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1. Introduction

The concept of discriminantly separable polynomials has been introduced by the

author some years ago [14]. We review the basic notions and indicate several rela-

tionships and applications to different areas of mathematics and mechanics, which

arose in the meantime. Some of the results were obtained jointly with Dr. Katarina

Kukić, a former author’s PhD student.

Although purely algebraic in nature, the concept of discriminantly separable

polynomials emerged within author’s attempt to develop a novel approach to the clas-

sical, celebrated Kowalevski top and a geometrization of the Kowalevski integration
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procedure from [33]. Thus, one direction of applications goes toward continuous in-

tegrable systems and classical mechanics. Geometric applications are related to the

fact that the equations of pencils of conics in appropriate coordinates induce discrim-

inantly separable polynomials. Algebraic and algebro-geometric connections lead

to so-called Buchstaber-Novikov n-valued groups. Beside continuous integrable sys-

tems, discrete integrable systems, namely integrable quad-graphs appear to be closely

related to dicriminantly separable polynomials. Moreover, there is a full parallelism

between a classification of discriminantly separable polynomials and a well-known

ABS classification [2] of quad-graphs. The results presented in this short overview

are obtained in [14], [34], [35], [21], [22], [23], [24], [25], [15], [16].

2. Discriminantly separable polynomials-definition and basic notions

Before giving a formal definition of the discriminantly separable polynomials, let

us recall the equations of a pencil of conics. Denote such an equation as F(w, x1, x2)
= 0, where w is the pencil parameter; x1 and x2 are the Darboux coordinates. The

choice of that classical, but mainly forgotten notion of the Darboux coordinates, in-

stead of usual projective coordinates appear to be a subtle point and ”an educated

guess” which has had important consequences to the development of the theory of

discriminantly separable polynomials. These Darboux coordinates [13], (see also

[19]), should not be confused with a well-known Darboux coordinates from simplec-

tic geometry, [3]. We recall some of the details: given two conics C1 and C2 in a

general position by their tangential equations

C1 : a0w
2
1 + a2w

2
2 + a4w

2
3 + 2a3w2w3 + 2a5w1w3 + 2a1w1w2 = 0;

C2 :w
2
2 − 4w1w3 = 0.

(2.1)

Then the conics of this general pencil C(s) := C1 + sC2 have four common tangent

lines. Denote the matrix M :

M(s, z1, z2, z3) =

⎡

⎢

⎢

⎣

0 z1 z2 z3
z1 a0 a1 a5 − 2s
z2 a1 a2 + s a3
z3 a5 − 2s a3 a4

⎤

⎥

⎥

⎦

. (2.2)

The coordinate equations of the conics of the pencil are

F (s, z1, z2, z3) := detM(s, z1, z2, z3) = 0,

which determines a quadratic polynomial in the pencil parameter s, namely

F := H +Ks+ Ls2,
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with H , K , and L being quadratic expressions in (z1, z2, z3).
Assume the standard projective coordinates (z1 : z2 : z3) in the plane, and

choose, without loss of generality, a rational parametrization of the conic C2 by

(1, ℓ, ℓ2). The tangent line to the conic C2 through a point of the conic with the

parameter ℓ0 is given by the equation

tC2
(ℓ0) : z1ℓ

2
0 − 2z2ℓ0 + z3 = 0.

For a given point P outside the conic in the plane with the coordinates P = (ẑ1, ẑ2, ẑ3),
there are two corresponding solutions x1 and x2 of the equation quadratic in ℓ

ẑ1ℓ
2 − 2ẑ2ℓ+ ẑ3 = 0. (2.3)

The two solutions correspond to two tangent lines to the conic C2 from the point P .

We will define the pair (x1, x2) as the Darboux coordinates of the point P . One finds

immediately the converse formulae ẑ1 = 1, ẑ2 = (x1 + x2)/2, ẑ3 = x1x2.
Changing the variables in the polynomial F from the projective coordinates (z1 :

z2 : z3) to the Darboux coordinates, we rewrite its expression in the form

F(s, x1, x2) = L(x1, x2)s
2 +K(x1, x2)s+H(x1, x2).

The key algebraic property of the pencil polynomial written in this form, as a quadratic

polynomial in each of the three variables s, x1, x2 is: all three of its discriminants are

expressed as products of two polynomials in one variable each:

Dw(F)(x1, x2) = P (x1)P (x2), Dxi
(F)(w, xj) = J(w)P (xj), i, j = 1, 2,

where J and P are polynomials of degree 3 and 4 respectively, and the elliptic curves

Γ1 : y
2 = P (x), Γ2 : y

2 = J(s)

appear to be isomorphic (see Proposition 1 of [14]). Here, and below, we denote by

Dxi
F(xj , xk), the discriminant of F considered as a quadratic polynomial in xi.
As a geometric interpretation of F (s, x1, x2) = 0 we may say that the point P in

the plane, with the Darboux coordinates with respect to C2 equal to (x1, x2) belongs

to two conics of the pencil, with the pencil parameters equal to s1 and s2, such that

F(si, x1, x2) = 0, i = 1, 2.

Now we provide a general definition of the discriminantly separable polynomials.

With Pn
m denote the polynomials of m variables of the degree n in each variable.
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Definition 2.1 ([14]). A polynomial F (x1, . . . , xn) is discriminantly separable

if there exist polynomials fi(xi) such that for every i = 1, . . . , n

Dxi
F (x1, . . . , x̂i, . . . , xn) =

∏

j ̸=i

fj(xj).

It is symmetrically discriminantly separable if f2 = f3 = · · · = fn, while it is

strongly discriminantly separable if f1 = f2 = f3 = · · · = fn. It is weakly discrimi-

nantly separable if there exist polynomials f j
i (xi) such that for every i = 1, . . . , n,

Dxi
F (x1, . . . , x̂i, . . . , xn) =

∏

j ̸=i

f i
j(xj).

2.1. Two-valued groups

The idea of n-valued groups, on a local level, goes back to Buchstaber and

Novikov (see [9]), to their 1971 study of characteristic classes of vector bundles.

That concept was significantly developed further by Buchstaber and his collaborators

([11] and references therein). An n-valued group on X can be defined as a map:

m : X ×X → (X)n,

m(x, y) = x ∗ y = [z1, . . . , zn],

where (X)n denotes the symmetric n-th power of X and zi coordinates therein. Such

a map should satisfy the following axioms. Associativity: the condition of equality

of two n2-sets
[x ∗ (y ∗ z)1, . . . , x ∗ (y ∗ z)n],
[(x ∗ y)1 ∗ z, . . . , (x ∗ y)n ∗ z]

for all triplets (x, y, z) ∈ X3. Similarly, an element e ∈ X is a unit if

e ∗ x = x ∗ e = [x, . . . , x],

for all x ∈ X. A map inv : X → X is an inverse if it satisfies

e ∈ inv(x) ∗ x, e ∈ x ∗ inv(x),

for all x ∈ X. Buchstaber says that m defines an n-valued group structure

(X,m, e, inv) if it is associative, with a unit and an inverse.

An n-valued group X acts on a set Y if there is a mapping

φ : X × Y → (Y )n,

φ(x, y) = x ◦ y,

such that the two n2-multisubsets x1 ◦ (x2 ◦ y), (x1 ∗ x2) ◦ y of Y are equal for all

x1, x2 ∈ X, y ∈ Y . It is also assumed e ◦ y = [y, . . . , y] for all y ∈ Y .
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Example 2.1 (A two-valued group structure on Z+, [10]). Let us consider the set

of nonnegative integers Z+ and define a mapping

m : Z+ × Z+ → (Z+)
2,

m(x, y) = [x+ y, |x− y|].

This mapping provides a structure of a two-valued group on Z+ with the unit e = 0
and the inverse equal to the identity inv(x) = x.

In [10], the algebraic action of this group on CP
1 was studied and it was shown

that in the irreducible case all such actions are generated by the Euler-Chasles corre-

spondences.

There is another 2-valued group and its action on CP
1 which is also closely

related to the Euler-Chasles correspondence and to the Great Poncelet Theorem.

This action is intimately related to the Kowalevski fundamental equation and to the

Kowalevski change of variables as well.

Let us consider one more simple example.

Example 2.2. Two-valued group p2 is defined by the relation

m2 : C× C → (C)2,

x ∗2 y = [(
√
x+

√
y)2, (

√
x−

√
y)2]

(2.4)

The product x ∗2 y is given by the solutions of the polynomial equation

p2(z, x, y) = 0,

in z, where

p2(z, x, y) = (x+ y + z)2 − 4(xy + yz + zx).

The polynomial p2(z, x, y) is discriminantly separable:

Dz(p2)(x, y) = P (x)P (y), Dx(p2)(y, z) = P (y)P (z), Dy(p2)(x, z) = P (x)P (z),

where P (x) = 2x.

The polynomial p2 as a discriminantly separable, generates a case of generalized

Kowalevski system of differential equations from [14].

2.2. 2-valued group on CP
1 and the Kowalevski top

It appears that the general equation of pencil of conics corresponds to an action of

a two valued group. We use this correspondence to provide a novel interpretation of

’the mysterious Kowalevski change of variables’ (the adjective being borrowed from
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[4]). This line of thoughts may be seen as a further development of the ideas of Weil

and Jurdjevic (see [38], [29], [30]). It turned out that the associativity condition for

this action is equivalent to the Great Poncelet Theorem for a triangle, see [14].

The general pencil equation F(s, x1, x2) = 0 is related to two elliptic curves

Γ̃1 : y2 = P (x), Γ̃2 : t2 = J(s), where the polynomials P, J are of degree four and

three respectively. These two elliptic curves are isomorphic. Rewrite the cubic one

Γ̃2 in the canonical form Γ̃2 : t2 = J ′(s) = 4s3 − g2s − g3. Let ψ : Γ̃2 → Γ̃1 be a

birational morphism between the curves induced by a fractional-linear transformation

ψ̂ which maps the three zeros of J ′ and ∞ to the four zeros of the polynomial P .

The curve Γ̃2 as a cubic has a group structure with the neutral element at infinity.

With the subgroup Z2, it defines the standard two-valued group structure on CP
1 (see

[8]):

s1 ∗c s2 =

[

−s1 − s2 +

(

t1 − t2
2(s1 − s2)

)2

,−s1 − s2 +

(

t1 + t2
2(s1 − s2)

)2
]

, (2.5)

where ti = J ′(si), i = 1, 2.

Theorem 2.1 ([14]). The general pencil equation after fractional-linear trans-

formations

F(s, ψ̂−1(x1), ψ̂
−1(x2)) = 0

induces the two valued coset group structure (Γ̃2,Z2) defined by the relation (2.5).

A proof is given in [14].

2.3. Review of the fundamental steps of the Kowalevski integration procedure

The Kowalevski top [33] is a celebrated example of a heavy rigid body which rotates

about a fixed point, under the conditions I1 = I2 = 2I3, I3 = 1, Y0 = Z0 = 0 (see

subsection 2.1). More about the theory of motion of heavy rigid-bodies one may find

in, for example, [3], [28], [5], [18], [27], [17]. Denote by c = mgX0, where m is the

mass of the top, and denote by (p, q, r) the vector of angular velocity Ω⃗. Then the

equations of motion take the following form, see [33], [28], [35], [34], [26]:

2ṗ = qr, Γ̇1 = rΓ2 − qΓ3,

2q̇ = −pr − cΓ3, Γ̇2 = pΓ3 − rΓ1,

ṙ = cΓ2, Γ̇3 = qΓ1 − pΓ2.

(2.6)

The system (2.6) as any other system of equations of a heavy rigid body, has three

well known first integrals of motion. In this particular case there is also an additional,
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fourth, first integral, discovered by Kowalevski

2(p2 + q2) + r2 = 2cΓ1 + 6l1,

2(pΓ1 + qΓ2) + rΓ3 = 2l,

Γ2
1 + Γ2

2 + Γ2
3 = 1,

(

(p+ iq)2 + Γ1 + iΓ2

) (

(p− iq)2 + Γ1 − iΓ2

)

= k2.

(2.7)

A significance of the Kowalevski top is that the additional first integral is of fourth

degree in momenta.

By using the change of variables

x1 = p+ iq, e1 = x21 + c(Γ1 + iΓ2),

x2 = p− iq, e2 = x22 + c(Γ1 − iΓ2),
(2.8)

the first integrals (2.7) transform into

r2 = E + e1 + e2,

rcΓ3 = G− x2e1 − x1e2,

c2Γ2
3 = F + x22e1 + x21e2,

e1e2 = k2,

(2.9)

with E = 6l1 − (x1 + x2)2, F = 2cl + x1x2(x1 + x2), G = c2 − k2 − x21x
2
2. One

easily gets

(E + e1 + e2)(F + x22e1 + x21e2)− (G− x2e1 − x1e2)
2 = 0,

which has an equivalent form

e1P (x2) + e2P (x1) +R1(x1, x2) + k2(x1 − x2)
2 = 0, (2.10)

where the polynomial P is

P (xi) = x2iE + 2x1F +G = −x4i + 6l1x
2
i + 4lcxi + c2 − k2, i = 1, 2,

and

R1(x1, x2) = EG− F 2

= −6l1x
2

1x
2

2 − (c2 − k2)(x1 + x2)
2 − 4lc(x1 + x2)x1x2 + 6l1(c

2 − k2)− 4l2c2.

A remarkable and not obvious property of P is its dependence on only one vari-

able. Let

R(x1, x2) = Ex1x2 + F (x1 + x2) +G.
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From (2.10), following Kowalevski, one gets

(
√

P (x1)e2 ±
√

P (x2)e1)
2 = −(x1 − x2)

2k2 ± 2k
√

P (x1)P (x2)−R1(x1, x2). (2.11)

After a few transformations, (2.11) can be written in the form

[

√
e1

√

P (x2)

x1 − x2
±

√
e2

√

P (x1)

x1 − x2

]2

= (w1 ± k)(w2 ∓ k), (2.12)

where w1, w2 are the solutions of an equation, quadratic in s:

Q(s, x1, x2) = (x1 − x2)
2s2 − 2R(x1, x2)s−R1(x1, x2) = 0. (2.13)

The quadratic equation (2.13) is known as the Kowalevski fundamental equa-

tion. As it has been observed in [14], the discriminant separability condition for

Q(s, x1, x2) is satisfied

Ds(Q)(x1, x2) = 4P (x1)P (x2),

Dx1
(Q)(s, x2) = −8J(s)P (x2), Dx2

(Q)(s, x1) = −8J(s)P (x1),

with

J(s) = s3 + 3l1s
2 + s(c2 − k2) + 3l1(c

2 − k2)− 2l2c2.

The equations of motion (2.6) in new variables (x1, x2, e1, e2, r,Γ3) take the form:

2ẋ1 = −if1, ė1 = −me1,

2ẋ2 = if2, ė2 = me2.
(2.14)

Two additional differential equations for ṙ and Γ̇3 can be easily derived. Here m = ir
and f1 = rx1 + cΓ3, f2 = rx2 + cΓ3. The following formulas hold:

f2
1 = P (x1) + e1(x1 − x2)

2, f2
2 = P (x2) + e2(x1 − x2)

2. (2.15)

Further steps of the integration procedure are presented in [33], see for example

[23].

Theorem 2.2 ([14]). The Kowalevski fundamental equation coincides with the

point pencil equation generated by the conics given by their tangential equations

Ĉ1 : − 2w2
1 + 3l1w

2
2 + 2(c2 − k2)w2

3 − 4clw2w3 = 0;

C2 :w
2
2 − 4w1w3 = 0.

(2.16)

The Kowalevski variables w, x1, x2 get a novel geometric interpretation in this set-

tings: they are the pencil parameter, and the Darboux coordinates with respect to the

conic C2, respectively.
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The Kowalevski case is extracted from the general case of pencil of conics by the

conditions a1 = 0, a5 = 0, a0 = −2. The last relation is nothing but a normaliza-

tion condition, provided a0 ̸= 0. The Kowalevski parameters l1, l, c can be expressed

by the formulas

l1 =
a2
3
, l = ±

1

2

√

−a4 +
√

a4 + 4a23, c = ∓
a3

√

−a4 +
√

a4 + 4a23

,

with an additional condition that l and c are real. For the sake of historic clarity, we

observe that Kowalevski in [33], didn’t use the relation (2.13), but an equivalent one.

The equivalence is obtained by putting w = 2s − l1.

The success of the mechanism of the Kowalevski change of variables is based on

the following consequence of the discriminant separability property of the polyno-

mial F = Q:

dx1
√

P (x1)
+

dx2
√

P (x2)
=

dw1
√

J(w1)
,

dx1
√

P (x1)
−

dx2
√

P (x2)
=

dw2
√

J(w2)
.

(2.17)

The Kowalevski change of variables (see equations (2.17)) can be seen as an

infinitesimal of the correspondence which maps a pair of points (M1,M2) to a pair

of points (S1, S2). Both pairs belong to a P1 as a factor of an appropriate elliptic

curve. A geometric interpretation of this mapping is the correspondence which maps

two tangents to the conic C to the pair of conics from the pencil which contain the

intersection point of the two lines.

Theorem 2.3 ([14]). The Kowalevski change of variables is equivalent to an

infinitesimal of the action of the two valued coset group (Γ̃2,Z2) on P1 as a factor

of the elliptic curve. Up to a fractional-linear transformation, it is equivalent to the

operation of the two valued group (Γ̃2,Z2).

Now, the Kötter trick (see [32], [14]) can be applied to the following commutative

diagram.

Proposition 2.1 ([14]). The Kowalevski integration procedure may be coded in
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the following commutative diagram:

C
4 Γ̃1 × Γ̃1 × C Γ̃2 × Γ̃2 × C

Γ̃1 × Γ̃1 × C× C CP
1 × CP

1 × C

C× C CP
1 × CP

1 × C

CP
2 CP

2 × C/ ∼

✲
i
Γ̃1

×i
Γ̃1

×m

❄

i
Γ̃1

×i
Γ̃1

×id×id

◗
◗

◗
◗
◗
◗
◗
◗
◗◗$

ia×ia×m

❄

p1×p1×id

✲ψ−1×ψ−1×id

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓✓✴

p1×p1×id

❄

ϕ1×ϕ2

❄

ψ̂−1×ψ̂−1×id

❄

m2

❄

mc×τc

✛ f

The mappings are defined as follows

i
Γ̃1

: x ,→ (x,
√

P (x)),

m : (x, y) ,→ x · y,
ia : x ,→ (x, 1),

p1 : (x, y) ,→ x,

mc : (x, y) ,→ x ∗c y,
τc : x ,→ (

√
x,−

√
x),

ϕ1 : (x1, x2, e1, e2) ,→
√
e1

√

P (x2)

x1 − x2

,

ϕ2 : (x1, x2, e1, e2) ,→
√
e2

√

P (x1)

x1 − x2

,

f : ((s1, s2, 1), (k,−k)) ,→ [(γ−1(s1) + k)(γ−1(s2)− k), (γ−1(s2) + k)(γ−1(s1)− k)].
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3. Systems of the Kowalevski type. Definition

Following [21, 23, 24], we present a class of integrable systems, which general-

ize the Kowalevski top. Instead of the Kowalevski fundamental equation (see formula

(2.13)), the starting point here would be an arbitrary discriminantly separable poly-

nomial of degree two in each of three variables.

Given a discriminantly separable polynomial of the second degree in each of three

variables

F(x1, x2, s) := A(x1, x2)s
2 +B(x1, x2)s+ C(x1, x2), (3.1)

such that

Ds(F)(x1, x2) = B2 − 4AC = 4P (x1)P (x2),

and
Dx1

(F)(s, x2) = 4P (x2)J(s),

Dx2
(F)(s, x1) = 4P (x1)J(s).

Suppose, that a given system in variables x1, x2, e1, e2, r, γ3, after some transfor-

mations reduces to

2ẋ1 = −if1, ė1 = −me1,

2ẋ2 = if2, ė2 = me2,
(3.2)

where

f2
1 = P (x1) + e1A(x1, x2), f2

2 = P (x2) + e2A(x1, x2). (3.3)

Suppose additionally, that the first integrals of the initial system reduce to a rela-

tion

P (x2)e1 + P (x1)e2 = C(x1, x2)− e1e2A(x1, x2). (3.4)

The equations for ṙ and Γ̇3 are not specified for the moment and m is a function

of system’s variables.

If a system satisfies the above assumptions we will call it a system of the Kowalev-

ski type. As it has been pointed out in the previous subsection, see formulae (2.10,

2.13, 2.14,2.15), the Kowalevski top is an example of the systems of the Kowalevski

type.

The following theorem is quite general, and concerns all the systems of the

Kowalevski type. It explains in full a subtle mechanism of a quite miraculous jump

in genus, from one to two, in integration procedure, which has been observed in the

Kowalevski top, and now it is going to be established as a characteristic property of

the whole new class of systems.
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Theorem 3.1. Given a system which reduces to (3.2, 3.3, 3.4). Then the system

is linearized on the Jacobian of the curve

y2 = J(z)(z − k)(z + k),

where J is a polynomial factor of the discriminant of F as a polynomial in x1 and k
is a constant such that

e1e2 = k2.

The last Theorem basically formalizes the original considerations of Kowalevski,

in a slightly more general context of the discriminantly separable polynomials. A

proof is presented in [24].

3.1. An example of systems of the Kowalevski type

In this subsection we present the Sokolov system given in [37] as an example of

systems of the Kowalevski type, see [23], [24]. Consider [37] the Hamiltonian

Ĥ = M2
1 +M2

2 + 2M2
3 + 2c1γ1 + 2c2(γ2M3 − γ3M2) (3.5)

on e(3) with the Lie-Poisson brackets

{Mi,Mj} = ϵijkMk, {Mi, γj} = ϵijkγk, {γi, γj} = 0, (3.6)

where ϵijk is the totally skew-symmetric tensor. In [31], an explicit map between the

integrable system on e(3) with the Hamiltonian (3.5) and the Kowalevski top on so(4)
has been found. The separation of variables for the system (3.5) was performed. The

aim of this section is to show that the system can be seen as an element of the class

of the systems of the Kowalevski type, [23], [24].

The Lie-Poisson brackets (3.6) have two Casimirs:

γ21 + γ22 + γ23 = a,

γ1M1 + γ2M2 + γ3M3 = b.

As in [31] and [33], one can introduce new variables z1 = M1+iM2, z2 = M1−iM2

and

e1 = z21 − 2c1(γ1 + iγ2)− c22a− c2(2γ2M3 − 2γ3M2 + 2i(γ3M1 − γ1M3)),

e2 = z22 − 2c1(γ1 − iγ2)− c22a− c2(2γ2M3 − 2γ3M2 + 2i(γ1M3 − γ3M1)).

The second first integral of motion of the system (3.5) can be written as

e1e2 = k2. (3.7)
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The equations of motion for new variables zi, ei can be written in the form of (3.2)

and (3.3). This is in a full accordance with our definition of the systems of Kowalevski

type. It is easy to prove that:

ė1 = −4iM3e1, ė2 = 4iM3e2,

and
−ż1

2 = P (z1) + e1(z1 − z2)
2,

−ż2
2 = P (z2) + e2(z1 − z2)

2,
(3.8)

where P is a polynomial of degree four:

P (z) = −z4 + 2Hz2 − 8c1bz − k2 + 4ac21 − 2c22(2b
2 −Ha) + c42a. (3.9)

The biquadratic form and the separated variables were defined [31]:

F (z1, z2) = −
1

2

(

P (z1) + P (z2) + (z21 − z22)
2
)

,

s1,2 =
F (z1, z2)±

√

P (z1)P (z2)

2(z1 − z2)2
,

(3.10)

such that

ṡ1 =

√

P5(s1)

s1 − s2
, ṡ2 =

√

P5(s2)

s2 − s1
, P5(s) = P3(s)P2(s),

with

P3(s) = s(4s2 + 4sH +H2 − k2 + 4c21a+ 2c22(Ha− 2b2) + c42a
2) + 4c21b

2,

P2(s) = 4s2 + 4(H + c22a)s+H2 − k2 + 2c22ha+ c42a
2.

To verify that, we still need to show that a relation of the form of (3.4) is satisfied and

to relate it with a corresponding discriminantly separable polynomial in the form of

(3.1). Starting from the equations

ż1 = −2M3(M1 − iM2) + 2c2(γ1M2 − γ2M1) + 2c1γ3

and

ż2 = −2M3(M1 + iM2) + 2c2(γ1M2 − γ2M1) + 2c1γ3,

one can prove that

ż1 · ż2 = −
(

F (z1, z2) + (H + c22a(z1 − z2)
2)
)

,
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where F (z1, z2) is given by (3.10). After equating the square of ż1ż2 from previous

relation and ż12 · ż22 with żi2 given by (3.8) we get

(z1 − z2)
2[2F (z1, z2)(H + c22a) + (z1 − z22)

4(H + c22a)
2 − P (z1)e2

− P (z2)e1 − e1e2(z1 − z2)
2] + F 2(z1, z2)− P (z1)P (z2) = 0.

(3.11)

Denote by C(z1, z2) a biquadratic polynomial such that F 2(z1, z2)−P (z1)P (z2) =
(z1 − z2)2C(z1, z2). Then we can rewrite relation (3.11) in the form of (3.4):

P (z1)e2 + P (z2)e1 = C̃(z1, z2)− e1e2(z1 − z2)
2, (3.12)

with

C̃(z1, z2) = C(z1, z2) + 2F (z1, z2)(H + c22a) + (H + c22a)
2(z1 − z2)

2. (3.13)

Further integration procedure follows Theorem 3.1. The discriminantly separable

polynomial of three variables of degree two in each variable “plays role” of the

Kowalevski fundamental equation in this case: i

F̃ (z1, z2, s) = (z1 − z2)
2s2 + B̃(z1, z2)s + C̃(z1, z2), (3.14)

with

B̃(z1, z2) = F (z1, z2) + (H + c22a)(z1 − z2)
2.

The discriminants of (3.14) as polynomials in s and in zi, for i = 1, 2 are

Ds(F̃ )(z1, z2) = P (z1)P (z2),

Dz1(F̃ )(s, z2) = 8J(s)P (z2), Dz2(Q)(s, z1) = 8J(s)P (z1),

where J is a polynomial of degree three

J = s3 + (H + 3ac22)s
2 + (−4c22b

2 − 2k2 + 4ac21 + 4c42a
2 + 4c22Ha)s

− 8c21b
2 − 4c42ab

2 + 4c21a
2c22 − k2c22a−Hk2 + 2aH2c22 − 4Hb2c22

+ 4Hc21a+ 4c42Ha2 + 2c62a
3.

4. Classification of strongly discriminantly separable polynomials of
degree two in three variables

In this section we present a classification from [22] of the strongly discriminantly

separable polynomials F(x1, x2, x3) ∈ C[x1, x2, x3] which are of degree two in
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each of three variables. This classification is done modulo the group of the Möbius

transformations

x1 ,→
ax1 + b

cx1 + d
, x2 ,→

ax2 + b

cx2 + d
, x3 ,→

ax3 + b

cx3 + d
. (4.1)

Denote by

F(x1, x2, x3) =
2

∑

i,j,k=0

aijkx
i
1x

j
2x

k
3 (4.2)

a strongly discriminantly separable polynomial with

Dxi
F(xj , xk) = P (xj)P (xk), (i, j, k) = c.p.(1, 2, 3). (4.3)

One gets a system of 75 equations of degree two with 27 unknowns aijk, by

plugging (4.2) into (4.3) for a given polynomial P (x) = Ax4+Bx3+Cx2+Dx+E.

Theorem 4.1. Given a nonzero polynomial P (x). The strongly discriminantly

separable polynomials F(x1, x2, x3) of degree two in each of the three variables

which satisfy (4.3), are exhausted modulo Möbius transformations, by the following

list coded by the structure of the roots of the polynomial P (x):

(A) If P has four simple zeros, it can be transformed to a canonical form PA(x) =
(k2x2 − 1)(x2 − 1), and

FA =
1

2
(−k2x21 − k2x22 + 1 + k2x21x

2
2)x

2
3 + (1− k2)x1x2x3

+
1

2
(x21 + x22 − k2x21x

2
2 − 1),

(B) if P has two simple zeros and one double, it can be transformed to a canonical

form PB(x) = x2 − e2, e ̸= 0, and

FB = x1x2x3 +
e

2
(x21 + x22 + x23 − e2),

(C) If P has two double zeros, and the canonical form PC(x) = x2, then

FC1
= λx21x

2
2 + µx1x2x3 + νx23, µ2 − 4λν = 1,

FC2
= λx21x

2
3 + µx1x2x3 + νx22, µ2 − 4λν = 1,

FC3
= λx22x

2
3 + µx1x2x3 + νx21, µ2 − 4λν = 1,

FC4
= λx21x

2
2x

2
3 + µx1x2x3 + ν, µ2 − 4λν = 1,
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(D) if P has one simple and one triple zero, then the canonical form is PD(x) = x,

and,

FD = −
1

2
(x1x2 + x2x3 + x1x3) +

1

4
(x21 + x22 + x23),

(E) if P has one quadruple zero, then the canonical form is PE(x) = 1, and

FE1
= λ(x1 + x2 + x3)

2 + µ(x1 + x2 + x3) + ν, µ2 − 4λν = 1,

FE2
= λ(x2 + x3 − x1)

2 + µ(x2 + x3 − x1) + ν, µ2 − 4λν = 1,

FE3
= λ(x1 + x3 − x2)

2 + µ(x1 + x3 − x2) + ν, µ2 − 4λν = 1,

FE4
= λ(x1 + x2 − x3)

2 + µ(x1 + x2 − x3) + ν, µ2 − 4λν = 1.

The proof from [22] is performed by a straightforward calculation and solving

the system of equations (4.3) for the canonical representatives of the polynomials

P. The correspondence between this classification and pencil of conics in the case

(A) is as follows: In the case of a general position, the conics of a pencil intersect

in four distinct points, and we code such situation with (1, 1, 1, 1). It corresponds

to the case above where the polynomial P has four simple zeros. In this case, the

family of strongly discriminantly separable polynomials corresponds to the equations

of the families constructed above of general pencils of conics. These families were

indicated in [14]. A corresponding pencil of conics is presented on Fig. 1.

Figure 1. Pencil with four simple points



Discriminantly separable polynomials: an overview 91

Without loss of generality, we use C2 as the conic with respect to which the Dar-

boux coordinates are defined. The obtained families of polynomials in cases (A), (B),

and (D) are unique up to Möbius equivalence. Each of them is Möbius-equivalent to

a corresponding strongly discriminantly separable polynomial, and they represent the

equations of pencils of conics of the types (A) = (1, 1, 1, 1), (B) = (1, 1, 2), and

(D) = (1, 3). The pencils (1, 1, 2) consist of conics sharing two simple points and

one double point, while the pencils (1, 3) consist of conics having one common sim-

ple point and one common triple point. However, the situations in the cases (C) and

(E) are significantly different. Not only are uniqueness, up to Möbius equivalence, of

the families of the polynomials, is lost, but also such a transparent geometric correla-

tion with pencils of conics disappears. We will skip here the details of the connection

with pencils of conics in the cases (B) and (D), see [22], which are analog to (A).

We will discuss now the cases (C) and (E) and the lack of relationship to the pencils

of types (2, 2) and (4) respectively. Former pencils contain conics which share two

double points, see Fig. 2 (left), while later describe pencils of conics having one point

of order 4 in common, see Fig. 2 (right).

Figure 2. Pencil with two double points (left) and with one quadruple point (right)

This unexpected lack of corresponding pencils of conics in the cases (C) and (E)

can be understood better in the light of the following statement:

Proposition 4.1 (Corollary, [36], VIII, Ch. 1). A symmetric (2 − 2) algebraic

correspondence cut on C by tangents to C2 splits into a Möbius transformation and

its inverse if and only if C2 has double contact with C . If C2 coincides with C , then

the correspondence is the identity taken twice.

The two points of contact correspond to the fixed points of the Möbius transfor-

mation.
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Suppose that the two fixed points of the Möbius transformation are the points

with the parameters equal to 0 and ∞. The Möbius transformation, denoted by w, is

of the form w(x) = ax. In a case of the pencil of conics of type (2, 2) with the inter-

section at two double points, according to the previous Proposition, the polynomial

F̂s(x1, x2) := F(x1, x2, s) has to have the form

F̂s(x1, x2) = (ax1 + bx2)(bx1 + ax2). (4.4)

For a fixed value of the parameter s, the polynomials FC1
− FC4

, do not have the

form (4.4). Those polynomials do not correspond to the pencils of conics with two

double base points. A similar argument when the fixed points of w coincide, explains

the case (E).

5. From discriminantly separable polynomials to integrable
quad-equations

The discriminantly separable polynomials appear to be related to discrete inte-

grable systems. We will show a relationship with integrable quad-equations, from

[22]. The theory of quad-graphs and quad-equations emerged in works of Adler,

Bobenko, Suris [1], [2], see also [6], [7].

x
4

x
3

x
1

Q

x
2

x
3

x
13

x
2

x
12

x
23

x
123

x x
1

Figure 3. Quad-equation Q(x1, x2, x3, x4) = 0 on an elementary quadrilateral (left)

and 3D-consistency (right)

The quad-equations are defined on quadrilaterals and they have the form

Q(x1, x2, x3, x4) = 0. (5.1)

Here Q is a polynomial of degree one in each variable. Such a polynomial is said to be

multiaffine. So-called field variables xi are assigned to four vertices of a quadrilateral
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as in a Figure 3 (left). The polynomial Q depends on the variables x1, . . . , x4 ∈ C,

but also depends on two additional parameters α,β ∈ C that are assigned to the edges

of a quadrilateral. The opposite edges carry the same parameter.

The equation (5.1) solved for each variable, gives the solution as a rational func-

tion of the other three variables. A solution (x1, x2, x3, x4) of the equation (5.1) is

said to be singular with respect to xi if it also satisfies the equation

Qxi
(x1, x2, x3, x4) = 0.

Following [2] we adopt the idea of integrability as a consistency, see Figure 3

(right). We assign six quad-equations to the faces of the coordinate cube. The system

is 3D-consistent if the three values for x123 obtained from the equations on the right,

back, and top faces coincide for arbitrary initial data x, x1, x2, x3.

The discriminant-like operators are introduced in [2]

δx,y(Q) = QxQy −QQxy, δx(h) = h2x − 2hhxx, (5.2)

and one can make a descent from the faces to the edges and then to the vertices of

the cube: in that way, from a multiaffine polynomial Q(x1, x2, x3, x4) we pass to a

biquadratic polynomial h(xi, xj) := δxk,xl
(Q(xi, xj , xk, xl)) and then, further, to a

polynomial P (xi) = δxj
(h(xi, xj)) of degree up to four. Using the relative invariants

of polynomials under fractional linear transformations, the formulae that express Q
through the biquadratic polynomials of three edges, were obtained in [2]:

2Qx1

Q
=

h12x1
h34 − h14x1

h23 + h23h34x3
− h23x3

h34

h12h34 − h14h23
. (5.3)

A biquadratic polynomial h(x, y) is said to be nondegenerate if no polynomial in

its equivalence class with respect to the fractional linear transformations, is divisible

by a factor of the form x − c or y − c, with c = const. A multiaffine function

Q(x1, x2, x3, x4) is said to be of type Q if all four of its accompanying biquadratic

polynomials hjk are nondegenerate. Otherwise, it is of type H . Previous notions

were introduced in [2].

Take an arbitrary strongly discriminantly separable polynomial

F(x1, x2,α)

of degree two in each of the three variables. To relate that polynomial to the cor-

responding quad-equations, one needs to provide a biquadratic polynomial h =
h(x1, x2) and a multiaffine polynomial Q = Q(x1, x2, x3, x4).
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The requirement that the discriminants of h(x1, x2) are independent on α, see

[1], [2], is fulfilled if as a biquadratic polynomials h(x1, x2) we select

ĥ(x1, x2) :=
F(x1, x2,α)
√

P (α)
.

Proposition 5.1 ([22]). The biquadratic polynomials

ĥI(x1, x2) =
FI(x1, x2,α)
√

PI(α)
(5.4)

satisfy

δx1
(ĥ) = PI(x2), δx2

(ĥ) = PI(x1)

for I = A,B,C,D,E and polynomials PI ,FI from Theorem 4.1.

By using the formulae (5.3) and replacing the polynomials hij by ĥij , one gets

the quad-equations which correspond to representatives of discriminantly separable

polynomials from Theorem 4.1. These equations are re-parameterizations of the

quad-equations of type Q from the list obtained in [2].

For the quad-equations obtained from the biquadratic polynomials ĥ(x1, x2), that

parameter α has a role symmetric to x1 and x2.

Another class of discrete integrable systems of a type similar to quad-graphs of a

geometric origin has been given in [20].
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[15] V. Dragovicć, Pencils of conics as a classification code, pp. 323–330 Trends in Math-
ematics 2013 Geometric Methods in Physics XXX Workshop, Bialowieza, Poland,
June 26 to July 2, 2011 Editors: P. Kielanowski, S. Twareque Ali, A. Odzijewicz,
M. Schlichenmaier, Th. Voronov ISBN: 978-3-0348-0447-9 (Print) 978-3-0348-0448-
6 (Online)
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[27] B. Gajić, The rigid body dynamics: classical and algebro-geometric integration, Zb.
Rad. (Beogr.) 16 (24) (2013), Mechanics, integrability, and control, 5–44.

[28] V. V. Golubev, Lectures on integration of the equations of motion of a rigid body

about a fixed point, Moskva, Gostenhizdat, 1953 (Russian); English translation: Transl.
Philadelphia, PA: Coronet Books, 1953.

[29] V. Jurdjevic, Integrable Hamiltonian systems on Lie Groups: Kowalevski type, Annals
of Mathematics 150 (1999), 605–644.

[30] V. Jurdjevic, Optimal control, geometry, and mechanics. Mathematical control theory,
Springer, New York, 1999.

[31] I. V. Komarov, V. V. Sokolov, A. V. Tsiganov, Poisson mps and integrable deformations
of the Kowalevski top, J. Phys. A 36 (2003), 8035–8048.

[32] F. Kötter, Sur le cas traite par M-me Kowalevski de rotation d’un corps solide autour

d’un point fixe, Acta Math. 17 (1893).

[33] S. Kowalevski, Sur le problème de la rotation d’un corps solide autour d’un point fixe,
Acta Math. 12 (1889), 177–232.

[34] K. Kukic: Different approaches to Kovalevskaya top. Theor. Appl. Mech. 35, no. 4
(2008), 347–361.

[35] K. Kukic: Discriminantly separable polynomials and integrable dynamical systems,
Ph. D. thesis, Faculty of Mathematics, Belgrade, 2012 (Serbian).

[36] J. G. Semple, G. T. Kneebone, Algebraic Projective Geometry, Clarendon Press, 1998
(first published 1952).



Discriminantly separable polynomials: an overview 97

[37] V. V. Sokolov, Generalized Kowalevski top: new integrable cases on e(3) and so(4), In
the book: The Kowalevski property, ed. V. B. Kuznetsov, AMS (2002), 307 p.

[38] A. Weil, Euler and the Jacobians of elliptic curves, In: Arithmetics and Geometry, Vol.
1, Progr. Math. 35 (1983), Birkhauser, Boston, Mass. 353–359.

Mathematical Institute
Serbian Academy of Science and Art
Kneza Mihaila 36
11000 Belgrade, Serbia

The Department of Mathematical Sciences
The University of Texas at Dallas, USA

e-mail: vladad@mi.sanu.ac.rs




