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A b s t r a c t. Microtubules are cylindrically shaped cytoskeletal biopolymers
that are essential for cell motility, cell-division and intracellular trafficking by motor
proteins kinesin and dynein.

In neuronal cells they play the important roles in higher cognitive functions
including learning, memory and consciousness. Experimental evidence suggests that
microtubules act as biological electrical wires that can transmit and amplify electric
signals via the flow of condensed ionic clouds.

We here present some of our contributions aimed to elucidate the versatile bi-
ological functions in microtubules.
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1. Introduction

Microtubules (MTs) are protein filaments of the cytoskeleton and are
found in nearly all eukaryotic cells as almost the most abundant proteins [1].
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MTs are typical soft-matter objects which possess high regularity and
cylindrical symmetry. Their softness is brought about by the fact that the
forces which underlie the polymer formation and maintain its structure are
primary weak hydrogen bonds and van der Waals forces while much stronger
covalent forces are responsible for creation of primary molecular structures,
ie the formation of constituent amino acids and polypeptide chains.

The covalent bonds are with typical binding energy of (2−6) eV per single
bond. The hydrogen bond involves sharing of a hydrogen atom between the
interacting partners in a way that H atom is covalently bonded to one
partner and weakly attached to the other one by its excess charge. The
representative example for biopolymers is the bond of this kind

−O −H · · · N− ,

where symbol − stands for covalent bond and · · · represents corresponding
hydrogen bond. The strength of hydrogen bond amounts approximately
0.2 eV .

Fig. 1. (left) A MT hollow cylinder of 13 parallel protofilaments with
denoted characteristic dimensions: outer and inner diameters of 25 nm
and 15 nm, respectively, and tubulin dimer length of 8 nm; (right)
Microtubules cross section with 13 protofilaments

The van der Waals interaction arises from mutual electric polarization of
constituent molecules. It is relatively the weakest one and is of the magni-
tude of (0.01−0.02) eV which is comparable with thermal energy of 0.025 eV .
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MTs are very dynamic polymers whose assembly and disassembly is de-
termined by whether their constituents called tubulin dimers are in a straight
or tilted conformation. The cylindrical polymer of a MT has its largest di-
ameter of roughly 25nm and a hollow lumen with a diameter of roughly
15nm, see Fig. 1.a.

The lengths of MTs span dimensions from the order of micrometers to
the order of millimeters. These hollow cylinders are formed by linear rows
of joint heterodimers called protofilaments aligned in directions that are
parallel to MT axes.

There are in vivo usually 13 longitudinally ordered protofilaments cov-
ering the walls of MTs, Fig. 1.b.

MTs form an important part of cellular scaffold which maintains the
shape and stability of the cell. They also provide a network of “rails” for
active intracellular transport by kinesin and dynein motor proteins [2,3].
They play a crucial role during cell division forming a dynamic structure
that spatially separates duplicated chromosomes.

The building block of a MT is a tubulin heterodimer (TD) that contains
approximately 900 amino acid residues comprising some 14000 atoms with
a combined mass of 110 kDa (1Da is the atomic unit of mass, 1Da =
1.67 · 10−27 kg). Each heterodimer within a MT is effectively an electric
dipole with α and β tubulin being as positive and negative side of dipole,
respectively, see (Fig. 2.a).

Fig. 2. (left) Dipolar moments of tubulin heterodimers; (right) The
radial distribution of microtubules within a cell; The motor proteins
are shown in cellular traffic

The relevant dimensions are the dimer length ℓ = 8nm and the dipolar
charges displacement d = 4nm. In that respect MT is also electrically po-
lar representing the giant dipole as the superposition of all equally oriented



4 M. Satarić

heterodimers in 13 protofilaments. MTs are always oriented with positively
charged ends towards a cell nucleus and the oppositely charged ones towards
cell membrane. Notice that the positive electrically charged MT end cor-
responds to biologically less dynamically active minus end and vice versa.
This biologically positive end is exposed to more intensive growing during
MT polymerization Fig. 2.b).

In the following we will present just two aspects of multifunctionality of
MTs which manifest in important cellular activities.

First one regards the nonlinear mechanoelectrical excitations in MTs
which utilize the energy released by the hydrolysis of GTP (guanosin triphos-
phate) nucleotide embedded in every tubulin dimer contained in MT matrix.

The second model considers the MTs as true polyelectrolites which en-
able the formation of condensed ionic clouds around them. The model of
nonlinear transmission line explains how MTs can serve as biological electric
nanowires capable of conducting cellular signals and efficiently distributing
divalent cations (Ca2+,Mg2+) throughout the cell to the places where the
need for them does appear [4, 5].

2. The mechanoelectrical model of microtubule dynamics

The essential ingredients of MTs relevant for the model considered here
are so called tubulin tails (TTs). Each tubulin monomer in the MT lattice
has an extended C-terminal alpha-helix H12 followed by highly acidic amino
acid sequence projecting out of the MT outer surface which is referred to as
carboxy-terminal tail, or tubulin tail [6,7].

Geometrically these TTs are hair-like projections of 4 − 5nm length,
depending on the effective charge present, see Fig. 3.

TTs have a high proportion of negatively charged residues, for example
a TT of β-tubulin has 9Glu residues and 2Asp residues. This needs an
adequate number of positive counterions for charge compensation in cellular
cytosol. The fluctuation of TT domains are for sure associated with accom-
panying currents of positive counterions. This aspect will be the subject of
the next section.

The circumstance that TTs are negatively charged but these charges
are partially compensated by positive counterions, enables that besides the
dipole moment of tubulin body an additional dipole moment associated with
pertaining TT should be taken into account. This is the reason why the set
of TTs within a MT can be considered as a cylindrical layer of ferroelectric
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smectic-C liquid crystal folded into a cylinder so that TTs are pointing
radially outwards (see Fig. 4).

Fig. 3. The landscape of a tubulin dimer

with TTs whose dimensions are: the length

of 4.5 nm and diameter of 1 nm. The surface

charge distribution is indicated by plus and

minus signs

Every isolated tubulin heterodimer body has its own dipole moment
which is constant and oriented along its longest axis (longitudinally). And
every TT has its own dipole moment which is superimposed with dipole of
heterodimer’s body.

Fig. 4. The sketch of a collection of tubulin tails within a microtu-
bule. The localized name is indicated with accompanying electric field

When a TT tilts about its fixed base its dipole also swings causing that
the total dipole moment of a heterodimer with TTs has dynamical character.

The total dipole moment ~p can be expressed as the sum of its longitudinal
and transversal components

~p = ~pℓ + ~pt; pℓ = p sin γ; pt = p cos γ, (2.1)

with the illustration in Fig. 5 (left).
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Fig. 5. a) The geometry of a total dipole moment of tubular dimer; b) The
polar angle θ for a given TT

We have in mind that along a MT the intrinsic electric field ~E exists in
parallel with x axis.

Let take that a TT is tilted for polar angle θ, Fig. 5 (right). Then the
density of polarization energy of a MT can be written as follows

Wpol

[

J

m3

]

=
P 2
ℓ

2χℓ
+

P 2
t

2χt
− EPℓ − µpPt sin θ. (2.2)

Here the polarization is denoted with capital letter P
[

Db/m3
]

. The
corresponding longitudinal and transversal dielectric susceptibilities for MT
are denoted by χℓ and χt with units (F/m); µp is the phenomenological
constant, which will be elaborated later.

When a TT is tilted for an angle θ so is ~Pt and its projection on the
x-axis can be expressed as Pt sin θ.

According to the seminal approach by Carlsson, Stewart and Leslie [8, 9],
the cylindrical smectic-C liquid crystal thin layer has the elastic energy in
cylindrical coordinates as follows

Wlayer =
1

2r2
[A12(θ) sin

4 ϕ+A21(θ) cos
4 ϕ− 2A11(θ) sin

2 ϕ cos2 ϕ], (2.3)

where r, θ and ϕ are radial, polar and azimuthal degree of freedom.

The elastic coefficients Aij(θ) are even functions of polar angle θ. In
original papers [8, 9] the expansion was of quadratic order due to relatively
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small θ. In this model since θ can be of the order of radian, we will expand
it up to fourth order of θ, as follows

A12(θ) = K11 + L12θ
2 +M12θ

4,

A21(θ) = K11 + L21θ
2 +M21θ

4,

A11(θ) = −K11 + L11θ
2 +M11θ

4.



















(2.4)

Inserting the expansions Eq. (2.4) in Eq. (2.3) we get

Wlayer =
K1

2r2
+

1

2r2
[(L12 + L11) sin

4 ϕ+ (L21 + L11) cos
4 ϕ− L11]θ

2

+
1

2r2
[(M12 +M11) sin

4 ϕ+ (M21 +M11) cos
4 ϕ−M11]θ

4.

(2.5)

Looking for the stable configuration, regarding the azimuthal angle ϕ, we
should minimize the layer energy, Eq. (2.5) with respect to ϕ,

∂Wlayer

∂ϕ
= 0;

thus giving

(L12+L11) sin
2 ϕ−(L11+L21) cos

2 ϕ+[(M11+M12) sin
2 ϕ−(M11+M21) cos

2 ϕ]θ2=0,

or in slightly rearranged form,

(L12+L11)+(M21+M11)θ
2] sin2 ϕ = [(L11+L21)+(M11+M21)θ

2] cos2 ϕ = 0. (2.6)

The expressions in square brackets must have the same sign, so it is
plausible to take them with positive signs

(L12 + L11) + (M11 +M12)θ
2 > 0,

(L21 + L11) + (M11 +M21)θ
2 > 0.







(2.7)

Thus the stable azimuthal angle is being defined by the expression

ϕ0 = arctan

[

(L11 + L21) + (M11 +M21)θ
2

(L11 + L12) + (M11 +M12)θ2

]

. (2.8)

If the symmetry conditions L12 = L21 and M12 = M21 hold, one obtains

ϕ0 =
φ

4
. (2.9)
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Solving for sin2 ϕ and cos2 ϕ from Eq. (2.6), and inserting in Eq. (2.5) it
follows

Wlayer =
K11

2r2
+

1

2r2

[

Uθ2 + V θ4
]

, (2.10)

where

U = (L11 + L12)
(L11 + L12)

2

(L12 + L21 + 2L11)2
+ (L12 + L11)

(M11 +M12)
2

(M12 +M21 + 2M11)2
− L11

and

V = (M11+M12)
(L11 + L12)

2

(L12 + L21 + 2L11)2
+(M11+M12)

(M11 +M12)
2

(M12 +M21 + 2M11)2
−M11.

Expecting that symmetry conditions leading to Eq. (2.9) safely hold, the
simplified version of Eq. (2.5) now reads

Wlayer =
K11

2r2
+

1

4r2
(Aθ2 +Bθ4),

A = L12 − L11; B = M12 −M11,

A < 0; B > 0.



























(2.11)

The next step is to introduce the energy density of torsional splay along
the length of MT in parallel with x-axis,

Wsp =
K11

2

(

∂θ

∂x

)2

, (2.12)

and the density of rotational kinetic energy

Wkin =
1

2
J
(

∂θ

∂t

)2

, (2.13)

where J stands for the density of rotational inertia of TTs when rotate
around their fixed ends joined with MT body.

Eventually on the basis of the large tilt angle and appropriate expansion
of sin θ, the density of polarization energy, Eq. (2.2) now reads

Wpol =
P 2
ℓ

2χℓ
+

P 2
t

2χt
−EPℓ − µpPtθ +

1

6
µpPtθ

3. (2.14)
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If we use the Eq. (2.1) this expression involves the angle γ between tilted
polarization vector ~P and the radial axis, thus giving

Wpol =
P 2 sin2 γ

2χℓ
+

P 2 cos2 γ

2χt
−EP sin γ

−(µpP cos γ)θ +
1

6
(µpP cos γ)θ3. (2.15)

The polarization energy density, Eq. (2.15) can be minimized with re-
spect to polarization P thus enabling the elimination of P in terms of θ

∂Wpol

∂P
= 0, (2.16)

which leads to the expression:

P = [E sin γ + (µp cos γ)θ − 1
6
(µp cos γ)θ

3]Λ(γ),

Λ(γ) =

[

cos2 γ

χt
+

sin2 γ

χℓ

]

−1

.



















(2.17)

Inserting P from Eq. (2.17) into (2.15), we finally get

Wpol = Λ

[(

1

4
µ2
p cos

2 γ

)

θ4 +

(

1

12
Eµp sin(2γ)

)

θ3

−
(

1

2
µ2
p cos

2 γ

)

θ2 −
(

1

2
Eµp sin(2γ)

)

θ − 1

2
E2 sin2 γ

]

. (2.18)

This is the complete polynomial of fourth power with respect to the angle θ.
Even in the case where the electric field E is absent the remaining two

terms with even powers assure the existence of double-well potential alike
the expression, Eq. (2.11) for layer elastic energy.

We now gather together all the elastic and polarization terms with kinetic
energy, Eqs. (2.11), (2.12), (2.13) and (2.18) and thus create the total free
energy for the complete collection of TTs within a given MT,

F = 2π

R+λ
∫

R

rdr

x2
∫

x1

dx

[

K11

2

(

∂θ

∂x

)2

+
J
2

(

∂θ

∂t

)2

+
K11

2r2
+

1

4r2
(Aθ2 +Bθ4)

+

(

1

4
Λµ2

p cos
2 γ

)

θ4 +

(

1

12
ΛEµp sin 2γ

)

θ3 −
(

1

2
Λµ2

p cos
2 γ

)

θ2

−
(

1

2
ΛEµp sin 2γ

)

θ −
(

1

2
ΛE2 sin2 γ

)]

. (2.19)
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HereR = 12.5nm stands for outer radius of a MT and λ = ℓeff = 4.5nm
for the length of a TT indicating the bounds for radial integral. Performing
the respective radial integration the last expression yields

F =

x2
∫

x1

dx

{

π(2Rλ + ℓ2)

[

K11

2

(

∂θ

∂x

)2

+
J
2

(

∂θ

∂t

)2
]

+ πK11 ln

(

1 +
λ

R

)

+
π

2
ln

(

1 +
λ

R

)

(Aθ2 +Bθ4) +
[π

4
(2Rλ+ λ2)Λµ2

p cos
2 γ
]

θ4

+
[ π

12
(2Rλ+ λ2)ΛEµp sin(2γ)

]

θ3 −
[π

2
(2Rλ+ λ2)Λµ2

p cos
2 γ
]

θ2

−
[π

2
(2Rλ+ λ2)ΛEµp sin(2γ)

]

θ −
[π

2
(2Rλ+ λ2)ΛE2 sin2 γ

]

}

(2.19)

There are two terms expressing the direct coupling of mechanical move-
ment θ with electric field E.

Eventually by minimizing the free energy F from Eq. (2.20) with respect
to θ, and equating that result to a viscous damping term

Fvis = −Γ
∂θ

∂t
(2.21)

we arrive to the Euler-Lagrange equation for polar tilt angle θ

∂2θ

∂x2
− J

K11

(

∂2θ

∂t2

)

− δ
∂θ

∂t
− aθ3 − bθ2 + cθ + d = 0, (2.22)

where the set of pertaining abbreviations read

δ =
Γ

πK11(2Rλ+ λ2)
; a =

1

K11

[

2 ln
(

1 + λ
R

)

(2Rλ + λ2)
B + Λµ2

p cos
2 γ

]

;

b =
1

4K11

ΛE sin(2γ); c =
1

K11

[

Λµ2
p cos

2 γ −
2 ln

(

1 + λ
R

)

(2Rλ+ λ2)
A

]

;

d =
1

2K11

ΛEµp sin(2γ).















































(2.23)

This is nonlinear partial differential equation of motion with an asym-
metric double well potential of the following form

∏

(θ) =
1

4
aθ4 +

1

3
bθ3 − 1

2
cθ2 − dθ. (2.24)
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If the standard procedure for traveling wave solution of Eq. (2.22) with
unified coordinate ξ defined by

ξ =
x− vt

ℓ
, (2.25)

where v stands for wave velocity and ℓ for a dimer length, is readily per-
formed, then this equation is converted in the nonlinear ordinary differential
equation.

The most important outcome is the appearance of the solution which
represents the so called kink waves

θ(ξ) =

(

c

a

)1/2
(

2

1 + exp(
√
2ξ)

− 1 +
ε√
27

)

, (2.26)

with

ε =
σB + 1

1− σA
; σ =

2 ln

(

1 +
λ

R

)

Λµ2
p cos

2 γ(2Rλ + λ2)
. (2.27)

This excitations moves with constant velocity preserving the very stable
shape, see Fig. 6.

Fig. 6. Two kinks with different initial parameters

The reason for kink stability in despite of the presence of viscous dissi-
pation is the energy supply provided by the action of electric field E.
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The constant kink velocity is given by the following expression

v =
3v0
b

(J aλ

ℓ

)1/2

qeff

(

E

Γ

)

, (2.28)

where

v0 =

(

K11

J

)1/2

is the respective sound velocity while qeff is the effective charge of a dipole
associated with single tubulin dimer.

The above result is physically very plausible and is a kind of equivalence
with Ohm’s law. The velocity is linearly proportional to the strength of
electric field and inversely proportional to the viscous damping.

In conclusion, our model leads to the efficient mechanism of lunching and
tuning TT kinks along MTs by the control role of intrinsic cellular electric
fields. We conjecture that these kinks should play the role of signals which
initiate the onset of intracellular traffic and transport of different organelles
by motor proteins walking along MTs. The other possible role is related
for fast drift of cations, primarily Ca2+ and Mg2+ implicated in catalyzing
of many vital cellular functions. This segment is the subject of the next
section.

3. Nonlinear ionic currents along microtubules

Extensive molecular dynamics simulations of tubulin dimer structure [3]
indicate the existence of a highly negatively charged outer surface of tubulin
dimer with a net electric charge on the order of (20 − 25) e per monomer
(e = 1.6 · 10−19 C), depending on the isotype of tubulin.

Thus we conclude that MTs are highly charged polyelectrolytes which
attract a fraction of their surrounding counter-ions in the form of condensed
ionic cloud (IC) preferentially localized around the MT surface.

In the addition negative ions of the cytosol are repelled away from the
MT surface and a roughly cylindrical depletion layer around MT and TTs
emerges. The thickness of such a depleted area is approximately equal to
the so called Bjerrum length denoted by ℓB and defined by equating the
energy of thermal fluctuations with Coulomb attraction (repulsion) energy
between ion species,

ze2

4πε0εℓB
= kBT ; ε0 = 8.85 · 10−12 F/m. (3.1)
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At a physiological temperature (T = 310K), taking the elementary charge
as e = 1.6 · 10−19 C, Boltzman’s constant as kB = 1.38 · 10−23 J/K, and the
relative dielectric permittivity of the cytosol as ε = 80, and for Ca2+ ions
z = 2, one readily obtains

ℓB = 1.34 · 10−9 m = 1.34nm. (3.2)

Counter-ion condensation occurs when the mean distance between two charges
ρ is such that the following inequality

S =
ℓB
ρ

≫ 1 (3.3)

holds. It was estimated that there are some 15−18 exposed negative charges
per tubulin dimer [10]. Since each dimer is 8nm long and 13 protofilaments
form a MT, one could readily find that there is a linear charge density of
(20 − 30)(e/nm) indicating that linear charge spacing is ρ = (0.33 − 0.44) ·
10−10m, safely providing that the condition (3.3) holds,

16 < S < 21. (3.4)

The second important characterization of a polyelectrolite is the Debye
length defined as

ℓDb = (8πℓBn0)
−1/2, (3.5)

where n0 stands for total concentration of ions present in cytosol. The
estimated value amounts

ℓDb ≃ 2nm. (3.6)

This should be greater or comparable with the radius r of concrete rodlike
polyelectrolyte considered

ℓDb ≥ r. (3.7)

Since the radius of a TT is of the order of rTT = 0.5nm and the radius of
a TD is of the order of rTD = 2.5nm we see that the condition Eq. (3.7)
could be met for either.

We are now in the position to establish the model of nonlinear electric
transmission line considering a MT as the cable of 13 parallel filaments.
Each filament is composed of serie of identical electric elementary units
(EEU) represented by single tubulin dimers. Every unit possesses resistive
and capacitive properties which should be properly estimated. The con-
densed ionic cloud and repelled anions play the roles of “conductive plates”
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of a cylindrical capacitor while depleted layer plays the role of a dielectric
medium [5].

The important point is to estimate the capacitance of a single EEU.
It consists of the part pertaining to outer half cylinder of tubulin dimer
body plus the part originating from two pertaining TTs. On the basis of
cylindrical symmetry the first part contributes as follows (see Fig. 7.a),

CTD =
πε0εℓ

ln

(

1 +
ℓB
ric

) . (3.8)

Starting from the parameters ℓ = 8nm; ε = 80, ℓB = 1.34nm then the
outer radius of ionic cloud is ric = rTD + λTD = (2.5 + 2.5)nm and λTD is
the thickness of condensed ionic cloud around tubulin dimer body. Inserting
above values in Eq. (3.8) one obtains

CTD = 0.77 · 10−16 F. (3.9)

Fig. 7. a) The shape of condensed ionic cloud arround dimer outer surface;
b) The ionic condensed cloud arround tubulin tail

Analogously we can consider an extended TT as a smaller cylinder with
the radius rTT = 0.5nm and the thickness of its IC is equal to λTT = 1nm.
Its extended effective length should be ℓ effTT = (4.5 − 2.5)nm = 2nm on
the basis of the fact that its part close to the tubulin surface is already
embedded in the IC of thickness λTD = 2.5nm.

If these parameters were substituted in Eq. (3.8) it follows

CTT = 0.15 · 10−16 F. (3.10)

Accounting for the fact that two TTs are at the same tubulin dimer, the
total maximal capacitance of an EEU reads

C0 = CTD + 2CTT = 1.07 · 10−16 F. (3.11)
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We here emphasize that TT’s capacitance must change with an increasing
concentration of condensed cations due to the shrinking of flexible TTs.
These changes are slightly different due to the different structures of α and
β-type TTs. To include this case we introduce the reduced factor of nonlin-
earity as follows

b0 =
bαbβ

bα + bβ
, (3.12)

where bα and bβ stand for the respective TTs.

This implies that the change of an EEU capacitor diminishes with an
increased voltage in a nonlinear way ∆C0 = C0b0v; b0v ≪ 1.

Now very importantly we can account the tilting movements of TTs in
the context of Section 2. In this case the tilt θ(t) can appear under the
combined action of thermal fluctuations and a locally changing voltage due
to an incoming ionic influx.

Thus, the part of EEU capacitance contributed by TTs should also
change by TTs tilt as illustrated in Fig. 7.b.

The change of the effective length ℓ effTT of a TT is an additional factor
influencing the capacitance ∆CTT. It is reasonable that this change could
be described by the small oscillations of TTs,

∆ℓ effTT = ℓ effTT sin[Ω(t− t0)] ≃ ℓ effTTΩ(t− t0), (3.13)

where the frequency Ω is much smaller than the inverse charging time of
the complete EEU capacitor due to the strong viscous damping of the TT
tilt. This fact justifies the above linearization of pertaining sine function in
Eq. (3.13).

Including the both aspects of TTs dynamics described above, the charge
of an EEU can be expressed by the following nonlinear function of local
voltage

Q = C0

[

1− Γ0Ω(t− t0)− b0v
]

v, (3.14)

where Γ0 is a dimensionless parameter.

The second important electrical parameter of EEU is the Ohmic resis-
tance.

The dominant ionic flow is in parallel with the MT axis charging EEU ca-
pacitors. The leaking through the depleted layer could be ignored but there
is some leaking into the MT lumen through two different nanopores which
are open between neighboring tubulin dimers of nearest protofilaments, see
Fig. 8.
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Fig. 8. The nanopores within a microtubule

The in silico experiments performed by H. Freedman et al [11] yield the
resistance for complete 13 protofilaments RMT = 4.75 ·106Ω. The resistance
for our EEU should be 13 times greater giving

R0 = 6.2 · 107 Ω. (3.15)

In the same reference [11] the conductance of both leaking nanopores was
estimated to be

G0 = G1 +G2 = (2.93 + 7.8)nS = 10.7nS;
1

G0

= RNP = 9.3 · 107 Ω.
(3.16)

It is now possible to construct the periodically repeating long ladder net-
work composed of a lumped section equal to EEU consisting of the elements
given by Eqs. (3.14), (3.15), (3.16), see Fig. 9.

By applying the Kirchoff’s law governing currents and voltages, from
Fig. 9 we obtain

in − in+1 =
∂Qn

∂t
+G0vn,

vn−1 − vn = R0in.











(3.17)

Taking the time derivative of Eq. (3.14) and inserting in Eq. (3.17) we
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Fig. 9. An effective circuit diagram for the n-th ER with character-
istic elements for Kirchhoff’s laws

arrive at the system of nonlinear difference–differential equations as follows

in − in+1 = C0

∂vn
∂t

− C0Γ0Ωvn − C0Γ0Ω(t− t0)
∂vn
∂t

−2b0C0vn
∂vn
∂t

+G0vn,

vn−1 − vn = R0in.



























(3.18)

Bearing in mind that the discrete voltage vn, as well as the current
in, change gradually from an EEU to its neighbors we can implement the
standard expansion of vn±1 and in±1 in a continuum approximation using
Taylor’s series with respect to a small distance parameter ℓ (ℓ = 8nm is
the length of an EEU). In parallel we can go over to the unifying auxiliary
function u(x, t) defined by

u(x, t) = Z1/2i(x, t) = Z−1/2v(x, t), (3.19)

where the characteristic reactive impedance of an EEU is expressed in the
usual way as

Z =
1

C0ω
. (3.20)

In the next step we use the traveling-wave form of the function u(x, t),

u(x, t) = u(ζ − τ); ζ =
x

ℓ
; τ = s

t

T0

; s =
v

v0
≤ 1, (3.21)
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with new dimensionless arguments (ξ, τ). Here the characteristic time T0 of
charging of an EEU capacitor C0 through the resistance R0 has the following
value

T0 = R0C0 = 6.2 · 107Ω× 1.07 · 10−16F = 6.6 · 10−9s,

ω =
2π

T0

=
6.28

6.6
· 109s−1 = 9.5 · 108s−1.















(3.22)

The characteristic velocity of the ionic drift is defined as follows

v0 =
ℓ

T0

=
8 · 10−9m

6.6 · 10−9s
= 1.2

(

m

s

)

. (3.23)

After a straightforward evaluation we eventually get the following inho-
mogeneous nonlinear partial differential equation

(

ZC0s

T0

− 2

)

∂u

∂τ
+

1

3

∂3u

∂ζ3
+ ZC0Γ0Ω(ζ − ζ0)

∂u

∂ζ

+2
Z3/2b0C0s

T0

u
∂u

∂ζ
+ (ZG0 + Z−1R0 − 2C0Γ0Ω)u = 0. (3.24)

After lengthy calculations given in very details in Ref. [5] we readily
obtained the most interesting and imporant solution of Eq. (3.24) as follows

u(ζ, τ) =
u0 exp(−2gτ)

cosh2

{

[

hu0

4q
exp(−2gτ)

]1/2 [

δ +
hu0

3q
[exp(−2gτ)− exp(9τ)

]

} , (3.25)

where the abbreviations were introduces as to read

h =
2Z3/2b0C0s

T0

(

ZC0s
T0

− 2
) , q =

[

3

(

ZC0s

T0

− 2

)]−1

,

g =
ZC0Γ0Ω
(

ZC0s
T0

− 2
) , Γ0 =

G0

3C0ω
+

C0R0ω

3
, (3.26)

Γ0 =
G0

3C0ω
+

C0R0ω

3
, δ = ζ − ζ0(1 − exp(gτ)),

and u0 is the initial amplitude of either the voltage or the current of ionic
condensed cloud.
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In order to perform the numerical simulation of Eq. (3.24) we start by
estimating the value for the factor which should not be zero in order to avoid
the singularity in Eq. (3.24).

On the basis of Eq. (3.20) we first calculate the impedance of an EEU,
using Eq. (3.22):

Z =
1

C0ω
=

T0

C02π
=

6.6 · 10−9s

1.07 · 10−16F · 6.28 = 9.8 · 106 Ω. (3.27)

So, the following estimation holds (for s = 1):

(

ZC0s

T0

− 2

)

=
9.8 · 106 · 1.07 · 10−16

6.6 · 10−9
− 2 = −1.84, (3.28)

and the dimensionless parameter of TTs tilt frequency from Eq. (3.26) gives

Γ0 = 2.13. (3.29)

In order to estimate the mechanical frequency Ω of tilting TTs we can start
from the expression

1

2
JTTΩ

2 = kBT (3.30)

which leads to the rough estimation

Ω ∼ 2 · 108 s−1. (3.31)

Comparing Eq. (3.31) with Eq. (3.22) we see that the mechanical frequency
is small compared with electrical one so that the approximation in Eq. (3.13)
is safely justified.

If we use the set of estimated parameters in Eqs. (3.26), (3.27), (3.28)
and (3.29) we are able to apply the MATLAB program and to solve for the
function Eq. (3.25) (see Fig. 10).

We obtained the bell-shaped localized solitonic solution. It appears that
increased value of nonlinearity parameter h from Eq. (3.26) exhibits not only
a higher localization but faster propagation and slower decay of soliton’s
amplitude. The advantage of this excitation lies in the fact that its speed
decreases very slightly on the path of a few micrometers, which is the order
of the cell’s diameter. This property assures that MTs can be considered
as biological electrical wires capable of conducting ionic pulses which are
necessary for important cellular function including learning and memory
activities of neuron cells.
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Fig. 10. Numerical solution of u(ζ, τ)

4. General conclusion and discussion

This paper deals with two interesting aspects of nonlinear dynamics of
microtubules. First part was dedicated to mechanoelectrical waves excited
to propagate in terms of tilting swings of so called tubulin tails the hair like
extrusions from tubulin dimers.

These localized waves are so called kink solitons. They are capable to
play the role of signals for intracellular signaling and communications. We
predict their involuments in regulation of intracellular traffic which is highly
organized without traffic jam in healthy cells. Second part deals with mi-
crotubules as polyelectrolites. Interestingly in this segment tubulin tails
again play the crucial role in providing the nonlinearity which underly of
the appearance of localized condensed ionic clouds which propagate along
microtubules. This mechanism provides faster and more tunable way of
transport of important ions (primarily Ca2+ and Mg2+) providing their
controlable catalytic actions in many cellular functions.
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