit 1 and by A−1 the set of all invertible

elements in A. For an element a ∈ A we denote by σ(a) the spectrum of a and by

r(a) the spectral radius of a.

The term projection will be reserved for an element p of a A which is self-adjoint

and idempotent, that is, p∗ = p = p2.

Let f ∈ A be an idempotent. Following Koliha [102], we say that p ∈ A is a

range projection of f if p is a projection satisfying

pf = f and fp = p. (2.6)

If A is a C∗-subalgebra of B(H), the C∗-algebra of all bounded linear operator on a

Hilbert space H , then (2.6) holds if and only if p is the (orthogonal) projection onto

the range of f . Let us recall Theorem 1.3 of [102] that for every idempotent f ∈ A
there exists a unique range projection of f denoted by f⊥ given explicitly by the

Kerzman–Stein formula [97]

f⊥ = f(f + f∗ − 1)−1. (2.7)
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If p is a projection, then p⊥ = p.

Recall that [102, Proposition 1.4]

1− f⊥ = (1− f∗)⊥ and 1− (f∗)⊥ = (1− f)⊥. (2.8)

Let e, f ∈ A be idempotents. By π(e, f) we denote an idempotent h ∈ A (if it

exists) satisfying the conditions

h⊥ = e⊥, (1− h)⊥ = f⊥. (2.9)

Recall that, for projections p, q ∈ A, π(p, q) denotes an idempotent h ∈ A
satisfying p = h⊥ and q = (1− h)⊥.

Theorem 2.21 ([109]). Let h ∈ A be an idempotent. Then

‖h‖ =
1√

1− ‖h⊥(1− h)⊥‖2
. (2.10)

Corollary 2.11. Let h ∈ A be an idempotent. Then

‖h⊥(1− h)⊥‖ =

√
‖h‖2 − 1

‖h‖
. (2.11)

Recall that, for projections p, q ∈ A , π(p, q) denotes an idempotent h ∈ A
satisfying π = h⊥ and q = (1− h)⊥.

Theorem 2.22 ([109]). Let p, q ∈ A be nontrivial projections. Then the following

conditions are equivalent:

(i) A = pA⊕ qA;

(ii) The idempotent π(p, q) exists;

(iii) ‖pq‖ < 1 and A = pA+ qA;

(iv) 1− pq ∈ A−1 and A = pA+ qA;

(v) ‖pqp‖ < 1 and A = pA+ qA;

(vi) 1− pqp ∈ A−1 and A = pA+ qA;

(vii) ‖p + q − 1‖ < 1;

(viii) p− q ∈ A−1.

The idempotent π(p, q) is given by the formulae

p(p, q) = (1− pqp)− 1(p − pq) = (p− q)− 1(1 − q).

Theorem 2.23 ([109]). Let a be a positive invertible element of A. If p, q ∈ A
are nontrivial idempotents satisfying ap = p∗a and aq = q∗a, then the following

conditions are equivalent:

(i) A = pA⊕ qA;
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(ii) There exists an idempotent f ∈ A such that

p = a−1/2f⊥a1/2 and q = a−1/2(1− f)⊥a1/2;

(iii) ‖a−1/2pqa−1/2‖ < 1 and A = pA+ qA;

(iv) 1− pq ∈ A−1 and A = pA+ qA;

(v) ‖a1/2pqa−1/2‖ < 1 and A = pA+ qA;

(vi) 1− pqp ∈ A−1 and A = pA+ qA;

(vii) ‖a1/2(p+ q − 1)a−1/2‖ < 1;

(viii) p− q ∈ A−1.

The idempotent f is given by the formula f = a1/2(p − q)−1(1− q)a−1/2.

The following theorem is motivated by Wimmer’s result [181, Theorem 2.1],

proved for finite dimensional Hilbert spaces. Recall that π(u, v) = π(u⊥, v⊥) for

idempotents u, v ∈ A.

Theorem 2.24 ([109]). Let h ∈ A be an idempotent and f ∈ A a projection such

that

‖h‖‖f − (1− h)⊥‖ < 1. (2.12)

Then g := π(h, f) exists and

‖g − h‖ ≤
‖h‖2‖f − (1− h)⊥‖

1− ‖h‖f − (1− h)⊥‖
. (2.13)

From the preceding theorem and its proof we obtain the following result.

Corollary 2.12 ([109]). Let h, g ∈ A be idempotents and f ∈ A be a projection

such that ‖hf‖ < 1 and g = π(h, f). Then

‖g − h‖ ≤
‖hf‖

1− ‖hf‖
‖h‖. (2.14)

Buckholtz [22, 23] gave necessary and sufficient conditions for the invertibility of

the difference of two orthogonal projections in a Hilbert space. We [110] generalize

this result by investigating when the difference of such projections is a Fredholm

operator, and give an explicit formula for its Fredholm inverse.

Theorem 2.25 ([110]). Let R and K be closed subspaces of a Hilbert space H
and let P andQ be the orthogonal projections with the ranges R andK , respectively.

The following are equivalent:

(i) P −Q ∈ Φ(H);
(ii) I − PQ ∈ Φ(H) and I − (I − P )(I −Q) = P +Q− PQ ∈ Φ(H);
(iii) R+K is closed in H and dim[(R ∩K)⊕ (R⊥

⋂
K⊥)] <∞;

(iv) ‖P +Q− I‖e < 1;

(v) P +Q ∈ Φ(H) and I − PQ ∈ Φ(H).
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As a special case of the preceding theorem we now consider the case when the

difference P − Q is invertible. This problem is the subject of Buckholtzs papers

[22, 23]), and the equivalence of (i), (iii) and (iv) of the following corollary is given

in [23, Theorem 1]. In the setting of rings, the equivalence of (i), (ii), (iii) and (v)

was proved in [108].

Corollary 2.13 ([110]). Let R and K be closed subspaces of a Hilbert space H
and let P andQ be the orthogonal projections with the ranges R andK , respectively.

The following are equivalent:

(i) P −Q is invertible;

(ii) I − PQ and I − (I − P )(I −Q) = P +Q− PQ are invertible;

(iii) H = R⊕K;

(iv) ‖P +Q− I‖ < 1;

(v) P +Q and I − PQ are invertible.

We recall that G ∈ B(H) is a projection if and only if H is the topological direct

sum H = R⊕N , where R(G) = R and N(G) = N . We call G the projection onto

R along N , and write G = PR,N .

Theorem 2.26 ([110]). Let P,Q ∈ B(H) be orthogonal projections with the

ranges R and K , respectively, and let R(P −Q) be closed. Then

(P −Q)† = PM,N − PL,S,

where

M = R ∩ (R⊥ +K⊥), N = K ⊕ (R⊥ ∩K⊥),

L = R⊥ ∩ (R+K), S = K⊥ ⊕ (R ∩K).

Theorem 2.27 ([110]). Let P,Q ∈ B(H) be orthogonal projections with the

ranges R and K , respectively, and let P −Q ∈ Φ(H). Then

(P −Q)Φ = U + U∗ − I,

where U = ((I−Q)P )† is the projection ontoR∩(R⊥+K⊥) alongK⊕(R⊥∩K⊥).

From the following corollary we recover the result of Buckholtz (cf. [22, 23]).

Corollary 2.14 ([110]). Let P,Q ∈ B(H) be orthogonal projections with the

ranges R and K , respectively. Then P −Q is invertible if and only if H = R ⊕K ,

in which case

(P −Q)−1 = U + U∗ − I,

where U = PR,K and U∗ = PK⊥,R⊥ .
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We proved [114] a stability theorem for the nullity of a linear combination c1P1+
c2P2 of two idempotent operators P1, P2 on a Banach space provided c1, c2 and

c1 + c2 are nonzero. We then show that for c1P1 + c2P2 the property of being upper

semi-Fredholm, lower semi-Fredholm and Fredholm, respectively, is independent of

the choice of c1, c2, and that the nullity, defect and index of c1P1 + c2P2 are stable.

For convenience, we define a subset Γ of C2 by

Γ = {(c1, c2) ∈ C : c1 6= 0, c2 6= 0, c1 + c2 6= 0}.

Theorem 2.28 ([114]). Let P1, P2 ∈ B(X) be idempotents. Then:
(1) If c1P1 + c2P2 is upper semi-Fredholm for some (c1, c2) ∈ Γ, then it is upper

semi-Fredholm for all (c1, c2) ∈ Γ, and α(c1P1 + c2P2) is constant on Γ.
(2) If c1P1 + c2P2 is lower semi-Fredholm for some (c1, c2) ∈ Γ, then it is lower

semi-Fredholm for all (c1, c2) ∈ Γ, and β(c1P1 + c2P2) is constant on Γ.

(3) If c1P1 + c2P2 is Fredholm for some (c1, c2) ∈ Γ, then it is Fredholm for all

(c1, c2) ∈ Γ, and α(c1P1 + c2P2), β(c1P1 + c2P2) and i(c1P1 + c2P2) are

constant on Γ.

Corollary 2.15 ([114]). Let P1 and P2 be two idempotents in B(X). Then the

invertibility of c1P1 + c2P2 is independent of the choice of (c1, c2) ∈ Γ.

Corollary 2.16 ([114]). Let p1, p2 be two idempotents in a Banach algebra A.

Then the invertibility of c1p1 + c2p2 is independent of the choice of (c1, c2) ∈ Γ.

3. Measures of noncompactness

The first measure of noncompactness, the function α, was defined and studied

by Kuratowski [124] in 1930. It is surprising that later in 1955 Darbo [146] was

the first who continued to use the function α. Darbo proved that if T is a continuous

self-mapping of a nonempty, bounded, closed and convex subset C of a Banach space

X such that

α(T (Q)) ≤ kα(Q) for all Q ⊂ C, (3.1)

(k ∈ (0, 1) is a constant) then T has at least one fixed point in the set C . Darbo’s fixed

point theorem is a very important generalization of Schauder’s fixed point theorem

and it includes the existence part of Banach’s fixed point theorem.

Let (X, d) be a metric space and Q a bounded subset of X. Then the Kuratowski

measure of noncompactness (the set- measure of noncompactness, α–measure) of Q,

denoted by α(Q), is the infimum of the set of all numbers ǫ > 0 such that Q can be

covered by a finite number of sets with diameters < ǫ, that is,

α(Q) = inf

{
ǫ > 0 : Q ⊂

n⋃

i=1

Si, Si ⊂ X, diam(Si) < ǫ (i = 1, . . . , n; n ∈ N)

}
.

(3.2)
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The function α is called the Kuratowski measure of noncompactness. Clearly

α(Q) ≤ diam(Q) for each bounded subset Q of X.

Usually it is complicated to find the exact value of α(Q). Another measure of

noncompactness, which is more applicable in many cases, was introduced and stud-

ied by Goldenstein, Gohberg and Markus (the ball or Hausdorff measure of non-

compactness) [67] in 1957 (later studied by Goldenstein and Markus [68] in 1965).

It is given in the next definition.

Let (X, d) be a metric space and Q a bounded subset of X. Then the Hausdorff

measure of noncompactness (the ball measure of noncompactness, χ–measure) of the

set Q, denoted by χ(Q) is defined to be the infimum of the set of all reals ǫ > 0 such

that Q can be covered by a finite number of balls of radii < ǫ, that is,

χ(Q) = inf

{
ǫ > 0 : Q ⊂

n⋃

i=1

B(xi, ri), xi ∈ X, ri < ǫ (i = 1, . . . , n)n ∈ N

}
.

(3.3)

The function χ is called Hausdorff measure of noncompactness.

We present some our results (with coauthors) on matrix transformations on cer-

tain sequence spaces using the Hausdorff measure of noncompactness.

Let µ1 and µ2 be measures of noncompactness on the Banach spaces X and Y ,

respectively. An operator A : X → Y is said to be (µ1, µ2)–bounded if

A(Q) ∈ MY for each Q ∈ MX (3.4)

and there exists a real k with 0 ≤ k <∞ such that

µ2(AQ) ≤ kµ1(Q) for each Q ∈ MX . (3.5)

If an operator A is (µ1, µ2)-bounded then the number ‖A‖µ1,µ2
is defined by

‖A‖µ1,µ2
= inf{k ≥ 0 : µ2(AQ) ≤ kµ1(Q) for each Q ∈ MX} (3.6)

and called (µ1, µ2)–operator norm of A, or (µ1, µ2)–measure of noncompactness of

A, or simply measure of noncompactness of A.

If µ1 = µ2 = µ then we write ‖A‖µ instead of ‖A‖µ,µ.

Let us mention that if A ∈ B(X,Y ), then

‖A‖χ = χ(ASX) = χ(ABX). (3.7)

Let A be a unital C∗– algebra and Inv (A) the set of invertible elements of A. If I is

a closed two-sided ideal in A, let x+ I denote the coset in the quotient algebra A/I
containing x. For x ∈ A denote by r(x) (r(x+I)) the spectral radius of the element

x (x+ I).
We proved the next result.
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Theorem 3.1 ([147]). Let A be a unital C∗– algebra and I be a closed two-sided

ideal in A. Then

r(x+ I) = inf
s∈Inv(A)

‖s−1xs+ Iy‖. (3.8)

Now as a corollary we get the main result of Mau–Hsiang Shin [173]

Corollary 3.1 ([173]). Let X be a Hilbert space. Then

re(T ) = inf
S∈Inv(B(X))

‖S−1TS‖α. (3.9)

3.1. Operators on the spaces sα, s
◦
α, s

(c)
α , ℓpα

A Banach space E of complex sequences x = (xn)n≥1 with the norm ‖ · ‖E is a

BK space if each projection x 7→ xn is continuous. A BK space E is said to have AK,

if for every b = (bn)n≥1 ∈ E, b =
∑∞

m=1 bmem (with en = (0, . . . , 1, . . .) and 1
being in the n−th position). We will write s for the set of all complex sequences, ℓ∞,

c, c0 for the sets of bounded, convergent and null sequences, respectively. Recall that

ℓp, for 1 ≤ p < ∞ is the set of sequences x = (xn)n≥1 such that
∑∞

n=1 |xn|
p < ∞.

Put now U = {x = (xn)n≥1 ∈ s : xn 6= 0 for all n} and U+ = {x = (xn)n≥1 ∈
s : xn > 0 for all n}. For any given α = (αn)n≥1 ∈ U+ and p ≥ 1 real we write

ℓpα = (1/α)−1∗ℓp = {x ∈ s :
∑∞

n=1(|xn|/αn)
p <∞}. Define the diagonal matrix

Dξ = (ξnδnm)n,m≥1, (where δnm = 0 for all n 6= m and δnm = 1 otherwise), we

then have Dαℓ
p = ℓpα. In the same way we will define the sets sα = (1/α)−1 ∗ l∞ =

{x ∈ s : xn/αn = O(1) (n → ∞)}, s
◦

α = {x ∈ s : xn/αn = o(1) (n → ∞)}

and s
(c)
α = {x ∈ s : xn/αn → x0α (n → ∞) for some x0α}. If α = (rn)n≥1, sα,

s0α, s
(c)
α and ℓpα are defined by sr, s

0

r, s
(c)
r and ℓpr , respectively. When r = 1, we obtain

s1 = ℓ∞, s
0

1 = c0, s
(c)
1 = c and ℓp1 = ℓp. Let us remark that the spaces sα, s

◦
α, s

(c)
α

and ℓpα have been studied by de Malafosse [45, 46, 47] and by de Malafosse and

Malkowsky [48], and they find their applications in a number of areas.

In [49], we characterize some operators and matrix transformations in the se-

quence spaces sα, s
◦
α, s

(c)
α , ℓpα. Moreover, using the Hausdorff measure of noncom-

pactness necessary and sufficient conditions are formulated for a linear operator be-

tween the mentioned spaces to be compact. Among other things, some results of

Cohen and Dunford [30] are recovered. We now present some results from [49].

Theorem 3.2 ([49]). Each bounded linear operator A on s
(c)
α into sβ , s

(c)
β or

s0β determines and is determined by a matrix of scalars anm, n = 1, 2, . . ., m =
0, 1, 2, . . ., y = Ax, is defined by the equations

yn = an0x0α +

∞∑

m=1

anmxm, n = 1, 2, . . . ,
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where x = (xn) in s
(c)
α , and limn xn/αn = x0α.

The norm of A is defined by

‖A‖ = sup
n≥1

1

βn

(
|an0|+

∞∑

m=1

|anm|αm

)
. (3.10)

(i) For A ∈ B(s
(c)
α , sβ) the only condition on the matrix (anm) is that the expres-

sion in (3.10) is finite.

(ii) For A ∈ B(s
(c)
α , s

(c)
β ) the additional condition is

lim
n→∞

1

βn

(
an0 +

∞∑

m=1

anmαm

)
= ω (3.11)

and

lim
n→∞

anm
βn

αm = ωm (3.12)

if m = 1, 2, . . . .

(iii) Finally, A ∈ B(s
(c)
α , s0β) if and only if the expression in (3.10) is finite,

lim
n→∞

1

βn

(
an0 +

∞∑

m=1

anmαm

)
= 0

and

lim
n→∞

anm
βn

αm = 0 (3.13)

exists if m = 1, 2, . . . .

Theorem 3.3 ([49]). Let α = (αn)n≥1, β = (βn)n≥1 ∈ U+ and let A =
(anm)n,m≥1 be an infinite matrix. Then

(i) A ∈ (sα, sβ) if and only if

‖A‖ = sup
n≥1

(
1

βn

∞∑

m=1

|anm|αm

)
<∞. (3.14)

Furthermore, (sα, sβ) = (s
(c)
α , sβ) = (s0α, sβ).

(ii) A ∈ (s0α, s
0
β) if and only if (3.13) and (3.14) hold.

(iii) A ∈ (s0α, s
(c)
β ) if and only if (3.12) and (3.14) hold.

(iv) A ∈ (s
(c)
α , s

(c)
β ) if and only if (3.12), (3.14) and (3.15) hold

lim
n→∞

1

βn

∞∑

m=1

anmαm = ψ. (3.15)

(v) A ∈ (s
(c)
α , s

0)
β ) if and only if (3.13), (3.14) and ψ = 0 in (3.15) hold.
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Theorem 3.4 ([49]). Let α = (αn)n≥1, β = (βn)n≥1 ∈ U+ and let A =
(anm)n,m≥1 be an infinite matrix.

(i) If A ∈ (ℓ1α, ℓ
p
β), 1 ≤ p <∞, then

‖A‖χ = lim
n→∞

sup
m≥1

αm

(
∞∑

k=n+1

(
|akm|

βk

)p
)1/p

.

(ii) If A ∈ (ℓ1α, s
0
β), then

‖A‖χ = lim sup
n→∞

(
sup
m≥1

|anm|
αm

βn

)
.

(iii) If A ∈ (ℓ1α, s
(c)
β ), then

1

2
lim sup
n→∞

(
sup
m≥1

∣∣∣∣
anmαm

βn
− ωm

∣∣∣∣
)

≤ ‖A‖χ ≤ lim sup
n→∞

(
sup
m≥1

∣∣∣∣
anmαm

βn
− ωm

∣∣∣∣
)
.

(iv) If A ∈ (ℓ1α, sβ), then

0 ≤ ‖A‖χ ≤ lim sup
n→∞

(
sup
m≥1

|anm|
αm

βn

)
.

Theorem 3.5 ([49]). Let α = (αn)n≥1, β = (βn)n≥1 ∈ U+, 1 < p < ∞,

1/p + 1/q = 1 and let A = (anm)n,m≥1 be an infinite matrix. Then

(i) A ∈ (ℓpα, sβ), 1 < p <∞, if and only if

‖A‖ = sup
n≥1

1

βn

(
∞∑

m=1

|anmαm|q
)1/q

<∞.

(ii) If A ∈ (ℓpα, sβ), 1 < p <∞, then

1

2
lim

m→∞
sup
n≥1

1

βn

(
∞∑

k=m

|ankαk|
q

)1/q

≤ ‖A‖χ ≤ 2 lim
m→∞

sup
n≥1

1

βn

(
∞∑

k=m

|ankαk|
q

)1/q

.

(iii) If A ∈ (ℓpα, sβ), 1 < p <∞, then A is compact if and only if

lim
m→∞

sup
n≥1

1

βn

(
∞∑

k=m

|ankαk|
q

)1/q

= 0.

(iv) If A ∈ (sα, sβ), then A is compact if and only if

lim
k→∞

sup
n≥1

1

βn

∞∑

m=k

|anm|αm = 0. (3.16)
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Theorem 3.6 ([49]). Let A ∈ B(s
(c)
α , s

(c)
β ), ω be as in (3.11) and ωn, n =

1, 2, . . . , be as in (3.12). Then

1

2
lim sup
n→∞

(∣∣∣∣∣
an0
βn

− ω +

∞∑

m=1

ωm

∣∣∣∣∣+
∞∑

m=1

∣∣∣∣
anm
βn

αm − ωm

∣∣∣∣

)
≤ ‖A‖χ

≤ lim sup
n→∞

(∣∣∣∣∣
an0
βn

− ω +
∞∑

m=1

ωm

∣∣∣∣∣+
∞∑

m=1

∣∣∣∣
anm
βn

αm − ωm

∣∣∣∣

)
.

Corollary 3.2 ([49]). Let A ∈ B(s
(c)
α , s

(c)
β ), y = Ax, and y0β = x0α for every

choice of x. Then A is compact if and only if ω = 1 and ω1 = ω2 = · · · = 0 and

lim
n→∞

(∣∣∣∣
an0
βn

− 1

∣∣∣∣+
1

βn

∞∑

m=1

|anm|αm

)
= 0.

In the special case, when αn = βn = 1, n = 1, 2, . . ., Corollary 3.2 implies the

next well known result of Cohen and Dunford (Corollary 3 of [30]).

Corollary 3.3. Let A ∈ B(c, c) be regular transformation. Then A is compact if

and only if

lim
n→∞

(
|an0 − 1|+

∞∑

m=1

|anm|

)
= 0.

Theorem 3.7 ([49]). Let A ∈ B(s
(c)
α , s0β). Then

‖A‖χ = lim sup
n→∞

1

βn

(
|an0|+

∞∑

m=1

|anm|αm

)

and A is compact if and only if

lim
n→∞

1

βn

(
|an0|+

∞∑

m=1

|anm|αm

)
= 0.

Theorem 3.8 ([49]). Let α = (αn)n≥1, β = (βn)n≥1 ∈ U+ and let A =
(anm)n,m≥1 be an infinite matrix.

(i) If A ∈ (sα, sβ) = (s
(c)
α , sβ) = (s0α, sβ), then A is compact if and only if (3.16) is

satisfied.

(ii) LetA ∈ (s
(c)
α , s

(c)
β ), ψ be as in (3.15) and ωn, n = 1, 2, . . . , be as in (3.12). Then

1

2
lim sup
n→∞

(∣∣∣∣∣ψ −
∞∑

m=1

ωm

∣∣∣∣∣+
∞∑

m=1

∣∣∣∣
anm
βn

αm − ωm

∣∣∣∣

)
≤ ‖A‖χ

≤ lim sup
n→∞

(∣∣∣∣∣ψ −
∞∑

m=1

ωm

∣∣∣∣∣+
∞∑

m=1

∣∣∣∣
anm
βn

αm − ωm

∣∣∣∣

)
,
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and A is compact if and only if

lim
n→∞

(∣∣∣∣∣ψ −
∞∑

m=1

ωm

∣∣∣∣∣+
∞∑

m=1

∣∣∣∣
anm
βn

αm − ωm

∣∣∣∣

)
= 0.

(iii) If A ∈ (s
(c)
α , s0β) or A ∈ (s0α, s

0
β), then

‖A‖χ = lim sup
n→∞

1

βn

∞∑

m=1

|anm|αm,

and A is compact if and only if

lim
n→∞

1

βn

∞∑

m=1

|anm|αm = 0.

(iv) If A ∈ (s0α, s
(c)
β ), then

1

2
lim sup
n→∞

∞∑

m=1

∣∣∣∣
anm
βn

αm − ωm

∣∣∣∣ ≤ ‖A‖χ ≤ lim sup
n→∞

∞∑

m=1

∣∣∣∣
anm
βn

αm − ωm

∣∣∣∣ ,

and A is compact if and only if

lim
n→∞

∞∑

m=1

∣∣∣∣
anm
βn

αm − ωm

∣∣∣∣ = 0.

We give some examples to illustrate some of the applications of the results given

in the preceding sections.

Let ρ = (ρn)n≥1, ξ = (ξn)n≥1 ∈ U and consider the infinite matrix

M (ρ, ξ) =




1 −ξ1 0 . . . 0
−ρ1 1 −ξ2 0 . . . 0
0 −ρ2 1 −ξ3 0 . . . 0
...

. . .
. . .

0 . . . −ρn 1 −ξn−1 . . . 0
...

. . .
. . .

...




We will consider M (ρ, ξ) as operator from s0τ into itself. Then we have the

following result.
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Theorem 3.9 ([49]). Let τ ∈ U+. If

sup
n

(
|ρn−1|

τn−1

τn
+ |ξn|

τn+1

τn

)
<∞,

then M (ρ, ξ) ∈
(
s0τ , s

0
τ

)
,

‖M (ρ, ξ) ‖ = sup
n

(
|ρn−1|

τn−1

τn
+ 1 + |ξn|

τn+1

τn

)
,

‖M (ρ, ξ) ‖χ = lim sup
n→∞

(
|ρn−1|

τn−1

τn
+ 1 + |ξn|

τn+1

τn

)
,

‖I −M (ρ, ξ) ‖ = sup
n

(
|ρn−1|

τn−1

τn
+ |ξn|

τn+1

τn

)
,

‖I −M (ρ, ξ) ‖χ = lim sup
n→∞

(
|ρn−1|

τn−1

τn
+ |ξn|

τn+1

τn

)
.

Corollary 3.4. Let τ ∈ U+. If

lim sup
n→∞

(
|ρn−1|

τn−1

τn
+ |ξn|

τn+1

τn

)
< 1,

then M (ρ, ξ) ∈
(
s0τ , s

0
τ

)
, ‖I −M (ρ, ξ)‖χ < 1, M (ρ, ξ) is a Fredholm operator

and i(M (ρ, ξ)) = 0.

Theorem 3.10 ([49]). Let τ ∈ U+. If limn→∞ ρn−1(τn−1/τn) exists, then ∆ρ =

M (ρ, 0) ∈
(
s
(c)
τ , s

(c)
τ

)
,

‖∆ρ‖ = sup
n

(
|ρn−1|

τn−1

τn
+ 1

)
,

1

2
·

(∣∣∣∣ limn→∞
ρn−1

τn−1

τn
+ 1

∣∣∣∣+ lim
n→∞

|ρn−1|
τn−1

τn
+ 1

)

≤ ‖∆ρ‖χ ≤

∣∣∣∣ limn→∞
ρn−1

τn−1

τn
+ 1

∣∣∣∣+ lim
n→∞

|ρn−1|
τn−1

τn
+ 1,

‖I −∆ρ‖ = sup
n

(
|ρn−1|

τn−1

τn

)
,

lim
n→∞

|ρn−1|
τn−1

τn
≤ ‖I −∆ρ‖χ ≤ 2 · lim

n→∞
|ρn−1|

τn−1

τn
.

Now as a corollary we have the next result.

Corollary 3.5. Let τ ∈ U+. If limn ρn−1(τn−1/τn) exists, then ∆ρ ∈
(
s
(c)
τ , s

(c)
τ

)
;

if in addition limn |ρn−1|(τn−1/τn) < 1/2, then ‖I −∆ρ‖χ < 1, ∆ρ is a Fredholm

operator and i(∆ρ) = 0.
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Now we will consider the operator Σ = (σnm)n,m≥1 defined by σnm = 1 for

m ≤ n and σnm = 0 otherwise, and put C (τ) = D1/τΣ. Let us remark that the

operator C (τ) is a generalization of the Cesàro operator.

Theorem 3.11 ([49]). Let τ ∈ U+. If

sup
n≥1

1

τn

n∑

k=1

τk <∞,

then Σ ∈ (s0τ , s
0
τ ),

‖Σ‖ = sup
n≥1

1

τn

n∑

k=1

τk, ‖Σ‖χ = lim sup
n→∞

1

τn

n∑

k=1

τk,

‖I − Σ‖ = sup
n≥1

1

τn

n−1∑

k=1

τk, ‖I − Σ‖χ = lim sup
n→∞

1

τn

n−1∑

k=1

τk.

Corollary 3.6. Let τ ∈ U+. If

lim sup
n→∞

1

τn

n−1∑

k=1

τk < 1,

then Σ ∈
(
s0τ , s

0
τ

)
, ‖I − Σ‖χ < 1, Σ is a Fredholm operator and i(Σ) = 0.

Theorem 3.12 ([49]). Let τ ∈ U+. If
(

1

τn

n∑

k=1

τk

)

n

∈ c,

then Σ ∈ (s
(c)
τ , s

(c)
τ ),

‖Σ‖ = sup
n≥1

1

τn

n∑

k=1

τk,

lim
n→∞

1

τn

n∑

k=1

τk ≤ ‖Σ‖χ ≤ 2 lim
n→∞

1

τn

n∑

k=1

τk,

‖I − Σ‖ = sup
n≥1

1

τn

n−1∑

k=1

τk,

lim
n→∞

1

τn

n−1∑

k=1

τk ≤ ‖I − Σ‖χ ≤ 2 lim
n→∞

1

τn

n−1∑

k=1

τk.
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Corollary 3.7. Let τ ∈ U+. If

lim
n→∞

1

τn

n−1∑

k=1

τk <
1

2
,

then Σ ∈ (s
(c)
τ , s

(c)
τ ), ‖I − Σ‖χ < 1, Σ is a Fredholm operator and i(Σ) = 0.

4. Fixed point theory

Fixed point theory is a major branch of nonlinear functional analysis because

of its wide applicability. Numerous questions in physics, chemistry, biology, and

economics lead to various nonlinear differential and integral equations.

The classical Banach contraction principle [11] is one of the most useful results

in metric fixed point theory. Due to its applications in mathematics and other related

disciplines, this principle has been generalized in many directions. Extensions of the

Banach contraction principle have been obtained either by generalizing the distance

properties of underlying domain or by modifying the contractive condition on the

mappings.

4.1. Extensions of Banach’s theorem to partial metric space

Matthews [132] introduced the notion of a partial metric space as a part of the

study of denotational semantics of dataflow networks, showing that the Banach con-

traction mapping theorem can be generalized to the partial metric context for appli-

cations in program verification.

A nonnegative mapping p : X ×X → R, where X is a nonempty set, is said to

be a partial metric on X if for any x, y, z ∈ X the following four conditions hold

true:

(P1) x = y if and only if p(x, x) = p(y, y) = p(x, y);

(P2) p(x, x) ≤ p(x, y);

(P3) p(x, y) = p(y, x);

(P4) p(x, z) ≤ p(x, y) + p(y, z)− p(y, y).

The pair (X, p) is then called a partial metric space. A sequence {xm}∞m=0 of

elements of X is called p-Cauchy if the limit limm,n p(xn, xm) exists and is finite.

The partial metric space (X, p) is called complete if for each p-Cauchy sequence

{xm}∞m=0 there is some z ∈ X such that

p(z, z) = lim
n
p(z, xn) = lim

n,m
p(xn, xm). (4.1)
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It can be shown that if (X, p) is a partial metric space then by ps(x, y) = 2p(x, y)−
p(x, x)−p(y, y), for x, y ∈ X, a metric ps is defined on the set X such that {xn}n≥1

converges to z ∈ X with respect to ps if and only if (4.1) holds.

Set rp := inf{p(x, y) : x, y ∈ X} = inf{p(x, x) : x ∈ X} and Rp := {x ∈ X :
p(x, x)=rp}. Notice thatRp may be empty. Ĩf p is a metric then rp = 0 and Rp = X.

In [82] we studied fixed point results of new extensions of Banach’s contraction

principle on partial metric space, and we give some generalized versions of the fixed

point theorem of Matthews. The theory was illustrated by some examples.

Theorem 4.1 ([82]). Let (X, p) be a complete partial metric space, α ∈ [0, 1)
and T : X → X be a given mapping. Suppose the following condition holds for each

x, y ∈ X
p(Tx, Ty) ≤ max{αp(x, y), p(x, x), p(y, y)}. (4.2)

Then the set Rp is nonempty. There is a unique u ∈ Rp such that Tu = u. For each

x ∈ Rp the sequence {T nx}n≥1 converges with respect to the metric ps to u.

If the condition (4.2) is replaced by the somewhat stronger condition bellow then

the uniqueness of the fixed point is guaranteed.

Theorem 4.2 ([82]). Let (X, p) be a complete partial metric space, α ∈ [0, 1)
and T : X → X be a given mapping. Suppose the following condition holds for each

x, y ∈ X
p(Tx, Ty) ≤ max

{
αp(x, y),

p(x, x) + p(y, y)

2

}
. (4.3)

Then there is a unique z ∈ X such that Tz = z. Furthermore z ∈ Rp and for each

x ∈ Rp the sequence {T nx}n≥1 converges with respect to the metric ps to z.

As a corollary we obtain the already mentioned result of Matthews.

Corollary 4.1 ([132]). Let (X, p) be a complete partial metric space, α ∈ [0, 1)
and T : X → X be a given mapping. Suppose the following condition holds for each

x, y ∈ X
p(Tx, Ty) ≤ αp(x, y). (4.4)

Then there is a unique z ∈ X such that Tz = z. Furthermore z ∈ Rp and for each

x ∈ Rp the sequence {T nx}n≥1 converges with respect to the metric ps to z.

Example 4.1 ([82]). LetX := [0, 1]∪ [2, 3] and define p : X2 → R by p(x, y) =
max{x, y} if {x, y}∩ [2, 3] 6= ∅ and p(x, y) = |x−y| if {x, y} ⊆ [0, 1]. Then (X, p)
is a complete partial metric space.

Define T : X → X by Tx = x+1
2 if x ∈ [0, 1], Tx = 2+x

2 if x ∈ (2, 3] and

T2 = 1.

Then p(Tx, Ty) ≤ 1
2p(x, y) holds whenever {x, y} ⊆ [0, 1] and p(Tx, Ty) ≤

p(x,x)+p(y,y)
2 holds whenever {x, y} ∩ [2, 3] 6= ∅.
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Given any γ ∈ [0, 1) observe that if γ ≤ 1
2 then (4.4) fails for any x, y ∈ (2, 3]

and if γ ∈ (12 , 1) then (4.4) fails for any x, y such that 2 < y ≤ x < 2
2γ−1 .

By Theorem 4.2 there is a unique fixed point z = 1 and we have p(1, 1) = 0 = rp.

Here Rp = [2, 3] and whether Picard sequences {T nx}n≥0 of points x ∈ X \Rp

converge to the fixed point or not depends on the particular point x chosen: if x ∈
(2, 3] the answer is negative and if x = 2 the answer is positive.

4.2. Perov contractive condition in fixed point theory

Kurepa [119] in 1934, initiated the idea of more general concept of metric space

that was later introduced by Zabreiko [183] as K-metric space and by Huang and

Zhang [78] as cone metric space. There were published many results concerning

fixed point theorems on both normal and non-normal cone metric spaces in the sense

of Huang and Zhang.

In 1964, Perov [139] studied the Banach contraction principle on a generalized

metric space. He replaced the contractive constant with a matrix with nonnegative

entries and spectral radius less than 1, and obtained some fixed point theorems with

various applications in coincidence problems, coupled fixed point problems and sys-

tems of semilinear differential inclusions. Let us remark that his generalized metric

space is a special case of a normal cone metric space. We study fixed point results for

the new extensions of Banach’s contraction principle to cone metric spaces, and give

some generalized versions of the fixed point theorem of Perov. As corollaries we gen-

eralized some results of Zima [184] and Borkowski, Bugajewski and Zima [21] for a

Banach space with a non normal cone. The theory is illustrated with some examples.

Let E be a real Banach space. A subset P of E is called a cone if:

(i) P is closed, nonempty and P 6= {0} ;

(ii) a, b ∈ R, a, b ≥ 0, and x, y ∈ P imply ax+ by ∈ P ;

(iii) P ∩ (−P ) = {0}.

Given a cone P ⊂ E, we define the partial ordering ≤ with respect to P by x ≤ y
if and only if y − x ∈ P . We shall write x < y to indicate that x ≤ y but x 6= y,

while x≪ y will stand for y − x ∈ intP (interior of P ).

There exist two kinds of cones: normal and non-normal ones.

The cone P in a real Banach space E is called normal if

inf{‖x+ y‖ : x, y ∈ P and ‖x‖ = ‖y‖ = 1} > 0 (4.5)

or, equivalently, if there is a number K > 0 such that for all x, y ∈ P ,

0 ≤ x ≤ y implies ‖x‖ ≤ K ‖y‖ . (4.6)

The least positive number satisfying (4.6) is called the normal constant of P . It is

clear that K ≥ 1.
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Let X be a nonempty set, and let P be a cone on a real ordered Banach space E.

Suppose that the mapping d : X ×X 7→ E satisfies:

(d1) 0 ≤ d(x, y) for all x, y ∈ X and d(x, y) = 0 if and only if x = y ;

(d2) d(x, y) = d(y, x) for all x, y ∈ X ;

(d3) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X.

Then d is called a cone metric on X and (X, d) is called a cone metric space [78].

Let {xn} be a sequence in X, and x ∈ X. If for every c in E with 0 ≪ c, there is

n0 such that d(xn, x) ≪ c for all n > n0, then {xn} is said to converge to x, denoted

by limn→∞ xn = x, or xn → x, n → ∞. If for every c in E with 0 ≪ c, there is n0
such that d(xn, xm) ≪ c for all n,m > n0, then {xn} is called a Cauchy sequence

in X. If every Cauchy sequence is convergent in X, then X is called a complete cone

metric space [78].

Theorem 4.3 ([35]). Let (X, d) be a complete cone metric space, d : X ×X 7→
E, f : X 7→ X, A ∈ B(E), with r(A) < 1 and A(P ) ⊆ P , such that

d(f(x), f(y)) ≤ Ad(x, y), x, y ∈ X. (4.7)

Then:

(i) f has a unique fixed point z ∈ X;

(ii) For any x0 ∈ X the sequence xn = f(xn−1), n ∈ N converges to z and

d(xn, z) ≤ An(I −A)−1(d(x0, x1)), n ∈ N;

(iii) Suppose that g : X 7→ X satisfies the condition d(f(x), g(x)) ≤ c for all x ∈ X
and some c ∈ P . Then if yn = gn(x0), n ∈ N, we have

d(yn, z) ≤ (I −A)−1(c) +An(I −A)−1(d(x0, x1)), n ∈ N.

Theorem 4.4 ([35]). Let (X, d) be a complete cone metric space, d : X ×X 7→
E, and let T be a set-valued d–Perov contractive mapping (i.e. there exists A ∈
B(E), such that r(A) < 1, A(P ) ⊆ P and for any x1, x2 ∈ X and y1 ∈ Tx1
there is y2 ∈ Tx2 with d(y1, y2) ≤ A(d(x1, x2)) from X into itself such that for any

x ∈ X, Tx is a nonempty closed subset of X. Then there exists x0 ∈ X such that

x0 ∈ Tx0, i.e., x0 is a fixed point of T .

Remark 4.1. Let us remark that the initial assumption A ∈ Mn,n(R+), in Perov

theorem, is unnecessary. The last remark will be illustrated by the following example.

Example 4.2 ([35]). Let

A =




1
2 −1

4 0
1
4 −1

2 0

0 0 1
2
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X =



x =



x1
1
x3


 : xi ∈ R, i = 1, 3



 and f : X 7→ X, f





x1
1
x3




 =




x1+1
2
1

x3+2
3


.

Let us define d : X ×X 7→ R3 by

d(x, y) = max{|x1 − y1|, 0, |x3 − y3|}, x, y ∈ X,

and set ‖x‖ = max{|x1|, |x2|, |x3|}, x =



x1
x2
x3


 ∈ R3.

For arbitrary x ∈ R3, we have

‖Ax‖ = max

{
|
1

2
x1 −

1

4
x2|, |

1

4
x1 −

1

2
x2|, |

1

2
x3|

}

≤ max

{
1

2
‖x‖+

1

4
‖x‖,

1

4
‖x‖+

1

2
‖x‖,

1

2
‖x‖

}

=
3

4
‖x‖.

Thus, ‖A‖ ≤ 3
4 . If x =



−1
1
1


, ‖x‖ = 1, then ‖Ax‖ = 3

4 . Hence, ‖A‖ = 3
4 .

Now r(A) ≤ ‖A‖ = 3/4 and

d(f(x), f(y)) ≤ A(d(x, y)), x, y ∈ X.

Clearly, A(P ) * P , and (1, 1, 1) is a unique fixed point of f in X.

Based on the previous comments, we obtain the next result, where we do not

suppose that A(P ) ⊂ P .

Theorem 4.5 ([35]). Let (X, d) be a complete cone metric space, d : X ×X 7→
E, P a normal cone with normal constant K , A ∈ B(E) and K · ‖A‖ < 1. If the

condition (4.7) holds for a mapping f : X 7→ X, then f has a unique fixed point

z ∈ X and the sequence xn = f(xn−1), n ∈ N converges to z for any x0 ∈ X.
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[7] I. Altun, V. Rakočević, Ordered cone metric spaces and fixed point results, Comput.

Math. Appl. 60 (5) (2010), 1145–1151.

[8] A. A. Al-Mezel, Chi-Ming Chen, E. Karapinar, V. Rakočević, Fixed point results for
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Math. Nachr. 278 (2005), 808–814.
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[52] B. de Malafosse and V. Rakočević, A generalization of a Hardy theorem, Linear Al-

gebra Appl. 421 (2007), 306–314.

[53] B. de Malafosse, V. Rakočević, Calculations in new sequence spaces and application

to statistical convergence, CUBO, A Mathematical Journal, 12 (2010), 121–138.
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[109] J. J. Koliha, V. Rakočević, On the norms of idempotents in C∗–algebras, Rocky

Mountain J. Math. 34 (2004), 685–697.
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