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A b s t r a c t. We develop a new method that uses walk counts for comparing spectral
radii of graphs similar in a precisely defined fashion. The method is applied to the cases
where a path-like or a star-like structure is coalesced to a graph, in order to prove weak
inequality in the conjectured inequality of Belardo, Li Marzi and Simić, and to resolve the
Brualdi-Solheid problem for the classes of graphs consisting of rooted products with the same
rooted graph.
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1. Introduction

Study of the spectral radius of adjacency matrix of graphs has been a central
research theme in spectral graph theory since its inception in the 1950s [3] to this
day. Numerous results on the spectral radius have been surveyed by Cvetković and
Rowlinson [6] in 1990 and in a recent research monograph of the author [14].

Graphs mostly considered in the literature are simple graphs, due to the fact that
their adjacency matrix is real and symmetric, so that its eigenvectors can be chosen to
provide an orthonormal basis for Rn [8]. A simple graph G = (V,E) consists of the
vertex set V with n = |V | vertices and the edge set E ✓

�
V
2

�
with m = |E| edges.
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The adjacency matrix A(G) of the simple graph G is the n⇥n matrix, indexed by V ,
defined by

A(G)uv =

(
1, if uv 2 E,

0, if uv /2 E.

Let us denote the eigenvalues of A(G) by

�1(G) � �2(G) � · · · � �n(G),

and the corresponding orthonormal eigenvectors by

x1(G), x2(G), . . . , xn(G),

so that
A(G)xi(G) = �i(G)xi(G), i = 1, . . . , n. (1.1)

and for i, j = 1, . . . , n,

xTi (G)xj(G) =

(
1, if i = j,

0, if i 6= j.
(1.2)

In the sequel we will drop the parameter G when the graph is clear from the context.
The eigenvalues and the orthonormality of eigenvectors provide spectral decom-

position of the adjacency matrix [14]:

A =

nX

i=1

�ixix
T
i . (1.3)

The eigenvalues of A are also the roots of its characteristic polynomial

PG(�) = det(�I �A). (1.4)

By the Perron-Frobenius theorem [8, Chap. XIII], when the graph G is connected, its
adjacency matrix A is irreducible, so that its largest eigenvalue �1 is also the spectral
radius of A. In addition, �1 is a simple eigenvalue with a positive eigenvector x1.

Most of the research on the spectral radius of graphs deals with the Brualdi-
Solheid’s general question [2] that asks to characterize graphs with extremal values
of the spectral radius in a given class of graphs (where extremal usually means max-
imal). The basic ingredient in tackling such extremal problems is the ability to com-
pare spectral radii of different candidate graphs. Two well-developed techniques are
mostly used in the literature for such comparisons.
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The first technique relies on the classical characterization of the largest eigen-
value �1 in terms of the Rayleigh quotient of A [8]:

�1 = max

y 6=0

yTAy

yT y
=

2

P
uv2E

yuyv
P
u2V

y2u
, (1.5)

with the maximum attained for and only for y = x1. From here it is easy to compare
spectral radii of two graphs, where one of them is obtained by a small modification
of the other one:

a) If pq /2 E then

�1(G+ pq) � xT1 A(G+ pq)x1

xT1 x1

=

xT1 Ax1

xT1 x1
+

2x1,px1,q

xT1 x1
> �1,

due to positivity of x1 (and hence of x1,px1,q).

b) If pq 2 E, pr /2 E and x1,q  x1,r, then [13]

�1(G� pq + pr) � xT1 A(G� pq + pr)x1

xT1 x1

=

xT1 Ax1

xT1 x1
+

2x1,p(x1,r � x1,q)

xT1 x1
> �1.

The equality cannot hold above as in such case one would have that x1 is also
the principal eigenvector of G � pq + pr and that x1,q = x1,r, which would
then imply contradictory statement x1,r = 0, by considering the eigenvalue
equation (1.1) in both G and G� pq + pr at the vertex s.

c) If pq, rs 2 E, pr, qs /2 S and (x1,p � x1,s)(x1,r � x1,q) � 0, then [7]

�1(G� pq � rs+ pr + qs) � xT1 A(G� pq � rs+ pr + qs)x1

xT1 x1

=

xT1 Ax1

xT1 x1
+

(x1,p � x1,s)(x1,r � x1,q)

xT1 x1

� �1.
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The second technique relies on the fact that the value of the characteristic polyno-
mial PG(y) is positive whenever y > �1. Thus, if one can show that for two graphs
G and H holds

(8y > �1(G))PG(y) < PH(y)

then PH(y) cannot have real roots that are greater than or equal to �1(G), so that it
must hold �1(G) > �1(H).

Illustrative examples of the use of the first technique may be found in [10], and
those of the use of the second technique both in [10] and [1].

Our goal here is to propose yet another technique for comparing spectral radii
of two graphs, based on the comparisons of closed walk counts in these graphs. We
have used comparisons of closed walk counts earlier to compare the Estrada indices
of trees [11]. The technique presented in Section 2. is a comprehensive upgrade of
the approach used in [11], applied to the spectral radius instead of the Estrada index.
In Section 3. we show that the vertices of a path, in the rooted product of a path
and another graph, have unimodal closed walk counts. This result helps to showcase
fruitfulness of the walk count technique in Section 4., where we give new proofs of
the well-known 1979 lemmas of Li and Feng [12], and prove weak inequality in the
conjectured inequality of Belardo, Li Marzi and Simić [1].

2. A walk count technique

Let G = (V,E) be a simple, connected graph with the adjacency matrix A, the
eigenvalues �1 > �2 � · · · � �n and the orthonormal eigenvectors x1, x2, . . . , xn.
We assume that G is nontrivial, i.e., that it contains at least one edge. A sequence
W : u = u0, u1, . . . , uk = v of vertices from V such that uiui+1 2 E is called a
walk between u and v in G of length k. A walk W is closed if u = v. The following
classical result relates the adjacency matrix of a graph to its walk counts:

Theorem 2.1 ([14]). The number of walks of length k, k � 0, between the ver-
tices u and v in G is equal to (Ak

)u,v.

From the spectral decomposition (1.3) and the orthonormality of eigenvectors (1.2)
we now have

Ak
=

nX

i=1

�k
i xix

T
i . (2.6)

For k � 0, let Nk denote the number of all walks of length k in G, and let Mk denote
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the number of all closed walks of length k in G. From (2.6) we have

Nk =

X

u2V

X

v2V
(Ak

)u,v =

nX

i=1

�k
i

 
X

u2V
xi,u

!2

, (2.7)

Mk =

X

u2V
(Ak

)u,u =

nX

i=1

�k
i

 
X

u2V
x2i,u

!
=

nX

i=1

�k
i . (2.8)

Lemma 2.1. For a connected graph G we have

�1 = lim

k!1
k
p
Nk. (2.9)

If G is not bipartite, then also

�1 = lim

k!1
k
p
Mk, (2.10)

while if G is bipartite, then
�1 = lim

k!1
2k
p
M2k. (2.11)

The first equality above is taken from [4].

PROOF. All three equalities rely on the Perron-Frobenius theorem [8, Chapter
XIII], which implies that �1 � |�i| for each i = 2, . . . , n, and that the entries of x1
in a connected graph G with at least one edge are strictly positive.

The distinction between bipartite and nonbipartite graphs stems from the fact that
if G is bipartite, then the spectrum of G is symmetric with respect to zero [4]. In such
case, �n = ��1 is also a simple eigenvalue of G, and if V = V 0 [V 00, V 0 \V 00

= ;,
represents a bipartition of G, then the eigenvector corresponding to �n satisfies

xn,u =

(
x1,u, if u 2 V 0,

�x1,u, if u 2 V 00.

Therefore,

2k0+1
p
N2k0+1 = �1

2k0+1

vuut
 
X

u2V

x1,u

!2

�
 
X

u2V

xn,u

!2

+

n�1X

i=2

✓
�i

�1

◆2k0+1
 
X

u2V

xi,u

!2

= �1
2k0+1

vuut
2

 
X

u2V 0

x1,u

! 
X

u2V 00

x1,u

!
+

n�1X

i=2

✓
�i

�1

◆2k0+1
 
X

u2V

xi,u

!2

,
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2k0p
N2k0

= �1
2k0

vuut
 
X

u2V

x1,u

!2

+

 
X

u2V

xn,u

!2

+

n�1X

i=2

✓
�i

�1

◆2k0  X

u2V

xi,u

!2

= �1
2k0

vuut
2

 
X

u2V 0

x1,u

!2

+ 2

 
X

u2V 00

x1,u

!2

+

n�1X

i=2

✓
�i

�1

◆2k0  X

u2V

xi,u

!2

.

Eq. (2.9) follows from here, as both
 
X

u2V 0

x1,u

! 
X

u2V 00

x1,u

!
and

 
X

u2V 0

x1,u

!2

+

 
X

u2V 00

x1,u

!2

are positive constants, and for each i = 2, . . . , n � 1 holds |�i/�1| < 1, while the
term

�P
u2V xi,u

�2 does not depend on k.
For the closed walks we have M2k0+1 = 0 for k0 � 0, while

2k0
p

M2k0 = �1
2k0

vuut
2 +

n�1X

i=2

✓
�i

�1

◆2k0

,

from where (2.11) follows, due to |�i/�1| < 1 for each i = 2, . . . , n� 1.
On the other hand, if G is not bipartite, then �n > ��1, so that

k
p

Nk = �1
k

vuut
 
X

u2V
x1,u

!2

+

nX

i=2

✓
�i

�1

◆k
 
X

u2V
xi,u

!2

,

k
p

Mk = �1
k

vuut
1 +

nX

i=2

✓
�i

�1

◆k

.

From here both (2.9) and (2.10) follow, since
�P

u2V x1,u
�2 is a positive constant and

for each i = 2, . . . , n, |�i/�1| < 1, while the term
�P

u2V xi,u
�2 does not depend

on k.

Our first new result is a simple lemma stating that a connected graph with more
walks of arbitrarily large lengths also has the larger spectral radius.

Lemma 2.2. Let G1 and G2 be connected graphs such that for an infinite se-
quence of indices k0 < k1 < . . . holds

(8i � 0) Nki(G1) � Nki(G2). (2.12)

Then �1(G1) � �1(G2).
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PROOF. From Lemma 2.1 we get

lim

k!1

�1(G1)

�1(G2)

k

s
Nk(G2)

Nk(G1)
= 1,

which implies

(8" > 0)(9k0)(8k � k0)
�1(G1)

�1(G2)
> (1� ") k

s
Nk(G1)

Nk(G2)
.

The condition (2.12), with i0 taken to be the smallest index such that ki0 � k0, now
implies

(8" > 0)(9i0)(8i � i0)
�1(G1)

�1(G2)
> 1� ".

However, since �1(G1) and �1(G2) are the constants that do not depend on i, the
previous expression actually means that

(8" > 0)

�1(G1)

�1(G2)
> 1� ",

which is equivalent to �1(G1) � �1(G2).

Remark 2.1. In order for previous lemma to imply that �1(G1) is strictly larger
than �1(G2), instead of (2.12) one would need to prove that

(9" > 0)(8i0)(9i � i0) Nki(G1) �
✓
1 +

"

1� "

◆ki

Nki(G2),

which is not always feasible.
We will, thus, allow our forthcoming results to include equality as a feasible

case. When applied to graphs in a certain class, this essentially means that, while
these lemmas provide characterization of the extremal value of the spectral radius
of graphs in that class, they cannot provide characterization of all graphs with the
extremal spectral radius. Instead, the lemmas will provide just one example of such
extremal graph. In many classes the extremal graph is unique, so that the lemmas
will necessarily pinpoint it, but they cannot be used to prove that there are no other
extremal graphs.

It is obvious from Lemma 2.1 that the previous result can be stated in the terms
of closed walk counts as well. We restrict ourselves here to closed walks of even
length simply to avoid the trouble of considering whether the graphs in question are
bipartite or not.
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Lemma 2.3. Let G1 and G2 be connected graphs such that for an infinite se-
quence of indices k0 < k1 < · · · holds

(8i � 0) M2ki(G1) � M2ki(G2). (2.13)

Then �1(G1) � �1(G2).

Let us now define a graph operation that will be the basis for our comparison
technique.

Definition 2.1. Let F and G be the graphs with disjoint vertex sets V (F ) and
V (G). For p 2 N, let u1, . . . , up be distinct vertices from V (F ), and let v1, . . . , vp
be distinct vertices from V (G). Assume, in addition, that there is no pair (i, j),
i 6= j, such that both uiuj is an edge of F and vivj is an edge of G. The multiple
coalescence of F and G with respect to the vertex lists u1, . . . , up and v1, . . . , vp,
denoted by

F (u1 = v1, . . . , up = vp)G,

is the graph obtained from the union of F and G by identifying the vertices ui and vi
for each i = 1, . . . , p.

The multiple coalescence is a generalization of the standard coalescence of two
vertex-disjoint graphs, which is obtained by identifying a single pair of vertices, one
from each graph [5]. Fig. 1 shows an example of multiple coalescence of the graphs
F and G, with respect to the selected vertices u1, u2, u3 and v1, v2, v3.

The above assumption that for any i 6= j it is not allowed that both uiuj is an
edge of F and vivj is an edge of G, serves to prevent the creation of multiple edges
in the multiple coalescence. This assumption is needed later, as our goal will be to
have each walk in the multiple coalescence clearly separated in smaller parts whose
all edges will belong to only one of its constituents. In such setting, the vertices
v1, . . . , vp may be considered as the entrance points for a walk coming from F to
enter G (and vice versa).

Our main tool is the following lemma.

Lemma 2.4. Let F and G be graphs with disjoint vertex sets V (F ) and V (G).
For p 2 N, choose distinct vertices u1, . . . , up 2 V (F ), and make two separate
choices of distinct vertices v1, . . . , vp 2 V (G) and w1, . . . , wp 2 V (G). Let Gv and
Gw be the multiple coalescences

Gv
= F (u1 = v1, . . . , up = vp)G,

Gw
= F (u1 = w1, . . . , up = wp)G,
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Figure 1. An example of multiple coalescence of two graphs

such that both Gv and Gw are connected.
Let A be the adjacency matrix of G. If for each 1  i, j  p (including the case

i = j) and for each k � 1 holds

(Ak
)vi,vj � (Ak

)wi,wj , (2.14)

then
�1(G

v
) � �1(G

w
).

Note that in the above lemma, while we request that vi 6= vj and wi 6= wj for all
i 6= j, the possibility that vi = wj for some i and j is allowed.

PROOF. Let us first count the closed walks of length 2k in Gv. From the fact that
F and G, as constituents of Gv, do not have common edges, we see that the number
of closed walks in Gv, whose all edges belong to the same constituent, is equal to
M2k(F ) +M2k(G).

The remaining closed walks in Gv contain edges from both F and G.

W : W0,W1, . . . ,W2l�1,

for some l 2 N, such that the edges of the even-indexed subwalks W0, . . . , W2l�2 all
belong to F , while the edges of the odd-indexed subwalks W1, . . . , W2l�1 all belong
to G. As a walk can enter from F to G only through one of the entrance points,
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we also see that the endpoints of the even-indexed subwalks belong to {u1, . . . , up},
while the endpoints of the odd-indexed subwalks belong to {v1, . . . , vp}. Thus, let
(i0, . . . , i2l�1) denote the 2l-tuple of indices such that

the walk W2j goes from ui2j to ui2j+1(= vi2j+1) in F , while

the walk W2j+1 goes from vi2j+1 to vi2j+2(= ui2j+2) in G,

for j = 0, . . . , l � 1. (The addition above is modulo 2l, so that i2l = i0.)
In addition, let kj denote the length of the walk Wj for j = 0, . . . , 2l � 1. The

4l-tuple
(i0, . . . , i2l�1; k0, . . . , k2l�1)

is called the signature of the closed walk W . Due to the fact that the walk W is
closed, its signatures are rotationally equivalent in the sense that the above signature
is identical to the signature

(i2p, . . . , i2l�1, i0, . . . , i2p�1; k2p, . . . , k2l�1, k0, . . . , k2p�1)

for each p = 1, . . . , l � 1. In order to assign a unique signature to W , we may
assume its signature is chosen to be lexicographically minimal among all rotationally
equivalent signatures.

Now, let B be the adjacency matrix of F . Then for any feasible signature

(i0, . . . , i2l�1; k0, . . . , k2l�1)

the number of closed walks in Gv with that signature is equal to

l�1Y

j=0

(Bki2j
)ui2j ,ui2j+1

l�1Y

j=0

(Aki2j+1
)vi2j+1 ,vi2j+2

.

The argument is identical for closed walks of length 2k in Gw: the number of
closed walks, whose all edges belong to the same constituent of Gw, is equal to

M2k(F ) +M2k(G),

while the number of closed walks with the feasible signature (i0, . . . , i2l�1;

k0, . . . , k2l�1) is equal to

l�1Y

j=0

(Bki2j
)ui2j ,ui2j+1

l�1Y

j=0

(Aki2j+1
)wi2j+1 ,wi2j+2

.
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From the condition (2.14) we now see that for any feasible signature the number
of closed walks with that signature in Gv is larger than or equal to the number of such
closed walks in Gw. Summing over all feasible signatures we obtain that

M2k(G
v
) � M2k(G

w
),

and, thus, from Lemma 2.3 we conclude that �1(G
v
) � �1(G

w
).

The usefulness of the above lemma is clearly visible: in order to obtain an in-
equality between the spectral radii of the multiple coalescences Gv and Gw it is
enough to count just the walks in the G-part of the coalescences–the walk counts in
the F -part have no influence, since the entrance points to F are the same in both Gv

and Gw.

Remark 2.2. Let �1 > �2 � · · · � �n and x1, x2, . . . , xn denote the eigenval-
ues and the corresponding orthonormal eigenvectors of the adjacency matrix A of a
connected graph G. Recall that

(Ak
)vi,vj =

nX

p=1

�k
pxp,vixp,vj ,

(Ak
)wi,wj =

nX

p=1

�k
pxp,wixp,wj .

Since �1 has the largest absolute value among all eigenvalues and a positive eigen-
vector, the most important summands in the above expressions, especially for larger
values of k, become �k

1x1,vix1,vj and �k
1x1,wix1,wj . It is, thus, tempting to think that

the condition (2.14) in Lemma 2.4 might be replaced by a simpler condition

x1,vix1,vj � x1,wix1,wj .

This, however, cannot be done, as shown by the following example. Let u be an
arbitrary vertex of the complete graph K50, and let G be the graph shown in Fig. 2.
Although

0.41712 ⇡ x1,a < x1,b ⇡ 0.45699,

we still have that

49.00123 ⇡ �1(K50(u = a)G) > �1(K50(u = b)G) ⇡ 49.00083.

The reason for such behavior lies simply in the fact that the degree of a is larger
than the degree of b. Note that the degree of a vertex represents, at the same time, also
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Figure 2. The vertex a has smaller principal eigenvector component than the vertex b,
but there are more closed walks of even lengths up to 12 that start at a than at b

the number of closed walks of length two starting from that vertex. When coalesced
with K50, which has substantially more closed walks than G, the spectral radius of
the coalescence is roughly determined by the spectral radius of the larger K50, but
tends to be fine tuned by the shorter (i.e., the shortest) closed walks in G, of which
there are more that start at a than those that start at b.

3. On closed walk counts in rooted products of paths and stars

In order to be able to apply Lemma 2.4 we need to exhibit sufficiently many
graphs satisfying (2.14). Paths are among the simplest such graphs. The following
lemma appeared in the authors’ earlier paper with Ilić:

Lemma 3.1 ([11]). Let A be the adjacency matrix of the path Pn on vertices
1, . . . , n. Then for every k � 0 holds

(Ak
)1,1  (Ak

)2,2  · · ·  (Ak
)dn/2e,dn/2e (3.15)

and
(Ak

)1,2  (Ak
)2,3  · · ·  (Ak

)bn/2c,bn/2c+1. (3.16)

We reprint here the proof of this lemma from [11], as it serves as the basis for the
proof of a more general lemma that follows.

PROOF. We prove slightly more than stated in (3.15) and (3.16): that each diag-
onal of Ak, parallel to the main diagonal, is unimodal. Due to the automorphism of
the path Pn given by ↵ : i ! n + 1 � i for i = 1, . . . , n, it is enough to prove that
each of these diagonals is nondecreasing up to its middle entry.

We proceed by induction on k and prove that for all 2  i, j  n such that
i+ j  n+ 1 holds

(Ak
)i�1,j�1  (Ak

)i,j . (3.17)



Walk counts and the spectral radius of graphs 45

This is trivial for k = 0 and k = 1, as each diagonal of A0
= I and A1

= A is either
all-zero or all-one. Suppose now that (3.17) has been proved for some k � 1. The
expression Ak+1

= Ak ·A then yields

(Ak+1
)i�1,j�1 = (Ak

)i�1,j�2 + (Ak
)i�1,j ,

(Ak+1
)i,j = (Ak

)i,j�1 + (Ak
)i,j+1.

(To avoid dealing separately with the endpoints 1 and n of the path Pn, we simply
assume that (Ak

)i�1,0 = 0 and (Ak
)i,n+1 = 0 in the above equations.) We have

(Ak
)i�1,j�2  (Ak

)i,j�1

from the inductive hypothesis (and the nonnegativity of (Ak
)i,j�1). If i + j + 1 

n+ 1, then
(Ak

)i�1,j  (Ak
)i,j+1

also follows from the inductive hypothesis. For i+ j+1 = n+2, from the automor-
phism ↵ : i ! n+ 1� i and the symmetry of Ak we have

(Ak
)i�1,j = (Ak

)n+1�j,n+2�i = (Ak
)i,j+1.

This proves (3.17).

We will now extend this lemma to the rooted products of a path by another graph.

Definition 3.1 ([9]). Let H be a labeled graph on n vertices, and let G1, . . . , Gn

be a sequence of n rooted graphs. The rooted product of H by G1, . . . , Gn, denoted
as H[G1, . . . , Gn], is the graph obtained by identifying the root of Gi with the i-th
vertex of H for i = 1, . . . , n. In the case when all the rooted graphs Gi, i = 1, . . . , n,
are isomorphic to a rooted graph G, we denote H[G, . . . , G| {z }

n

] simply as H[G,n].

Lemma 3.2. Let n be a positive integer and let G be an arbitrary rooted graph.
Denote by G1, . . . , Gn the copies of G, and for any vertex u of G, denote by ui the
corresponding vertex in the copy Gi, i = 1, . . . , n. If A is the adjacency matrix of
the rooted product Pn[G,n], then for any two (not necessarily different) vertices u
and v of G and for every k � 0 holds

(Ak
)u1,v1  (Ak

)u2,v2  · · ·  (Ak
)udn/2e,vdn/2e (3.18)

and
(Ak

)u1,v2  (Ak
)u2,v3  · · ·  (Ak

)ubN/2c,vbN/2c+1
. (3.19)
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PROOF. Let r denote the root vertex of G, so that r1, . . . , rn then also denote the
vertices of Pn in the rooted product Pn[G,n].

The number of k-walks between ui and vi whose edges fully belong to Gi is,
obviously, equal to the number of k-walks between u and v in G. If a k-walk W be-
tween ui and vi contains other edges of Pn[G,n], then let W 0 denote longest subwalk
of W such that W 0 is a closed walk that starts and ends at ri: simply, the first edge
of W 0 is the first edge of W that does not belong to Gi, and the last edge of W 0 is the
last edge of W that does not belong to Gi. It is easy to see then that the number of
k-walks between ui and vi in Pn[G,n] is governed by the numbers of walks between
u and v in G, and the numbers of closed walks (of lengths k and less) that start and
end at ri in Pn[G,n]. In particular, the chain of inequalities (3.18) follows from

(Ak
)r1,r1  (Ak

)r2,r2  · · ·  (Ak
)rdn/2e,rdn/2e . (3.20)

Similarly, the number of k-walks between ui in the copy Gi and vi+1 in the copy Gi+1

is governed by the numbers of walks between u and r in G (that get mapped to walks
between ui and ri in Gi), the numbers of walks between r and v in G (that get mapped
to walks between ri+1 and vi+1 in Gi+1), and the numbers of walks between ri and
ri+1 in Pn[G,n]. Thus, the chain of inequalities (3.19) follows from

(Ak
)r1,r2  (Ak

)r2,r3  · · ·  (Ak
)rbN/2c,rbN/2c+1

. (3.21)

Similarly as in the proof of Lemma 3.1, (3.18) and (3.19) are the special cases of
the inequalities

(Ak
)ui�1,vj�1  (Ak

)ui,vj , 2  i, j  n, i+ j  n+ 1, (3.22)

which are, from the argument above, corollaries of the inequalities

(Ak0
)ri�1,rj�1  (Ak0

)ri,rj , k0  k, 2  i, j  n, i+ j  n+ 1. (3.23)

We will now prove (3.22) by induction on k. This is trivial for k = 0, as A0
= I .

Suppose, therefore, that (3.22) has been proved for all values of k0 up to some
k � 0. We will now prove that (3.23) holds for k0 = k+1, from which the correctness
of (3.22) for k0 = k + 1 follows as well. (Actually, from the above discussion it is
easy to see that the correctness of (3.22) for k0 = k + 1 follows already from the
inductive hypothesis if at least one of u, v is not r. Therefore, one only needs to
prove (3.23) for k0 = k + 1.)

Let N(r) denote the set of neighbors of the root r in the graph G. Then

(Ak+1
)ri�1,rj�1 = (Ak

)ri�1,rj�2 + (Ak
)ri�1,rj +

X

u2N(r)

(Ak
)ri�1,uj�1 ,

(Ak+1
)ri,rj = (Ak

)ri,rj�1 + (Ak
)ri,rj+1 +

X

u2N(r)

(Ak
)ri,uj .
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The inequalities
(Ak

)ri�1,rj�2  (Ak
)ri,rj�1

and
(Ak

)ri�1,uj�1  (Ak
)ri,uj

hold by the inductive hypothesis. (We now again assume that (Ak
)ri�1,r0 = 0 and

(Ak
)ri,rn+1 = 0 to avoid dealing separately with the end vertices of the path Pn.)
If i+ j + 1  n+ 1, then

(Ak
)ri�1,rj  (Ak

)ri,rj+1

also holds by the inductive hypothesis. For i+j+1 = n+2, from the automorphism
� : ri ! rn+1�i of Pn[G,n] and the symmetry of Ak we have

(Ak
)ri�1,rj = (Ak

)rn+1�j ,rn+2�i = (Ak
)ri,rj+1 .

This proves (3.23), and consequently (3.22).

In order to be able to prove the conjecture of Belardo, Li Marzi and Simić [1], we
need to consider a slight extension of the previous lemma as well.

Lemma 3.3. Let n be a positive integer and let G be an arbitrary rooted graph
with the root r. Let P+

n [G,n] denote the graph obtained from the rooted prod-
uct Pn[G,n] by adding two new pendant vertices r0 and rn+1 and the edges r0r1
and rnrn+1 to it. If A is the adjacency matrix of P+

n [G,n], then for any two (not
necessarily different) vertices u and v of G and for every k � 0 holds

(Ak
)u1,v1  (Ak

)u2,v2  · · ·  (Ak
)udn/2e,vdn/2e (3.24)

and
(Ak

)u1,v2  (Ak
)u2,v3  · · ·  (Ak

)ubN/2c,vbN/2c+1
. (3.25)

PROOF. The proof of this lemma is fully analogous to the proof of Lemma 3.2,
with the difference that now the terms (Ak

)ri�1,r0 and (Ak
)ri,rn+1 are no longer con-

sidered to be identically equal to 0. We will, therefore, indicate here only the dif-
ferences that the introduction of the pendant vertices r0 and rn+1 produces in the
proof.

In the proof of (3.22) and (3.23) by induction on k, the basis remains trivial and
can be extended to both k = 0 and k = 1, as the values Aui�1,vj�1 and Aui,vj are
nonzero (and equal to 1) if and only if either i = j and u and v are adjacent in G or
|i� j| = 1 and both u and v are equal to r.
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Since we assume 2  i, j  n, i + j  n + 1 in (3.22), the only difference in
the proof of the inductive step lies in encountering the case j = 2, where we need to
additionally prove that

(Ak
)ri�1,r0  (Ak

)ri,r1 .

This, however, follows immediately from the fact that r1r0 has to be the last edge in
any walk from ri�1 to r0, so that

(Ak
)ri�1,r0 = (Ak�1

)ri�1,r1

and the inequality

(Ak
)ri,r1 = (Ak�1

)ri�1,r1 + (Ak�1
)ri+1,r1 +

X

u2N(r)

(Ak�1
)ui,r1 � (Ak�1

)ri�1,r1 .

Hence (3.23), and consequently (3.22), holds again, which implies the chains of in-
equalities (3.24) and (3.25).

Stars form another, even simpler class of graphs that satisfy (2.14). Let c be the
center, and l1, . . . , ln�1 the leaves of the star Sn, n � 2. The inequality

(Ak
)li,li  (Ak

)c,c (3.26)

for i 2 {1, . . . , n�1} follows easily by induction on k. For k = 0 we have (A0
)li,li =

(A0
)c,c = 1. Assuming that the inequality (3.26) has been proved up to some k � 0,

we then have

(Ak+1
)li,li = (Ak

)c,li 
n�1X

j=1

(Ak
)c,lj = (Ak+1

)c,c,

simply by observing that any walk that stars at li must use the edge lic first.
Inequality (3.26) can also be extended to the rooted products of a star by another

graph.

Lemma 3.4. For n � 2, let c be the center and l an arbitrary leaf of the star Sn.
Let G be an arbitrary rooted graph. Denote by Gc the copy of G in Sn[G,n] whose
root is identified with c, and by Gl the copy of G in Sn[G,n] whose root is identified
with l. For any vertex u of G, let uc and ul denote the corresponding vertices in Gc

and Gl, respectively. If A is the adjacency matrix of the rooted product Sn[G,n],
then for any two (not necessarily different) vertices u and v of G and for every k � 0

holds
(Ak

)ul,vl  (Ak
)uc,vc . (3.27)



Walk counts and the spectral radius of graphs 49

PROOF. Let r denote the root vertex of G, so that rc and rl become identified
with c and l, respectively, in Sn[G,n]. Following the argument from the proof of
Lemma 3.2, inequality (3.27) for arbitrary u and v will follow from

(Ak
)rl,rl  (Ak

)rc,rc . (3.28)

We prove (3.27) by induction on k. This is trivial for k = 0, as A0
= I .

Suppose, therefore, that (3.27) has been proved for all values of k0 up to some
k � 0. We prove that (3.28) holds for k0 = k + 1, from which the correctness
of (3.27) for k0 = k + 1 follows as well. Let N(r) denote the set of neighbors of the
root r in the graph G. Then

(Ak+1
)rl,rl = (Ak

)rc,rl +

X

u2N(r)

(Ak
)ul,rl ,

(Ak+1
)rc,rc � (Ak

)rl,rc +

X

u2N(r)

(Ak
)uc,rc ,

where in the second expression we have deliberately disregarded k-walks between
roots of other copies of G and rc. From the inductive hypothesis we have

(Ak
)ul,rl  (Ak

)uc,rc

for any vertex u 2 N(r). Together with the fact that Ak is symmetric, this proves
(3.28), and consequently (3.27).

4. Spectral radii of certain multiple coalescences

As our simplest examples of the use of Lemma 2.4 and the walk count lemmas
from the previous section, we first provide new proofs for the useful and well-cited
1979 lemmas of Li and Feng [12]. Note, however, that the original lemmas claim
the strict inequality between the spectral radii, and that we actually prove the weak
inequality here, due to reasons explained in Remark 2.1 on page 39.

Lemma 4.1 ([12]). Let u be a vertex of a connected graph G and for positive
integers p and q, let Gu

p,q denote the graph obtained from G by adding two pendants
paths of lengths p and q at u. If p � q � 1, then

�1(G
u
p,q) � �1(G

u
p+1,q�1).

Lemma 4.2 ([12]). Let u and v be two adjacent vertices of a connected graph G
and for positive integers p and q, let Gu,v

p,q denote the graph obtained from G by
adding pendant paths of length p at u and q at v. If p � q � 1, then

�1(G
u,v
p,q ) � �1(G

u,v
p+1,q�1).
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The proof of Lemma 4.1 follows by observing that Gu
p,q is a coalescence of the

graph G and the path Pp+q+1 by identifying the vertex u from G and the vertex q+1

of Pp+q+1. (Here the vertices of Pp+q+1 are enumerated with 1, . . . , q + 1, . . . , p +
q+1, starting from the endpoint of Pq+1 toward u, and then continuing from u toward
the endpoint of Pp+1.) The inequality

�1(G
u
p,q) = �1(G(u = q + 1)Pp+q+1) � �1(G(u = q)Pp+q+1) = �1(G

u
p+1,q�1)

then follows from (3.15) and Lemma 2.4.
The proof of Lemma 4.2 further follows by observing that the graphs Gu,v

p,q and
Gu,v

p+1,q�1 are multiple coalescences of the edge-deleted graph G � uv and the path
Pp+q+2:

Gu,v
p,q

⇠
=

G� uv(u = q + 2, v = q + 1)Pp+q+2,

Gu,v
p+1,q�1

⇠
=

G� uv(u = q + 1, v = q)Pp+q+2.

Lemma 2.4 requires that for k � 1

(Ak
)q+2,q+2 � (Ak

)q+1,q+1,

(Ak
)q+1,q+1 � (Ak

)q,q,

(Ak
)q+2,q+1 � (Ak

)q+1,q,

which are the special cases of (3.15) and (3.16), with

(Ak
)q+2,q+2 = (Ak

)q+1,q+1

in the case p = q due to the automorphism of the path P2q+2.
Next, we improve these lemmas by showing their analogs when, instead of a path,

the rooted product of a path gets attached to the basis graph.

Lemma 4.3. Let G be a rooted graph, H a connected graph, and p and q two
positive integers. For a vertex u of H , suppose that H contains a rooted subgraph G0,
with u as its root, that is isomorphic to the rooted graph G.

Let Hu,G
p,q denote the graph obtained from H by identifying the rooted subgraph G0

with the (q+1)-st copy of G in the rooted product Pp+q+1[G, p+ q+1] (see Fig. 3).
If p � q � 1, then

�1(H
u,G
p,q ) � �1(H

u,G
p+1,q�1).

Lemma 4.4. Let G be a rooted graph, H a connected graph, and p and q two
positive integers. For two adjacent vertices u and v of H , suppose that H contains
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two vertex-disjoint rooted subgraphs G0, with a root u, and G00, with a root v, both
isomorphic to the rooted graph G.

Let Hu,v,G
p,q denote the graph obtained from H by identifying the rooted sub-

graph G0 with the (q+2)-nd copy of G and the rooted subgraph G00 with the (q+1)-st
copy of G in the rooted product Pp+q+2[G, p+ q+2] (see Fig. 3). If p � q � 1, then

�1(H
u,v,G
p,q ) � �1(H

u,v,G
p+1,q�1).

Figure 3. The graphs Hu,G
p,q and Hu,v,G

p,q

Both of these lemmas follow directly from Lemmas 2.4 and 3.2 by observing that
both Hu,G

p,q and Hu,v,G
p,q are multiple coalescences.

If H 0 is the graph obtained from H by deleting the edges of G0, then Hu,G
p,q is the

multiple coalescence of H 0 and Pp+q+1[G, p + q + 1], obtained by identifying the
corresponding vertices of G0 in H 0 and the (q+1)-st copy of G in Pp+q+1[G, p+q+1].

If H 00 is the graph obtained from H by deleting the edges of G0 and G00, then
Hu,v,G

p,q is the multiple coalescence of H 00 and Pp+q+2[G, p + q + 2], obtained by
identifying the corresponding vertices of G0 and the (q + 2)-nd copy of G in

Pp+q+2[G, p+ q + 2],

and by identifying the corresponding vertices of G00 and the (q + 1)-st copy of G
in Pp+q+2[G, p+ q + 2].
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In addition, note that the conditions that H has to contain rooted subgraphs iso-
morphic to G can be easily removed from the last two lemmas: if H does not contain
a complete copy of G rooted at u as its subgraph, then we can form H 0 from H by
adding the necessary number of isolated vertices, and then apply Lemmas 2.4 and 3.2
to the multiple coalescence of H 0 and Pp+q+1[G, p+ q + 1], where the new isolated
vertices are identified with the vertices of the (q + 1)-st copy of G that do not orig-
inally appear in H . Similar argument holds in the case of adjacent vertices u and v
and the two vertex-disjoint copies of G needed in H . In the extreme case, we can
just identify the vertex u (or u and v) of H with the root(s) of the copies of G in the
rooted product, and apply Lemmas 2.4 and 3.2 to obtain the following two lemmas:

Lemma 4.5. Let G be a rooted graph with the root r, p and q two positive inte-
gers, and let rq and rq+1 denote the roots of the q-th and the (q + 1)-st copies of G,
respectively, in the rooted product Pp+q+1[G, p+ q + 1].

If p � q � 1, then for any connected graph H and any vertex u of H holds

�1(H(u = rq+1)Pp+q+1[G, p+ q + 1])

� �1(H(u = rq)Pp+q+1[G, p+ q + 1]).

Lemma 4.6. Let G be a rooted graph with the root r, p and q two positive inte-
gers, and let rq�1, rq and rq+1 denote the roots of the (q�1)-st, q-th and the (q+1)-st
copies of G, respectively, in the rooted product Pp+q+2[G, p+ q + 2].

If p � q � 1, then for any connected graph H and any two adjacent vertices u
and v of H holds

�1(H(u = rq+2, v = rq+1)Pp+q+2[G, p+ q + 2])

� �1(H(u = rq+1, v = rq)Pp+q+2[G, p+ q + 2]).

The use of Lemma 3.3 instead of Lemma 3.2 further allows us to state Lemmas
4.3–4.6 in terms of multiple coalescences with P+

p+q+1[G, p+q+1] and P+
p+q+2[G, p+

q+2] as well. This leads to the observation that the weak inequality in the 2009 con-
jecture of Belardo, Li Marzi and Simić [1] becomes merely a corollary of Lemmas 2.4
and 3.3:

Conjecture 4.1 ([1]). Let G be a rooted graph having r as its root, with deg(r)�
� � 2. Denote by G�(l,m), with l,m � 0, the graph obtained from G by identify-
ing r with two pendant vertices of P+

[K1,��2, l] and P+
[K1,��2,m] (see Fig. 4).

If G is not the star K1,��2 and l � m � 1 then

�1(G�(l,m)) > �1(G�(l + 1,m� 1)). (4.29)
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Figure 4. The graph G�(l,m) (reprinted from [1]). Large black vertices denote co-
cliques of order ��2, so that the degrees of the vertices 1, . . . ,m, . . . , l are all equal
to �

The key here is to observe that the graph G�(l,m) is another instance of a mul-
tiple coalescence. Let s1, . . . , s��2 be distinct neighbors of r in G, and let G⇤ be the
edge-deleted subgraph

G⇤
= G� rs1 � · · ·� rs��2.

Next, let um+1 be the root of the (m+ 1)-st copy of K1,��2 in the graph

P+
[K1,��2, l +m+ 1]

(counting the copies of K1,��2 backwards from the m-end in Fig. 4), and let
tm+1,1, . . . , tm+1,��2 denote the leaves adjacent to um+1 in P+

[K1,��2, l+m+1].
The graph G�(l,m) from the conjecture above is then a multiple coalescence

G�(l,m)

⇠
=

G⇤
(r = um+1, s1 = tm+1,1, . . . , s��2 = tm+1,��2)H�(m+ 1 + l),

for which the application of Lemmas 2.4 and 3.3 yields the weak inequality in (4.29).
The combination of Lemmas 2.4 and 3.4 yield the following lemmas on multiple

coalescence with rooted products of a star by another graph.

Lemma 4.7. For n � 2, let c be the center and l an arbitrary leaf of the star Sn.
Let G be a rooted graph and let H be a connected graph. For a vertex u of H ,
suppose that H contains a rooted subgraph G0, with u as its root, that is isomorphic
to the rooted graph G.

Let H l be the multiple coalescence of H and Sn[G,n], obtained by identifying
the rooted subgraph G0 with a copy of G rooted at l in Sn[G,n], and let Hc be the
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multiple coalescence of H and Sn[G,n], obtained by identifying the rooted subgraph
G0 with a copy of G rooted at c in Sn[G,n]. Then

�1(H
c
) � �1(H

l
).

Lemma 4.8. For n � 2, let c be the center and l an arbitrary leaf of the star Sn.
Let G be a rooted graph with the root r, and let rc and rl denote the roots of copies
of G rooted at c and l, respectively, in the rooted product Sn[G,n]. Let H be a
connected graph and u an arbitrary vertex of H . Then

�1(H(u = rc)Sn[G,n]) � �1(H(u = rl)Sn[G,n]).

Lemmas 4.5 and 4.8 enable us to solve the Brualdi-Solheid problem for the
classes of graphs consisting of rooted products with the same rooted graph G.

Theorem 4.1. Let G be an arbitrary rooted graph. If T is a tree on n vertices,
then

�1(Pn[G,n])  �1(T [G,n])  �1(Sn[G,n]). (4.30)

PROOF. If T is not the path Pn, then let u be a vertex of T with deg(u) � 3 and
the largest eccentricity (= the maximum distance from u to any other vertex of T ).
The vertex u cannot lie on a path between any two vertices of degrees at least three, as
then one of them would have eccentricity larger than u. This shows all other vertices
of T with degree at least three belong to only one of the deg(u) subtrees of T � u.
Consequently, the remaining deg(u) � 1 � 2 subtrees of T � u represent pendant
paths of T attached at u. Let P 0 and P 00 be two such pendant paths of lengths p
and q, respectively, and let T� be the tree obtained by deleting the vertices of these
paths (other than u) from T . Let v1, . . . , vq+1 denote the first q + 1 vertices of the
path Pp+q+1 of length p+ q, counting from one of the endpoints. Tree T can then be
represented as a multiple coalescence

T ⇠
=

T�
(u = vq+1)Pp+q+1,

and from Lemma 4.5 we then obtain that

�1(T [G,n]) = �1(T
�
(u = vq+1)Pp+q+1[G,n])

� �1(T
�
(u = vq)Pp+q+1[G,n])

...
� �1(T

�
(u = v1)Pp+q+1[G,n]).
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The degree of u in tree T 0
= T�

(u = v1)Pp+q+1 has, however, decreased by one.
Repeating the above procedure as long as the tree contains vertices of degree at least
three, we eventually obtain that �1(T [G,n]) � �1(Pn[G,n]).

With respect to the right-hand side inequality in (4.30), let u be a vertex of T
with d = deg(u) � 2 and the largest eccentricity. Let v1, . . . , vd be the neighbors
of u in T . The vertex u cannot lie on a path between any two other vertices of degree
at least two, as one of them would then have eccentricity larger than u. If T is not
the star Sn, then exactly one neighbor of u, say v1, has degree at least two, while the
remaining neighbors v2, . . . , vd all have degree one. Let

T 0
= T � uv2 � · · ·� uvd + v1v2 + · · ·+ v1vd.

Further, let T� be the tree obtained from T by deleting vertices u, v2, . . . , vd. If c
and l are the center and an arbitrary leaf of the star Sd+1, then both T and T 0 can be
represented as multiple coalescences:

T ⇠
=

T�
(v1 = l)Sd+1,

T 0 ⇠
=

T�
(v1 = c)Sd+1.

From Lemma 4.8 we then obtain that

�1(T [G,n]) = �1(T
�
(v1 = l)Sd+1[G,n])

 �1(T
�
(v1 = c)Sd+1[G,n]) = �1(T

0
[G,n]).

The degree of u in T 0 is, however, equal to one. Repeating the above procedure as
long as the tree contains at least two vertices of degree at least two, we eventually
obtain that �1(T [G,n])  �1(Sn[G,n]).

Theorem 4.2. Let G be an arbitrary rooted graph. If H is a connected graph on
n vertices, then

�1(Pn[G,n])  �1(H[G,n]) < �1(Kn[G,n]),

where Kn denotes the complete graph on n vertices.

PROOF. From the fact that Kn[G,n] contains H[G,n] as a proper subgraph for
any H 6⇠

=

Kn, we immediately see that �1(H[G,n]) < �1(Kn[G,n]), as the spec-
tral radius of a connected graph strictly increases with the addition of edges (see
item a) on page 35). From the same reason, if T is an arbitrary spanning tree
of H , then �1(T [G,n])  �1(H[G,n]). From the previous theorem, we then have
�1(Pn[G,n])  �1(T [G,n])  �1(H[G,n]).
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5. Conclusion

We have developed a new method for comparing spectral radii of adjacency ma-
trices of graphs, that applies to graphs that can be represented as multiple coales-
cences of the same basis graph with different smaller subgraphs. The method, based
on Lemma 2.4, works by comparing walk counts in the smaller subgraphs in order to
imply inequality between spectral radii for the whole graphs. We have further devel-
oped a number of walk count lemmas for cases when smaller subgraphs are rooted
products of paths or stars by another graph. Most of the results in this manuscript
are named lemmas, as we expect them to become useful ingredients in the proofs of
further results. Examples of such results here include the proof of weak inequality
in the 2009 conjecture of Belardo, Li Marzi and Simić [1], and the solution of the
Brualdi-Solheid problem for the classes of graphs consisting of rooted products with
the same rooted graph.
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