
Bulletin T.CXLV de l’Académie serbe des sciences et des arts − 2013
Classe des Sciences mathématiques et naturelles
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1. Introduction

We plan to write series of papers related to the most recent developments
in theory of planar quasiconformal mappings the Teichmüller theory. Lars
Ahlfors’s Lectures on Quasiconformal Mappings [Ah] is the basic literature in
the subject. These lectures develop the theory of quasiconformal mappings
from the beginning on only 146 pages, and give a self-contained treatment of
the Beltrami equation, and cover the basic properties of Teichmüller spaces,
including the Bers embedding and introduction of complex structure on the
Teichmüller spaces.

Besides these lovely lecture notes for foundations of the theories of qua-
siconformal mappings and Teichmüller spaces we also highly recommend
books [LV, Leh].

In four decades since the publication of Lars Ahlfors’s book [Ah] and
the classical text of Olli Lehto and Kalle Virtanen [LV], there have been
important developments.

The new edition [Ah1] of Ahlfors’s book includes three new chapters.
The first, by the title A supplement to Ahlfors’s Lectures, written by Earle
and Kra, describes further developments in the theory of Teichmüller spaces
and provides many references to the numerous literature on Teichmüller
spaces and quasiconformal mappings.

We refer to this chapter as EK-supplement to Ahlfors’s Lectures, which
is particularly relevant to our article. The second, by Shishikura, describes
the role of quasiconformal mappings in the subject of complex dynamics.
The third, by Hubbard, illustrates the role of these mappings in Thurston’s
theory of hyperbolic structures on 3-manifolds. Together, these three new
chapters show that the theory of quasiconformal mappings is presence in
current important trends of research. This article also summarizes further
developments in some areas related to Ahlfors’s book and there is some
overlap with EK-supplement to Ahlfors’s Lectures.

Note that Teichmüller’s theory is related to complex analysis, hyperbolic
geometry, the theory of discrete groups, algebraic geometry, low-dimensional
topology, differential geometry, symplectic geometry, dynamical systems,topo-
logical quantum field theory, string theory, and many others subject. For
further developments we also highly recommend the books [GaLa, FM1,
AIM, IT, Leh, Mu].

In order to define the Teichmüller space of a Riemann surface, we intro-
duce some notation.



Quasiconformal maps and Teicmüller theory 131

A closed manifold is a type of topological space, namely a compact man-
ifold without boundary. In contexts where no boundary is possible, any
compact manifold is a closed manifold.

A Riemann surface S is a complex manifold of complex dimension one.
This means that S is a connected Hausdorff topological space endowed with
an atlas: for every point p ∈ S there is a neighbourhood U containing p
homeomorphic to an open subset of the complex plane C (the unit disk of the
complex plane) by a map z defined on U . The map z (we use also notation
(U, z)) carrying the structure of the complex plane to the Riemann surface
is called a chart. Additionally, the transition maps between two overlapping
charts are required to be holomorphic. If {Ui}, i ∈ I form an open covering
of R, the system c := {(Ui, zi) : i ∈ I} is called a complex structure for S ( It
is also said to define a conformal (analytic) structure on S). If S has a fixed
complex structure, we write (S, c) (or Sc) to denote S with given complex
structure. If f : S → S is a diffeomorphism, define the pullback of c by
f : f∗c := {(f−1(Ui), zi ◦ f) : i ∈ I}. The group of Diff+(S) orientation-
preserving diffeomorphisms of S acts on the space of all complex structures
C on S (from the right) by pullback: C ×Diff+(S) → C, (c, f) 7→ f∗c.

First we consider surfaces of finite type.
A Riemann surface S0 is of finite type if there is a closed Riemann surface

S such that S0 is contained in S, SrS0 consists of finitely many points and
of finitely many disjoint closed parametric discs of S.

Consider a compact (more precisely closed) oriented surface S = Sg,p of
genus g > 0 from which p > 0 points, so-called punctures, have been deleted.
Such a surface is called of finite type (g, p). Homeomorphisms of the surface
act in a natural manner on atlases, and two complex structures on Sg,p are
said to be equivalent if there exists a homeomorphism of the surface which
is homotopic to the identity and which sends one structure to the other.
The surface Sg,p admits infinitely many non-equivalent complex structures,
except if this surface is a sphere with at most three punctures.

Let Cg,p be the space of all complex structures on Sg,p and letDiff+(Sg,p)
be the group of orientation-preserving diffeomorphisms of Sg,p. We con-
sider the action of Diff+(Sg,p) by pullback on Cg,p. The quotient space
Mg,p = Cg,p/Diff

+(Sg,p) is called Riemanns moduli space of deformations
of complex structures on Sg,p.

The Teichmüller space Tg,p (we also use notations T (S) and Teich(S))
of S = Sg,p was introduced in the 1930s by Oswald Teichmüller. It is de-
fined as the quotient of the space Cg,p of complex structures by the group
Diff+0 (Sg,p) of orientation-preserving diffeomorphisms of Sg,p that are iso-
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topic to the identity. The group Diff+0 (Sg,p) is a normal subgroup of
Diff+(Sg,p), and the quotient group Γg,p = Diff+(Sg,p)/Diff

+
0 (Sg,p) is

called the mapping class group of Sg,p (sometimes also called the modular
group, or the Teichmüller modular group) of Sg,p and denote by mcgS.

We can use the set M(R) of Riemann metrics on R to reconstruct
Teich(R).

Two elements ds2 and ds21 in M(R) are equivalent if there exists ω ∈
Diff+(R) such that ω : (R, ds2) → (R, ds21) is conformal; and strongly
equivalent if this ω belongs to Diff0(R).

The mapping which send an element [S, f ] in T (R) to the equivalence
and strong equivalence class, respectively, of a metric corresponding to f
give the following identifications:

T (R) ∼=M(R)/Diffo(R),Mg
∼=M(R)/Diff(R).

During a remarkably brief period of time (1935- 1941), Teichmüller wrote
about thirty papers. These papers laid in the foundations of the theory
which now bears his name. After Teichmüller’s death in 1943 (at the age of
30), L. V. Ahlfors, L. Bers and several of their students and collaborators
developed further Teichmüller’s ideas. Roughly speaking, in more than two
decades, the whole complex-analytic theory of Teichmüller space was built.
In the 1970s, W. P. Thurston opened a new and wide area of research by
introducing beautiful techniques of hyperbolic geometry in the study of Te-
ichmüller space and of its asymptotic geometry.

Non-periodic, irreducible class on a closed surface is canonically rep-
resented by a pseudo-Anosov automorphism. The precise statement of
Thurstons theorem (the classification theorem) is: Every homeomorphism
of a compact surface is homotopic to a homeomorphism that either (a) has
finite order, (b) is reducible (that is, fixes an essential 1-submanifold), or (c)
is pseudo- Anosov. for further developments of this subject and literature
we refer to cf [Marg]. Here we quote the following from [Marg] ”even given
the classification theorem, one thing is not at all obvious: do pseudo-Anosov
homeomorphisms exist? If so, how do we construct them? Nielsen knew a
few examples of infinite order, irreducible mapping classes, but few enough
that he conjectured there were none acting trivially on the homology of the
surface”.

Thurston’s introduction of invariant measure on the stable and an stable
laminations and singular foliation associated with the laminations greatly
clarified the structure of non-periodic, irreducible automorphisms.

Thurston gave a necessary and sufficient criterion for a surface bundle
over the circle to be hyperbolic: the monodromy of the bundle should be
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pseudo-Anosov . This is part of his celebrated hyperbolization theorem for
Haken manifolds.

The bases of the complex analytic theory of Teichmüller space were de-
veloped by Ahlfors and Bers. There are several ways of defining the complex
structure of Teichmüller space. All of them use deep results from analysis.
In Bers’ embedding of Tg,p, the holomorphic cotangent space at a point is
identified with the vector space of holomorphic quadratic differentials with
simple poles at the punctures on a Riemann surface representing the point.
By the theory of quasiconformal mappings, any complex structure on a sur-
face is specified by a Beltrami differential of norm less than one, and this
leads to a description of the holomorphic tangent space at a point of Te-
ichmüller space as a vector space of Beltrami differentials of norm less than
one divided by a subspace of differentials which induce trivial deformations.

Teichmüller’s metric. This metric is obtained by first defining the dis-
tance between two conformal structures g and h on the surface Sg,p to be
1
2 inff logK(f), where the infimum is taken over all quasiconformal home-
omorphisms f : (Sg,p, g) → (Sg,p, h) that are isotopic to the identity and
where K(f) is the quasiconformal dilatation of f . Teichmüller showed that
the infimum is realized by a quasiconformal homeomorphism, and he gave a
description of this homeomorphism in terms of a quadratic differential on the
domain conformal surface (Sg,p, g). This distance function on the set of con-
formal structures is invariant by the action of the group of diffeomorphisms
isotopic to the identity on each factor, and it induces a distance function on
Teichmüller space Sg,p, which is Teichmüller’s metric. Teichmüller’s metric
is a complete Finsler metric which is not Riemannian unless the surface is a
torus, in which case Teichmüller space, equipped with Teichmüller’s metric,
is isometric to the 2-dimensional hyperbolic plane. Teichmüller’s metric is
geodesically convex, that is, any two points are joined by a unique geodesic
segment. The metric is also uniquely geodesic, that is, the geodesic segment
joining two arbitrary points is unique.

There are some variations in the terminology of mapping class groups.
Usually, the term extended mapping class group of a surface designates the
group of isotopy classes of diffeomorphisms of that surface. The mapping
class group is then the group of isotopy classes of orientation-preserving
diffeomorphisms of an oriented surface.

The mapping class group of a surface is also the isometry group of the
Teichmüller metric and of the Weil - Petersson metric on the Teichmüller
space of that surface, and it is conceivable that similar results hold for other
metrics on that space. The most enlightening study of the mapping class
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group is certainly the one that Thurston made through the analysis of the
action of that group on the compactification of Teichmüller space by the
space of projective classes of measured foliations on the surface.

In this connection, we recall that after Thurston’s work was completed,
Bers worked out a similar classification of mapping classes which is based
on the action of the mapping class group equipped with the Teichmüller
metric. Bers obtained this classification by analyzing the minimal set and
the displacement function associated to a mapping class acting by isometries.

Teichmüller metric is defined using a solution of an extremal problem. In
1928 Grotzsch considered the following natural extremal problem,at least in
the case of rectangles. Because Teichmüller later considered the case of gen-
eral Riemann surfaces, this problem is sometimes referred to as Teichmüller’s
extremal problem.

Fix a homeomorphismf f : X → Y of Riemann surfaces and consider
the set of dilatations of quasiconformal homeomorphisms X → Y in the
homotopy class of f .
Question (a). Is the infimum of this set realized ?
Question (b). If so, is the minimizing map unique ?

Teichmüller’s theorems (see below) give a positive solution to both ques-
tions (under the assumption of negative Euler characteristic). The minimiz-
ing map is called the Teichmüller map.

During the last several years, important progress has been made in char-
acterizing the conditions under which unique extremality occurs (see [BMM],
[BLMM],[Ma1], [Re9]). In particular, the Characterization Theorem which
gives the characterization of unique extremality in functional-analytic fash-
ion by special sequences of integrable holomorphic functions of what we call
Re-sequences (Re being an abbreviation of Reich) has found interesting
applications. In particular, we give a negative solution to Question (b) in
general if Riemann surfaces are not of finite analytic type,[BLMM, Ma8].

In subsection 3.3, we report a positive answer to Teichmüller research
question:

Theorem 1.1. (I) Let G be a C1,α- domain, 0 < α < 1, and χ be
uniquely extremal on G. Suppose that ω−(µ; a) < |χ∥∞ expect on a discrete
set in G. Then χ is of Teichmüller type on G.
(II) If µ is extremal on G and the lower oscillation of µ on the boundary is
less than L∞- norm of µ on G, then µ is of Teichmüller type on G.

In subsection 3.5, we also announce and outline some results related extremal
mappings in 3- dimensions.
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We plan to write a few paper related to this remarkable subject and to
discuss connections between Teichmüller spaces, physics (especially string
theory), complex dynamics, and Thurston’s theory of hyperbolic structures
on 3-manifolds. This is first one, which is mainly review of old and new
results.

For a comperhensive surway of geometric function theory, see the -
volume handbook [Ku], edited by R. Kühnau, and for a panorama of some
of the most important aspects of Teichmüller theory see [Pa].

2. Teicmüller theory

In this section we give a short review of Teicmüller theory. For an ex-
panded version, a review of Teicmüller theory and basic definitions see [Ma6].

2.1. Definitions. By D, H and H− we denote the unit disk, the upper
half plane and the lower half plane respectively. Let us consider a Riemann
surface S = D/G, where G is of the second kind. We denote by Λc the
complement of the limit set Λ of G with respect to the unit circle. Then
S ∪ Λc/G is a bordered Riemann surface.

Let Riemann surface S has a half-plane as its universal covering surface
(we take here H−).

Beltrami differential µ is a function µ is defined on H− which is a Beltrami
differential for the covering group Γ of H− over S.

Let Belt1(Γ) ( we use also notation B1(Γ), B1(S), Belt1(S)) be the open
unit ball in the Banach space Belt(Γ) of Beltrami differentials.

The mapping B = fµ◦A◦f−1
µ is Möbius transformation for every A ∈ Γ.

It follows that

[fµ] = [B ◦ fµ] = [fµ ◦A] = [fµ] ◦AA′2

on H.
If M , N are Riemann surfaces, and f : M → N is conformal, then we

say M is conformally equivalent to N .
The automorphism group of a Riemann surface is Aut(M) = {f :M →

M such that f is conformal}.
For example, Aut(D) = { Möbius transformations D → D}. In some

sense, Aut(M) is usually the identity.

Example 1. Suppose f : M → M conformal, where M is a closed
Riemann surface of finite genus > 2. Prove that there is an integer n > 0
such that fn =identity.
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If f :M → N is quasiconformal, then M , N are homeomorphic, but the
converse is not true, eg. M = D r {0} and N = D r {|z| 6 1

2}. However
if M is a closed surface and M is homeomorphic to N , then there is a
quasiconformal map f :M → N .

Let f : M → N be quasiconformal, then we say (N, f) ∈ Def(M), the
deformation space of M , and a Riemann surface marked by M is a pair
(N, f) ∈ Def(M). More precisely, the deformation space Def(M) of a
Riemann surface M is the set of pairs (N, f) where N is a Riemann surface,
and f :M → N is quasiconformal.

For every simply connected plane domain Ω different than C, (Ω, f) ∈
Def(D) by taking the Riemann map f of D onto Ω.

The Teichmüller metric is defined by

d((f1, N1), (f2, N2)) =
1

2
inf{logK(f) : f : N1 → N2 is homotopic to f2◦f−1

1 }.

Remark. We follow Royden and use here the scaling factor 1/2. Ahlfors
uses Teichmüller ’s original scaling without the scaling factor 1/2.

The Teichmüller space is obtained from the space of all (N, f) by iden-
tifying those at distance zero.

Equivalently, following Ahlfors (chapter VI, [Ah1, Ah] we can define an
equivalence relation ∼ on Def(M) by (N1, f1) ∼ (N2, f2) if and only if
f2 ◦ f−1

1 : N1 → N2 is homotopic to a conformal map g : N1 → N2. We call
it reduced Teichmüller (RT) or Ahlfors’s equvalence relation.

Let S0 be any hyperbolic Riemann surface, and let π0 : H → S0 be a
holomorphic universal covering of S0.

We say that a qc f of M onto itself is Teichmüller trivial if it has a lift
f̃ : H → H that fixes the extended real axis pointwise.

Remark. We say (N1, f1) ∼ (N2, f2) (in Bers sense or strongly equivalent
or modulo the boundary) if there is a conformal mapping g of N1 onto N2

such that
(I.1) f2 ◦ f−1

1 : N1 → N2 is homotopic modulo the boundary to g, or equiv-
alently
(I.2) f−1

2 ◦ g ◦ f1 of M onto itself is Teichmüller trivial.
If Γ = Γ(M) is of first kind the definitions are the same. When Γ is

not of first kind, i.e M is bordered, Ahlfors’s equvalence relation produces
so-called reduced Teichmüller space T ♯(M).

Example 2. (a) Check that T#(D) is trivial.
(b) What is Teich(S2) ?
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If M has finite conformal (analytic) type, Γ is of first kind.

In what follows, we shall not consider reduced Teichmüller spaces and
we use the term ”homotopy” to mean ”homotopy modulo the boundary”.

Recall that if Γ = ΓM = Γ(M) is of first kind and f1, f2 : M → N are
homotopic, then the lifts f̃1, f̃2 on D once normalized to fix three points of
∂D will agree on ∂D. This makes sense because the lifts are quasiconformal
maps of D and so extend to homeomorphisms of the boundary of D.

The space of equivalence classes of these pairs (that is, of Riemann sur-
faces (N, f) marked byM) is the Teichmüller space Teich(M); we also use a
short notation T (M). Thus the Teichmüller space is T (M) = Def(M)/ ∼,
and we use notation [(N, f)] = τ ∈ T (M) for a point of Teichmüller space.

We also denote the equivalence class of a qc mapping f :M → N shortly
by [f ] or [µ], where µ is the Beltrami coefficient of f . If M is hyperbolic
it is often convenient to identify f by the lift f̃ : H → H. Two Beltrami
differentials in Belt(M) are equivalent if they induce qc mappings on M
whose lifts to H have the same boundary values.

(M, I) is called the initial point in T (M); term the base point is also
used. In the other words, the equivalence class of zero differential is the
base point in T (M) and is denoted by [0].

Every µ ∈ Belt(M) defines a complex structure on M , and the Te-
ichmüller space T (M) is the space of deformations of a given (basepoint)
complex structure on M . The Teichmüller metric measures the distance
between different conformal structures.

Example 3. M = D.
For each (N, f) ∈ Def(D), there is a (D, g) ∼ (N, f) such that g : D → D,

g fixes 1, −1 and i. For each [(N, f)] there is a 1-1 correspondance with a
quasi-symmetric map which fixes 3 points on ∂D.

Thus T (D) ∼= { normalised quasisymmetric maps of ∂D}.
Let QS(R̂) be the group of quasi-symmetric maps g : R̂ → R̂. These are

exactly the homeomorphisms of R̂ that arise as boundary values of quasicon-
formal maps. The case where ΓM is the trivial group, and M = H is called
universal Teichmüller space. In this case we have T (H) ≃ QS(R̂)/PSL2(H).

2.2. Teichmüller metric. For τ1, τ2 ∈ T (M) and τi = [(Ni, fi)] for
i = 1, 2, the Teichmüller metric is given by

dT (τ1, τ2) =
1

2
inf

f∼f1◦f−1
2

(logKf ).
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If f : N2 → N1 satisfies logKf = d(τ1, τ2), f is an extremal quasiconfor-
mal map.

f is uniquely extremal if there is only one extremal map.

To show that the infimum can be attained, and so dT really is a metric,
go to the universal cover, D.

f̃ is the lift of f , and f̃ = ˜f1 ◦ f−1
2 on ∂D. Kf = K

f̃
, so taking any

sequence converging to the infimum, inf logK
f̃
= limn→∞ logK

f̃n
.

Now f̃n → f̃0 uniformly on compact sets (eg. on D) by the compactness of
quasiconformal maps, so limn→∞ logK

f̃n
= logK

f̃0
.

The study of extremal quasiconformal maps is crucial for the study of
the geometry and analytic properties of Teichmüller spaces, and we will see
more of this later.

Example 4. [Annulus ,Torus] (a) The reduced Teichmüller space of an
annulus is isomorphic to R with euclidean metric.
(b) Teichmüller space of a torus is isomorphic to R with hyperbolic metric.
We outline a proof of (b). Let T1(z) = z + 1, Tτ (z) = z + τ for τ ∈ H,
Γτ =< T1, Tτ > and Rτ = C/Γτ . If R is a torus, then R = Rτ = C/Γτ ,
τ ∈ H. More precisely there is τ ∈ H such that R is conformally equivalent
with Rτ . Here τ is not unique, but the lattice group Gτ = {m+nτ : m,n ∈ Z}
is well defined. Let i = τ0, Rτ0 is a square torus. For (N, f) ∈ Def(Rτ0),
there is a ∈ H and a conformal mapping A : N → Ra. Set g = A ◦ f . We
can choose A such that that the lift g̃ of g is normalized by g̃(0) = 0 and
g̃(1) = 1. Set τ = g̃(i). It is readable there is a unique τ ∈ H such that
(N, f) ∼ (Rτ , g), the lift g̃ of g is normalized and g̃(i) = τ . Set T = T (Rτ0).

So we have one-to-one mapping of T onto H ([(N, f)] ↔ τ ∈ H) and
we will see that (T, dT ) ∼= (H, dhyp). We outline a proof that dT = dH after
this identification. To see that the Teichmüller metric dT is the hyperbolic
metric dH, take τ1, τ2 ∈ H, and note there is an affine map A : Mτ1 →
Mτ2 for τ1 ̸= τ2 with the normalization A0(0) = 0, which has dilatation
lnK(A) = dH(τ1, τ2). A0 conjugates the action of the groups, and it is not
homotopic to a conformal map.

To see that A0 is extremal, we consider the distortion of modulus of the
corresponding family of curves.

Let p, q ∈ Z and l(p, q) be the projection of segment [0, p + qτ ] on Rτ
and Γ(p, q) the family of paths on the tori homotopic with l(p, q). Verify
that M(Γ(p, q)) = sτ2

τ22+(τ1+s)2
, where τ = τ1 + iτ2, s = p/q and in particular

Mod(Γ(1, 0)) = Imτ .
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Note here that (T, dT ) is not compact but it is a complete metric space.

If g : M → N is quasiconformal, take (S, f) ∈ Def(N) and map it to
(S, f ◦g) ∈ Def(M). Thus we have an induced map Ig from T (N) to T (M).
Ig and Ig−1 are isometries of the corresponding Teichmüller metrics. (For
M , N both tori, then Ig must be a conformal Möbius transformation of H.)

If M is a Riemann surface, define L∞(M) = {µdzdz : ||µ||∞ < ∞}, and
let B1(M) be the unit ball in L∞(M). If M = D/Γ, we identify µ with

µ̃ ∈ L∞(D), such that (µ̃ ◦A)A
′

A′ = µ̃ for all A ∈ Γ.

We leave to the reader to explain the notation L∞(Γ) and B(Γ).

Example 5. [4-point interpolant, [LKF]]

In section 2, they present the key ingredient of this paper: the 4-point
interpolant (FPI) formula. Our goal is to answer the following question:
given an ordered set of four source points Z = {z1, z2, z3, z4)} ⊂ C, where
C = {x + iy : x, y ∈ R2} denotes the complex plane, and four target points
W = {w1, w2, w3, w4)} ⊂ C, what is the ”most conformal” way to interpolate
these points with a bijective map of the plane? Although finding optimal
quasiconformal map is in general a very hard task, it turns out, surprisingly,
that a closed-form solution to this problem can be devised for the particular
case of 4 interpolation points.

The solution is given in terms of a very simple formula, defined as com-
position of two Mäbius transformations m1,m2 and an affine mapping A:
f(z) = m2 ◦ A ◦m1(z). We will refer to this formula as the 4-Point Inter-
polant (FPI).

Recall, if M is a hyperbolic surface, we can extend lift of µ by symmetry
to the lower half plane to define fµ.

If M = H/Γ, we consider a Beltrami differential µ on M , or what is the
same, a function µ defined on H which is a Beltrami differential for the cov-
ering group Γ of H over M ; we denote by fµ quasiconformal self -mapping
of H which has the complex dilatation µ and fixes the points 0, 1 and ∞,
and by fµ quasiconformal self -mapping of the plane which has the complex
dilatation µ in the upper half-plane, is conformal in the lower half-plane and
fixes the points 0, 1 and ∞.

For µ ∈ B1(M) there is a quasiconformal mapping of M whose complex
dilatation is µ, and by the uniquness part all such mapping define the same
point in T (M). fµ :M → N has Belt(fµ) = µ.
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For ν ∈ B1(M), we write µ ∼ ν and µ ∼rt ν if (Nµ, f
µ) ∼ (Nν , f

ν) are
strongly equivalent and reduced equivalent, respectively.

Using the mapping µ 7→ (N, fµ) ∈ Def(M), we define
(B(M)/ ∼) → (Def(M)/ ∼) = T (M). So T (M) = {[µ] : µ ∈ B1(M)}.
If M = H/Γ, µ, ν ∈ B1(Γ), then µ ∼ ν ⇔ fµ = fν on R.
We call T (H) is the universal Teichmüller space. Note also, if µn → µ in

L∞(Γ) and µn ∈ [µ], then fµn → fµ since µn → µ pointwise.
Suppose that M = H/Γ, and µ, ν ∈ B1(Γ).

Lemma 2.1. µ ∼ ν ⇔ fµ = fν on R.

Lemma 2.2. µ ∼ ν ⇔ fµ = fν on H− ∪ R.

In the literature, authors often make assumption that Γ = Γ(M) is of first
kind. Under this condition we can prove that previous lemmas are valid for
reduced equivalent dilatations, µ ∼rt ν.

P r o o f. fµ = fν on R if and only if fµ = fν on H− ∪ R. fµ = fν ⇒
fµ = fν on H−. Define h = (fν)−1 ◦ fµ on H and h = z on H−.
A = fν ◦ h ◦ (fµ)−1 implies A is conformal on C, hence is a Möbius trans-
formation and is thus the identity by the normalisation condition. Thus
fν = fµ on H−.

2

Recall that the integral of 2-form over a parametric disc in a surface (a
2-dimensional manifold) is invarinatly defined and (1, 1)-differentials on Rie-
mann surfaces are in fact 2-forms. Set ϖ = ρ−2, where ρ = ρhyp. It is read-
able that ϖ is (−1,−1) -differential, and if φ is quadratic differential, that is
(2, 0) -differential, then |φ| (1, 1) -differential. Since (−1,−1)+(1, 1) = (0, 0),
ϖ|φ| is a function ((0, 0) -differential).

The Bers space, Q(Γ) = L∞Q(ρ−2; Γ) = Q∞(ϖ; Γ), is the space of (2, 0)
holomorphic differentials on M = H/Γ with the norm |φ|Q = ||φ||ϖ,∞ =
||φ||∞ = supz∈H |ρ−2(z)φ(z)|, where ρ = y−1 is the hyperbolic density
(sometimes we also say metric) on H (we write φ ∈ Q(Γ), φ = φ dz2);
thus φ ∈ Q(Γ) if φ holomorphic, (φ ◦ A)(A′)2 = φ for A ∈ Γ and ||φ||∞ =
supz∈H |y2φ(z)|.

In Lehto [Leh] the scaling is used such the norm is 4 supz∈H |ρ−2(z)φ(z)|.
If φ quadratic differential ((2,−0) -differential), then |φ|2 is (2, 2) -

differential and since (−1,−1) + (2, 2) = (1, 1), ϖ|φ|2 is a form ((1, 1) -
differential).

We summarize ϖ|φ| is a function, ϖ|φ|2 and |φ| are (1, 1) -differential is
(2- forms).
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A2 = A2(ϖ) = A2(ϖ; Γ) and A1 = A1(Γ) are the spaces of (2, 0) holo-
morphic differentials on M = H/Γ with norm ||φ||ϖ,2 =

∫
M ϖ|φ|2 and

||φ|| =
∫
M |φ|, respectively.

Example 6. a) IfM is closed, φ a (2, 0) holomorphic form, then ||φ||∞ <
∞.
b) Let pn(z)z

−n, n ∈ Z and φ = p2. Check that pn ∈ Q(H− if and only if
n = 2.

Since |y| 6 |z|, φ(z) = z−2 ∈ Q(H−) and |φ|Q = 1.

Let S be a closed (compact without boundary) Riemann surface of genus
g > 1. By Q(S) we denote the space of holomorphic quadratic differentials
on S.

For the following facts see [Leh].

If f1 and f2 are the Teicmüller mappings with complex dilations z1φ/|φ|
and z2φ/|φ|, then the composition f2 ◦ f−1

1 is also a Teicmüller mapping.

SinceQ(S) is (3g−3)-dimensional linear space over the complex numbers,
we can fix a base φ1, φ2, · · ·φ3g−3 in Q(S). Then every φ ∈ Q(S) has a

representation φ =
∑3g−3
i=1 ziφi, zi ∈ C, and φ can be identified with the point

(z1, z2, · · · , z3g−3) ∈ C3g−3 or with the point (x1, · · · , x3p−3, y1, · · · , y3p−3) of
the euclidean space R6g−6.

Every p ∈ Teich(S) has the unique representation p = [tφ/|φ|], ||φ|| = 1.

The mapping [tφ/|φ|] 7→ (tx1, · · · , tx3p−3, ty1, · · · , ty3p−3), where φ ∈
Q(S), |φ|e = 1, and 0 6 t < 1, is a homeomorphisam of TS onto the open
unit ball of the euclidean space R6p−6. We call it ”Teicmüller imbedding”.

However, the complex structure that the Teicmüller space inherit from
C3g−3 through this imbedding is not a natural one. For two Riemann surface
S and S′ of genus g, the bijective isometry between Teich(S) and Teich(S′)
induced by a quasiconformal mapping of S onto S′ is not usally biholo-
morphic with respect to these structures. The Bers imbedding introduced
complex structure into an arbitrary Teicmüller space.

The Teichmüller space of S is a complex manifold. Its complex dimension
depends on topological properties of S. If S is obtained from a compact
surface of genus g by removing n points, then the dimension of TS is 3g−3+n
whenever this number is positive. These are the cases of ”finite type”. In
these cases, it is homeomorphic to a complex vector space of this dimension,
and in particular is contractible.

Dauddy and Earle showed that every Teichmüller space is contractible,
cf. [Leh]. For a fixed φ ∈ Q(S), the mapping t 7→ [tφ/|φ|] of D into the
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Teichmüller space Teich(S) is holomorphic.
The set ∆ = ∆φ = {[tφ/|φ|]; t ∈ D} is called the Teicmüller disk induced by
φ.
The mapping t 7→ [tφ/|φ|] is an isometry of the hyperbolic unit disk D onto
the Teicmüller disk ∆φ.

As before, S is a compact Riemann surface of genius > 1. Let f : S → S′

be a Teichmüller mapping determined by a pair (φ, k). Then there is a
unique quadratic differential ψ on S′ such that: 10 If φ has a zero of order
n > 0 at p, then ψ has a zero of the same order at f(p). 20 If ζ and ζ ′ are
natural parameters of φ and ψ respectively at regular points p and f(p),

then ζ ′ ◦ f = ζ+kζ̄
1−k in a neighborhood of p.

We call φ its initial and ψ its terminal differential. Let f : S → S′ be a
Teichmüller mapping determined by a pair (φ, k). Then the f−1 : S′ → S is
a Teichmüller mapping determined by a pair (−ψ, k), where ψ is the terminal

differential of f . Then ζ ◦ f−1 = ζ′−kζ̄′
1−k in a neighborhood of a regular point

of ψ and the terminal differential of f−1 is −K2φ.
Let f1 : S → S1 and f2 : S → S2 be a Teichmüller mappings determined

by pairs (φ1, k1) and (φ2, k2) such that φ2/φ1 is a constant. Then f2 ◦ f−1

is a Teichmüller mapping. Up to constants, the initial differential of f2 ◦f−1

agrees with that of f−1, and the terminal differential with that of f2.

2.3. Uniquely extremal and geodesic. By definition, a geodesic
segment in TS is the image of an injective continuous map f from an interval
[a, b] into TS such that

dT (f(x), f(y)) = dT (f(x), f(z)) + dT (f(z), f(y))

whenever a 6 x 6 z 6 y 6 b.
There always at least one geodesic segment joining two points of TS . We

can apply a geometric automorphism and assume τ2 is the base point. If
µ is an extremal Beltrami coefficient representing τ1, then the image of the
map f : [0, |µ|∞)] → TS given by

f(t) = [t
µ

|µ|∞)
] (1)

is geodesic segment if S of finite analytic type and µ has the special form
µ = k|φ|/φ, for some φ in A(S). When S is of infinite analytic type, the sit-
uation is more complicated because there are extremal Beltrami coefficients
that are not uniquely extremal. Therefore, we focus on infinite dimensional
Teicmüller spaces.
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Suppose µ is extremal in Belt1(S). In [EKK], it is proved that the
following are equivalent are equivalent.

(a) µ is uniquely extremal and |µ| = |µ|∞ a.e

(b) there is only one geodesic segment joining the base point and [µ] in T ,

(c) there is only one holomorphic isometry ϕ : D → TS such that ϕ(0) = [0]
and ϕ(|µ|∞) = [µ], and

(c) there is only one holomorphic map ω : D → B1(S) such that ω(0) = [0]
and ω(|µ|∞) ∈ [µ] in T .

In [EKK], it is proved that the following are equivalent are equivalent.

(a) µ is uniquely extremal and |µ| = |µ|∞ a.e

(b) there is only one geodesic segment joining the base point and [µ] in T

Theorem 2.1. [Earle, Kra, Krushkal [EKK]]
Let f : D → T (M) be holomorphic, then there exists a lift f̃ : D → B(M)

such that f = π ◦ f̃ .

Let Ω be a plane domain and denote by Λ its complement in the extended
complex plane.

By a result of Slodkowski, the extended λ-lemma, any holomorphic mo-
tion can be extended to holomorphic motion of of the extended complex
plane. This extension is not nenecessarily unique.

For any µ in Belt1(Ω), we can define holomorphic motion of Λ: let ht be
the restriction to Λ of a qc homeomorphism of the extended complex plane
which fixes 0, 1, and ∞, and has Beltrami coefficient t(µ/|µ|∞)χΩ. We say
that ht so defined is a canonical holomorphic motion of Λ generated by µ.

Example 7. [[BLMM]] Let Ω be a plane domain and denote by Λ its
complement in the extended complex plane.

1. Any holomorphic motion of Λ has an extension to a holomorphic mo-
tion of the extended complex plane. This extension is not necessarily
unique.

For instance, the identity mappings and the vertical stretchings are
two different extensions of the holomorphic motion ht(z) = z of the
complement of the upper half plane.
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2. Let Ω be a plane domain and denote by Λ its complement in the ex-
tended complex plane. Suppose that µ is uniquely extremal in Teich(Ω)
and that ht is a canonical holomorphic motion of Λ induced by µ. Then
ht has a unique extension to a holomorphic motion of the extended
complex plane.

3. If Λ = {z : x 6 |y|α}, with α > 3, then the affine motion

ht(z) =
1 + t

1− t
x+ iy (2)

of Λ has a unique extension to a holomorphic motion of the extended
complex plane.

2.4. Kobayashi metric. For any complex manifold X and Y , let
O(X,Y ) be the set of biholomorphic maps of X into Y . A pseudometric d
on X is called Schwarz-Pick metric if

d(f(z), f(z′)) 6 dD(z, z
′)

for all f in O(D, X) and all z and z′ in D.
By definition, the Kobayashi metric kX is the largest Schwarz-Pick met-

ric on X.
For any complex manifold X and Y , it is obvious that

kY (f(z), f(z
′)) 6 kX(z, z

′)

for all f in O(X,Y ) and all z and z′ in X.
In particular, biholomorphic maps preserve Kobayashi distances.
Let X be a complex Banach manifold. We denote by dXK = dK = σX = σ

Kobayashi distance on X.
If X is a complex manifold, the Kobayashi pseudometric dK may be

characterized as the largest pseudometric on X such that

d(f(x), f(y)) 6 ρ(x, y),

for all holomorphic maps f from the unit disk D to X (where ρ(x, y) =
dhyp denotes distance in the Poincaré metric on D).

In order to give another definition of Kobayashi distance we recall. The
inverse hyperbolic tangent is a multivalued function and hence requires a
branch cut in the complex plane, which Mathematica’s convention places at
the line segments (−∞,−1] and [1,∞). This follows from the definition of
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tanh−1z as tanh−1z = 1/2[ln(1 + z) − ln(1 − z)]. For real x < 1, this sim-
plifies to tanh−1(x) = 1

2 ln((1 + x)/(1− x)). The original Kobayashi metric
is a pseudometric (or pseudodistance) on complex manifolds introduced by
Kobayashi (1967). It can be viewed as the dual of the Carathéodory met-
ric, and has been extended to complex analytic spaces and almost complex
manifolds. On Teichmüller space the Kobayashi metric coincides with the
Teichmüller metric; on the unit ball, it coincides with the Bergman metric.

Let p and q be points in X and d1kob,X(p, q) = tanh−1(r), where r is the
infinum of nonnegative number s for which there exists f ∈ O(D, X) with
f(0) = p and f(s) = p. If it is clear from the context we write shortly d1
instead of d1kob,X . Set dn(p, q) = inf

∑n
k=1 d1(pk−1, pk), where the infinum is

taken over all points p0, · · · , pn in X for which p0 = p and pn = q.

it is clear dn+1 6 dn and define dK = lim dn. If d1 satisfies the triangle
inequality, then d1 = dn for all n and so d1 = dK .

Note that for all Teichmüller spaces with complex structure which are
modeled on a Fuchsian group, d1 = dK = dT , where dT is Teichmüller
metric.

Let B be the unit ball in a complex Banach manifold and v ∈ B. Then
dBK(0, v) = tanh−1(|v|).

The linear functional l(t) = lv(t) = tv/|v| maps the unit disk D into the
unit ball M , |v| into v, and 0 into 0. Therefore dMK (v, 0) 6 dhyp,D(0, |v|). By
the Hahn-Banach, there exists a continuous linear functional L on B such
that L(v) = |v| and |L| = 1 so dhyp,D(0, |v|) 6 dMK (v, 0).

Now consider M = B1(R).

Proposition 2.1. Let R be a Riemann surface and M = Belt(R) =
B1(R). Then d1Kob,M (µ, ν) = tanh−1(| µ−ν1−νµ |∞), µ, ν ∈M .

Set dB1(R)(µ, ν) = tanh−1(| µ−ν1−νµ |∞). Using the Schwarz lemma, one can

show that d1(0, ν) = dM (o, ν). Since µ 7→ α̂ν(µ) =
µ−ν
1−νµ is a biholomorphic

self-map of M , we have

d1Kob,M (µ, ν) = dM (µ, ν).

Since Teichmüller metric is the quotient metric,we will show that formula
yields dK 6 dT .

Let p, q ∈ T (R) and let µ0 ∈ p, ν0 ∈ q be extremal representatives. Then

dT (p, q) 6 inf{dM (µ, ν) : µ ∈ p, ν ∈ q} = dM (µ0, ν0).

Since π :M → T (R) is holomorphic and p = π(µ0), q = π(ν0), then
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d1(p, q) = d1(π(µ0), π(ν0)) 6 d1(µ0, ν0). By Proposition 2.1, d1(µ0, ν0) =
dM (µ0, ν0) = dT (p, q). Hence dK 6 d1 6 dT .

Theorem 2.2. [Royden-Gardiner] For any hyperbolic Riemann surface
S, the Kobayashi and the Teichmüller metrics coincide on T (S).

We show that dT = d1.
If R and S are hyperbolic Riemann surfaces, then every biholomorphic

map of T (R) onto T (S) preserves Teichmüller distances.
In [EKK], the equivariant version of Slodkowski extension theorem is

used to prove: Let f : D → T (M) be holomorphic, then there exists a lift
f̃ : D → B(M) such that f = π ◦ f̃ .

For the opposite inequality , take f ∈ O(D, T (R)) such f(0) = p and
f(t) = q for some t ∈ D. Then there exists a lift g : D → B(M) such that
f = π ◦ g. Since π :M → T (R) is holomorphic,

dT (p, q) = dT (π(g(0), π(g(t)) 6 dM (g(0, g(t)) 6 dhyp,D(0, t). Taking the
infinum over all such f , we obtain d1 > dT .

Teichmüller metric is the quotient metric on T (M) induced by the Kobayashi
metric on B1(Γ) and the Bers map.

2.5. Linear isometries of Teichmüller space. A Riemann surface
M is said to be of exceptional type if it has finite conformal type (g, n)
2g + n 6 4, where g is the genus of M , and n is the number of punctures.
All nonhyprbolic Riemann surfaces have exceptional type. It is of non-
exceptional type if 2g + n > 4 .

It has been proved that for a Riemann surface of non-exceptional type,
every biholomorphic automorphism of the Teichmüller space is induced by
a quasiconformal automorphism of the Riemann surface.

Theorem A. Let M be a hyperbolic surface of non exceptional type.
Then the space of biholomorphic automorphisms Aut(T (M)) coincides with
the mapping class group mcg(M) of M .

The proof is a combination of two theorems. One theorem states that
the above statement is true if a Riemann surface has the isometry property,
which was proved by Earle and Gardiner [EGa] and is called the automor-
phism theorem. Another theorem states that every Riemann surface of
non-exceptional type has the isometry property, which was finally proved
by Markovic.

By Riemann-Roch, it is possible to separate points of M if it is of non-
exceptional type.
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Let M,N be Riemann surfaces with the corresponding Bergman spaces
A1(M) and A1(N). If α : N → M conformal map of N onto M , each
φ ∈ A1(N) can be pulled back to α∗(φ) = (φ ◦ α)(α′)2 on A1(M) and it is
an isometry.

A surjective C-linear isometry, where M and N are Riemann surfaces,
is called geometric if there exists c ∈ C such that |c| = 1 and α : N → M
conformal such that L−1(φ) = c α∗(φ).

Theorem 2.3. [Royden-Lakic-Markovic] LetM and N be Riemann sur-
faces and let L : A1(M) → A1(N) be a surjective C-linear isometry, where
M and N are of non-exceptional type. Then L is geometric.

Thus there exists c ∈ C such that |c| = 1 and α :M → N conformal such
that L−1(φ) = c α∗(φ), for every φ ∈ A1(N). Thus if we set ψ = L−1(φ),
then φ = L(ψ), ψ ∈ A1(M) and β∗(ψ) = (ψ ◦ β)(β′)2 = c φ, where β : N →
M and β =: α−1. Hence L−1 is geometric.

It convenient to use notation [XX] − [ab], the reference [ab] in [XX].
Royden proved for M and N compact and hyperbolic. His method extends
to Riemann surfaces of non-exceptional finite conformal type. Lakic refined
it to prove for surfaces of infinite conformal type with finite genus. Markovic
proved for all Riemann surfaces. Royden proved Theorem 2.3 in [FM1]-[16]
in the case whereM and N are compact and hyperbolic, and his method was
extended to Riemann surfaces of non-exceptional finite type, even thoughM
and N are not assumed to be homeomorphic, by Earle and Kra in [FM1]-[3]
and Lakic in [FM1]-[12]. Some further special cases of Theorem 3.6 were
proved by Matsuzaki in [FM1]-[13]. Markovic proved Theorem 2.3 in full
generality, that is, for the infinite analytic type case, in [Mar3]. In [FM1]-[5]
(cf also [MaSa]), C. Earle and V. Markovic, use the methods of [Mar3] to
prove Theorem 2.3 in the finite analytic case, which gives a good indication
of the methods used, without going into the technical detail required for the
general case.

In [Fu], Fujikawa reviews the proof by Earle and Gardiner and gives
another approach to a proof of the automorphism theorem.

Every Riemann surface of non-exceptional type has the isometry prop-
erty. Let E : T (R) → T (R) be a biholomorphic automorphism of T (R).
For a point p = [f1] ∈ T (R), set E(p) = [f2] ∈ T (R). For each i = 1, 2,
the quasiconformal homeomorphism fi : R → Si induces a geometric au-
tomorphism Ii = ρfi : T (R) → T (Si) that maps [f ] 7→ [f ◦ f−1

i ]. Then
F := I2 ◦ E ◦ I1 : T (S1) → T (S2) is a holomorphic isomorphism that pre-
serves the base points.
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We fix i and denote Si by S. The dual space A∗(S) of A(S) is iden-
tified with the tangent space T0(T (S)) of T (S) at the base point. Let
πS : Belt(S)1 → T (S) be the Bers projection. The derivative π′S(0) :
Belt(S) → T0(T (S)) of πS at the base point is a surjective homomorphism.
Thus T0(T (S)) is isomorphic to the quotient space Belt(S)/Ker(DπS(0)).
On the other hand, let P : Belt(S) → A∗(S) be the surjective linear map
defined by

Pµ(φ) =

∫ ∫
µφ

for µ ∈ Belt(S) and for φ ∈ A(S). Since KerP = Ker(DπS(0)) (see [6]),
we see that A∗(S) is isomorphic to Belt(S)/Ker(π′S(0)). Then the map
DπS(0) 7→ Pµ gives an isomorphism between T0(T (S)) and A∗(S). The
tangent space T0(T (S)) of T (S) at the base point has the Teichmüller norm

|π′S(0)µ| = lim
t→0

dT ([tµ], [0])

t
.

We see that F ′([id]) is a C-linear isometry of A∗(S1) onto A∗(S2). Indeed,
since F is biholomorphic, F ′([id]) is an invertible C-linear map. Further-
more it preserves the Teichmüller norm. This follows from the fact that the
biholomorphic isomorphism F preserves the Kobayashi distance, and that
the Kobayashi distance coincides with the Teichmüller distance (see [Fu]-
[9]). The adjointness proposition states that DF ([id]) induces a C -linear
isometry of A(S2) onto A(S1). Note that A(Si) is not reflexive if it is infinite
dimensional.

By applying the adjointness theorem to our case, there exists a C-linear
isometry G : A(S2) → A(S1) such that F ′([id]) = G∗. Since R has the
isometry property, there exist θ ∈ R (a = eiθ with |a| = 1) and a conformal
homeomorphism g : S1 → S2 such that G(φ) = a · (φ ◦ g)(g′)2 for all
φA(S2). Then g induces a geometric isomorphism ρg : T (S1) → T (S2),
which preserves the base points. Set ωp := (ρf2)

−1 ◦ ρg ◦ ρf1 = ρf−1
2 ◦g◦f1 :

T (R) → T (R), which is an element of Mod(R). Then ωp(p) = E(p). To
complete a proof, we show that ωp is independent of p, namely ωp = E on
T (R).

Proposition 2.2 (the uniqueness theorem). Let R be a Riemann surface
having the isometry property, and H : T (R) → T (R) a holomorphic auto-
morphism satisfying H(q) = q and H ′(q) = a · id (a ∈ C) for some q ∈ T (R).
Then H is the identity.
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Theorem 2.4. [Fletcher [Fl, FM]] Suppose that M is a hyperbolic Rie-
mann surfaces of infinite analytic type, then
A1(M) is isomorphic to the sequence space l1 and
Q(M) is isomorphic to the sequence space l∞.

2.6. Pants decomposition. Let R be a closed R of genus g (> 2). A
maximal set L = {Lj}nj=1 of mutually disjoint not freely homotopic simple
closed geodesics on R is called s system of decomposing curves, and the
family P = {Pk}mk=1 consisting of all connected components ofRr∪nj=1Lj the
pants decomposition corresponding to L. Then n = 3g−3, m = 2g−2. The
usual definition is that a Riemann surface is of finite type if it is conformally
equivalent to a compact Riemann surface minus a finite set of points. For
instance, under this usual definition, an annulus of finite modulus is not of
finite type. Consider a compact oriented surface S of genus g > 0 from which
g > 0 points, so-called punctures, have been deleted. Such a surface is called
of finite type. We assume that S is non-exceptional, i.e. that 3g−3+m > 2;
this rules out a sphere with at most four punctures and a torus with at most
one puncture.

Here we mean by an essential simple closed curve a simple closed curve
which is not contractible nor homotopic into a puncture. Since 3g − 3 +m
is the number of curves in a pants decomposition of S, i.e. a maximal
collection of disjoint mutually not freely homotopic essential simple closed
curves which decompose S into 2g− 2+m open subsurfaces homeomorphic
to a thrice punctured sphere.

Let R be a hyperbolic Riemann surface with hyperbolic metric ds2R.
Consider a Fuchian model G of R acting on D, and let π : D → R be the
projection of D onto R = D/G. Since the Poincaré metric ds2 is invariant
under action by G, we obtain a Riemann metric ds2R on R which satisfies
π∗(ds2R) = ds2. We call ds2R the Poincaré metric, or the hyperbolic metric.

In mathematics, a pair of pants is a simple two-dimensional surface re-
sembling a pair of pants: topologically, it is a sphere with three holes in it.
Pairs of pants admit hyperbolic metrics, and their isometry class is deter-
mined by the lengths of the boundary curves (the cuff lengths), or dually
the distances between the boundaries (the seam lengths).

In hyperbolic geometry all three holes are considered equivalent no
distinction is made between ”legs” and ”waist”.

Two pairs of pants can be sewn together to form an open surface with
four boundary components which we call sewn two pairs of pants.
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Six pairs of pants can be sewn together to form an open surface of genus
two with four boundary components.

We call a relatively compact subsurfaces P of R a pair of pants of R
if P is triple connected and if every connected component of the relative
boundary of P in is a simple closed geodesic on R. Let P̃ be a connected
component of π−1(P ) and let GP̃ be the subgroup of G consisting of all

elements A of G for which A(P̃ ) = P̃ . Then GP̃ is a free group generated

by two hyperbolic transformations, and P = P̃ /GP̃ .

P̂ = D/GP̃ is called Nielsen extension of P and P the Nielsen kernel of

P̂ .

Let L1, L2 and L3 be the boundary components a pair of pants P and
ℓj the length of Lj .

For any triple (a1, a2, a3) of positive numbers, there exists a pair of pants
admitting a reflection JP such that the hyperbolic lengths of the ordered
boundary components are the given triple.

The complex structure of a pair of pants is uniquely determined by the
hyperbolic lengths of the ordered boundary components of P .

The set FP of all fixed points of JP consists of three geodesic o1, o2, o3.
Every oj has the end points on and it is orthogonal to both Lj and Lj+1,
where L4 = L1.

JP is called the reflection of P . The set FP has two points on Lj . for
every j, let Pj,1 and Pj,2 be two pairs of pants having Lj as a boundary
component with the reflection J1 and J2 respectively. Take a fixed point of
Jk on Lj for each Pj,k (k=1,2), and denote it by cj,1 and cj,2. Fix also an
orientation on Lj , and let Tj be oriented arc on Lj from cj,1 to cj,2. We
can define the signed hyperbolic length τj of Tj and θj = 2πτj/ℓj (so τj is
positive if the orientation of Tj is compatible with that of Lj and negative
if it is not the case).

For every t ∈ Tg take a marking -preseving homeomorphisam ft : R →
Rt. Let Lj(t) be the unique geodesic in the free homotopy class of the closed
curve ft(Lj) on Rt.We denote the hyperbolic length ℓ(Lj(t)) of Lj(t) simple
by ℓj(t). Let Lj,k(t) be the boundary component corresponding to Lj,k and
denote by oj,k(t) the geodesic joining Lj(t) and Lj,k(t) and by cj,k(t) the
point of oj,k(t) on Lj(t).

Lj(t) has the natural orientation determined from that of Lj .

Let Tj(t) be oriented arc on Lj(t) from cj,1(t) to cj,2(t). We can define
the signed hyperbolic length τj(t) of Tj(t) and θj(t) = 2πτj(t)/ℓj(t) (so τj
is positive if the orientation of Tj(t) is compatible with that of Lj(t) and
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negative if it is not the case).

Define Ψ(t) = (ℓ1(t), · · · , ℓ3g−3(t), θj(t), · · · , θ3g−3(t)). This mapping is

homeomorphisam of Tg onto R3g−3
+ ×R3g−3.

Gluing pants P1 and P2 along curves L1 ∈ P1 and L′
1 ∈ P2 of the same

length. Let Gj be a Fuchsian model of Nielsen extension P̂j . We can assume
that the transformation γ(z) = λz, λ = exp a, belongs both G1 and G2, γ
covers boundary components L1 and L2 and that the point i ∈ H lies over
both c1 and c2. Consider the element χ(z) = dz, d = exp(aα/2π). Fuchsian
group generated by G1 and χ ◦G2 ◦χ−1 is model of the gluing pants; θ = α.

2.7. Thurston Nielsen Bers classification theorem. Thurston’s
classification theorem characterizes homeomorphisms of a compact orientable
surface. Thurston’s theorem completes the work initiated by Jakob Nielsen
(1944). A pseudo-Anosov map is a type of a diffeomorphism or homeomor-
phism of a surface. It is a generalization of a linear Anosov diffeomorphism of
the torus. Its definition relies on the notion of a measured foliation invented
by William Thurston, who also coined the term ”pseudo-Anosov diffeomor-
phism” when he proved his classification of diffeomorphisms of a surface.
Thurston constructed a compactification of the Teichmller space T (S) of a
surface S such that the action induced on T (S) by any diffeomorphism f
of S extends to a homeomorphism of the Thurston compactification. The
dynamics of this homeomorphism is the simplest when f is a pseudo-Anosov
map: in this case, there are two fixed points on the Thurston boundary, one
attracting and one repelling, and the homeomorphism behaves similarly to
a hyperbolic automorphism of the Poincaré half-plane. A ”generic” diffeo-
morphism of a surface of genus at least two is isotopic to a pseudo-Anosov
diffeomorphism.

A homeomorphism f : S → S of a closed surface S is called pseudo-
Anosov if there exists a transverse pair of measured foliations on S, F s

(stable) and F u (unstable), and a real number λ > 1 such that the foliations
are preserved by f and their transverse measures are multiplied by 1/λ and
λ. The number λ is called the stretch factor or dilatation of f .

Given a homeomorphism f : S → S, there is a map f0 isotopic to f such
that at least one of the following holds:

f0 is periodic; f0 preserves some finite union of disjoint simple closed
curves on S (in this case, f0 is called reducible); or f0 is pseudo-Anosov.

The case where S is a torus (i.e., a surface whose genus is one) is handled
separately (see torus bundle) and was known before Thurston’s work. If the
genus of S is two or greater, then S is naturally hyperbolic, and the tools of
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Teichmüller theory become useful. In what follows, we assume S has genus
at least two, as this is the case Thurston considered. (Note, however, that
the cases where S has boundary or is not orientable are definitely still of
interest.)

The three types in this classification are not mutually exclusive, though a
pseudo-Anosov homeomorphism is never periodic or reducible. A reducible
homeomorphism g can be further analyzed by cutting the surface along the
preserved union of simple closed curves Γ. Each of the resulting compact sur-
faces with boundary is acted upon by some power (i.e. iterated composition)
of g, and the classification can again be applied to this homeomorphism.

Berss extremal problem. Bers gave an alternative proof of Thurstons
classification in by adopting extremal approach in quasiconformal mappings.
Since Bers classification is more suitable for us, we briefly review it.

Let S0 be a hyperbolic Riemann surface of finite conformal type and let
f be a homeomorphisam of S0 onto itself. Bers’s problem is to minimize
K(σ ◦ f̃ ◦σ−1) as f̃ varies over the homotopy class of f and σ varies over all
homeomorphisams of S0 onto variable Riemann surfaces S.

The equivalent problem: minimize the function χf defined by t →
dT (t, ρf (t)), t ∈ T (S0), where ρf maps the class of t = (S, g) to the class of
(S, g ◦ f−1).

Denote by α(f) the infimum of dT (t, ρf (t)) over all t ∈ T (S0). α(f) is
zero or positive.

We consider three cases.

In Case 1 and Case 2, we suppose that the infimum is attained, that is
χf has an absolute minimum at a point t0 ∈ T (S0).

Case 1. t0 ∈ T (S0) and dT (t0, ρf (t0) = α(f) = 0. Then ρf (t0) = t0. We
may assume that t0 is the base point of T (S0). Then f is homotopic to a
conformal map f0 of S0 onto itself and ρf = ρf0 . Since f0 has finite order,
so ρf does.

Case 2. t0 ∈ T (S0) and dT (t0, ρf (t0) = α(f) > 0.

ρf maps Teichmüller geodesic determined by t0 and ρf (t0) onto itself.

If φ is the initial quadratic differential of the Teichmüller mapping f0 :
S0 → S0 homotopic to f , then φ is the terminal quadratic differential.

That means f0 maps horizontal trajectory onto itself and it expands in
the horizontal directions of φ and contracts in the vertical directions by the
same factor; so f0 is a pseudo-Anosov mapping.

It is left to consider the case when the infimum of χf on T (S0) is not
attained.
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Case 3. Suppose that α(f) is zero or positive, and dT (t, ρf (t)) > α(f),
for all t ∈ T (S0). In this case ρf has infinite order and f0 is reducible.

Bers used that the action of mcg(S) also extends on the augmented
Teichmüller space T̂ (S).

Here we briefly discuss this subject. For the following results, terminol-
ogy and more details see [IT] and the literature cited there.

Let S be a closed Riemann surface of genus g > 2. Then a mapping
f : S → S is absolutely extremal if and only if
it is either a conformal mapping or
(i) f and f2 Teichmüller mappings with K(f2) = K(f)2.
(i) is equivalent to
(ii) the initial and the terminal quadratic differentials of f coincide with
each other up to a positive constant factor.

If f is a reducible self-mapping of S, we can deform f continuously to
a complete reduced self mapping, or more precisely, to a self-mapping f0
of S for which there is admissible set {C1, C2, · · ·Cm} such that for every
component S′ of Sr (C1∪C2, · · ·∪Cm) and for the smallest positive integer
n with fn0 (S

′) = S′, the mapping fn0 |S′ is irreducible.

Teichmüller mapping whose the initial and the terminal quadratic dif-
ferentials coincide with each other up to a positive constant factor gives a
so-called pseudo-Anosov homeomorphism.

Conversely, for any given pseudo-Anosov homeomorphism of S, there is
a complex structure on S such that f is a Teichmüller mapping whose the
initial and the terminal quadratic differentials coincide with each other up
to a positive constant factor.

Teichmüller space T (S) is actually globally homeomorphic to an open
set in the complex Banach space Q(G), which consists of the quadratic
differentials with finite norm for the covering group G. Using this result we
can define a natural complex structure for T (S).

”Teichmüller imbedding” does not give a natural complex structure.

π : B(G) → T (S) is holomorphic, and it has local holomorphic sections
everywhere in T (S).

Every biholomorphic map between two Teichmüller spaces T (S0) and
T (S1) is induced by a qc map between S0 and S1 except one of them has
exceptional type.
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3. Extremality of quasiconformal mappings

3.1. Introduction. We follow exposition in [Ma8].Let f be a quasicon-
formal map of a region G of the complex plane, and µ = fz/fz its complex
dilatation. The basic problem in the background is to characterize those
dilatations µ that are uniquely extremal in their boundary class in the sense
that the corresponding mappings are uniquely determined by the require-
ment that the essential sup of |µ| is minimal. Research on the problem
started with Grötzsch and Teichmüller in the nineteen-thirties.

It was suggested by Teichmüller that boundary values on the bound-
ary of the unit circle ∂∆ that allow a quasiconformal (qc) extension to the
unit circle ∆ always allow an extremal extension to what we now call a Te-
ichmüller mapping. We refer to this statement, for short, as the Teichmüller
question. One now knows that the answer to the Teichmüller question is
”no”. We get further results in this direction.

During the last several years, important progress has been made in char-
acterizing the conditions under which unique extremality occurs (see [BMM],
[BLMM],[Ma1], [Re9]). In particular, the Characterization Theorem which
gives the characterization of unique extremality in functional-analytic fash-
ion by special sequences of integrable holomorphic functions of what we call
Re-sequences (Re being an abbreviation of Reich) has found interesting
applications.

Note that there are many examples of extremal dilatations with non-
constant modulus, but all examples of uniquely extremal dilatations known
up to our papers [BLMM] and [BMM] were of Teichmüller type. More-
over, many results obtained by studying the extremal problems spoke in
favour of the conjecture that all uniquely extremal dilatations µ satisfy
|µ(z)| = ||µ||∞, for almost all z. In [BMM] and [BLMM], we disproved this
conjecture and showed that there are uniquely extremal dilatations with non-
constant modulus. We refer to the proof of this result of the construction of
uniquely extremal dilatations with nonconstant modulus as ”the construc-
tion”, for short). Thus the form of a uniquely extremal complex dilatation
can be very complicated.

Reich [Re3],[Re9] modified our original construction in [BLMM],[BMM],
by using Runge’s theorem instead of the approach through Mergelyan’s the-
orem. Due to its highly technical nature, one can miss an intuitive un-
derstanding of the construction in [BLMM]. Among other things, this has
motivated the author to continue further study of this subject and related
properties of extremal and uniquely extremal dilatations.
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We now give some comments related to our paper [Ma8]. In this paper,
we look at uniquely extremal dilatations from a new point of view. Roughly
speaking, we study how uniquely extremal dilatations on a domain are de-
termined by their values on special sub-domains. In particular, we present
a new construction (in Theorem 3.2 , below). It is more visual and a very
special case leads to construction of a uniquely extremal complex dilatation
which is of Teichmüller type outside a setK of positive measure with empty
interior, and which has arbitrary values on K.

The significance of our new constructions is discussed in Subsection 3.4.
In [Ma1], we introduced the notion of a uniquely extremal complex di-

latation on an extremal set which can be considered as a generalization
of a uniquely extremal complex complex dilatation if the extremal set is
of positive measure. Using this notion, we generalize the results related
to uniquely extremal dilatations; see the Equivalence Theorem II for Pairs
and Characterization Theorem II. In particular, a corollary of these results
(Characterization Theorem II for Pairs) has applications. We also provide
some simplifications with respect to the corresponding proof in [BLMM].
All together, this leads to a better understanding of unique extremality.

In Section 3.2, we discuss some of the background of the subject.
We have chosen to confine our discussion to subregions of the plane rather

than general Riemann surfaces. This enables us to focus on the basics, but
still allows for a rich variety of examples.

Part of this paper was published as a Warwick preprint [Ma5].

3.2. Definitions, Background; Extremal and uniquely extremal
mappingsA. Extremal mappings. In this section, we give basic defini-
tions and state the main result about extremal quasiconformal mappings.
Note that some results presented in this paper, concerning unique extremal-
ity, have roots and analogues in the theory of extremal qc mappings.
The interested reader can learn more about extremal mappings from the
excellent survey articles of Strebel’s and Reich’s [S5], [Re9] and Earle-Li
Zhong’s paper [ELi] (see also [Ma3]).

The study of extremal mappings has been one of the main topics in the
theory of quasiconformal mappings, since its earliest days, when Grötzsch
solved the extremal problem for two rectangles. In order to discuss them we
need to review some familiar definitions.

For a function h Lebesgue integrable on a set M ⊂ C, we define

||h||M =

∫ ∫
M

|h| dxdy.
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A homeomorphism f from a domain G onto another is called quasi-
conformal (shortly qc) if f is ACL (absolutely continuous on lines) in G
and |fz̄| 6 k|fz| a.e. in G, for some real number k, with 0 6 k < 1. In
this setting, it is well known that partial derivatives fz, fz̄ are locally square
integrable and that the directional derivatives satisfy

max |Dαf(z)| 6 Kmin |Dαf(z)| (3)

for a.e. z ∈ G, where K = (1+k)/(1−k) . Roughly speaking, (3) means that
at almost all points z of G infinitesimal circles are mapped onto infinitesimal
ellipses with axis ratio Df (z) 6 K. It is also well known that if f is a
quasiconformal mapping defined on the region G then the function fz is
nonzero a.e. in G. The function

µf =
fz̄
fz

is therefore a well defined bounded measurable function on G, called the
complex dilatation (shortly dilatation) or Beltrami coefficient of f . Note
that, in the context of Riemann surfaces, it is usually called differential
instead of complex dilatation.
The L∞ norm of every Beltrami coefficient is less than one. Conversely,
every µ in L∞(G,C) with norm less than one is the Beltrami coefficient of
some qc mapping whose domain is G. A computation shows that

Df (z) =
1 + |µf (z)|
1− |µf (z)|

.

The positive number

K(f) =
1 + ||µf ||∞
1− ||µf ||∞

is called the maximal dilatation of f . We say that f is K-qc if f is a qc
mapping and K(f) 6 K.

Let QC(G) ( shortly QC) denote the family of all quasiconformal map-
pings from G into C and let QC0(G) denote the group of all quasiconformal
mappings from C onto itself that fix every point of CrG and are homotopic
to the identity by a homotopy gt in which each gt is a homemorphism of C
onto itself that fix every point of C r G. Two elements f, g ∈ QC(G) are
equivalent (in Teichmüller′s sense) if f−1 ◦ g ∈ QC0(G).

This means that the equivalence class of f is the set

Qf = [f ] = {f ◦ (ϕ0|G) : ϕ0 ∈ QC0(G)}.
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Let S be a set of qc mappings whose domain is G. The mapping f0 in S is
said to be extremal in S if K(f0) 6 K(g) for all g in S.
In particular, a qc map f0 is extremal in its Teichmüller class [f ] (abbrevi-
ated an EQC map) if K(f0) 6 K(g) for every mapping g in the same class.
A qc map f0 is uniquely extremal in its Teichmüller class [f ] if every other
mapping g in the same class satisfies K(f0) < K(g).

We closely follow approach of Earle-Li Zhong [ELi] concerning the defi-
nition of QC0 and extremal quasiconformal mappings on plane regions (see
also below).

However, we find more convenient in most of this paper to express the
results in terms of extremal and uniquely extremal dilatations.

We shall refer to a complex dilatation as extremal or uniquely extremal
meaning that a mapping with that complex dilatation is extremal or uniquely
extremal.

If two elements f, g ∈ QC(G) are equivalent (in Teichmüller’s sense)
we also say that their dilatations µ = µf and ν = µg are equivalent We
denote the equivalence class of µ by [µ].

We also use the notation,

k0([f ]) = k0([µf ]) = inf{||µg||∞ : g ∈ Qf}

and
K0([f ]) = K0([µf ]) = inf{K(g) : g ∈ Qf}.

In studying extremal qc mappings of a region, the L1 norms of functions
analytic(holomorphic) in that region play a special role.

We denote by L1
a = L1

a(G) the Banach space consisting of all holomor-
phic functions φ, belonging to L1 = L1(G), with norm

||φ|| = ||φ||G =

∫ ∫
G

|φ(z)| dxdy < ∞ .

Instead of L1
a the short notation A = A(G) is also used.

From now on, we shall assume that the complement C r G of G contains
at least three points. This assumption provides that the space L1

a(G) has
positive dimension.
By Ω we denote a domain in C, and by L∞(Ω) the space of all measurable
and essentially bounded functions on Ω; and if µ ∈ L∞(Ω), we say that µ is
a complex dilatation on Ω. Let ∥µ∥∞ = ∥µ∥∞,Ω denote the L∞- norm of µ
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on Ω.
By M = M(Ω) we denote the open unit ball in L∞. Thus, if µ ∈ L∞(Ω)
and k = ||µ||∞,Ω < 1, we write µ ∈ M.
For k > 0, by Mk = Mk(Ω) = {µ ∈ L∞(Ω) : ||µ||∞,Ω 6 k} we denote the
closed ball of radius k in L∞.
We say that a sequence φn c-uniformly converges on Ω if it converges uni-
formly on every compact subset of Ω.

It is convenient to use short notation

Λµ(φ) = (µ, φ) =

∫ ∫
G

µφdxdy, λµ(φ) = Re

∫
G
µφ,

where µ ∈ L∞(G), φ ∈ A; and we say that the linear functional Λµ ∈ A∗ is
induced by µ.
η ∈ L∞ is an annihilator of A in L∞ if (η, φ) = 0 for every φ ∈ A.
We denote by N = N (G) the set of all annihilators of A in L∞.
We say that µ ∈ L∞(G) and ν ∈ L∞(G) are infinitesimally equivalent
(belong to the same equivalence class in the tangent space B = B(G)) if
µ− ν ∈ N (G).
By the Hahn-Banach theorem and the Riesz’s representation theorem, (L1

a)
∗

is isometrically isomorphic to the Banach space B of equivalence classes of
elements in L∞.

We say that χ ∈ L∞(G) is extremal in its infinitesimal class (abbreviated
by χ ∈ EDa) if the norm of the linear function Λχ ∈ A∗ induced by χ, is
the same as sup norm ||χ||∞ of χ. It means that ||χ||∞ 6 ||µ||∞ for every
complex dilatation infinitesimally equivalent by χ.

For µ ∈ L∞ , we denote by ||µ||∗ the norm of the functional Λµ on
A = L1

a(G).

We say that a µ ∈ L∞ satisfies the Hamilton-Krushkal condition if

||µ||∗ = ||µ||∞.

We are now ready to state the main result about extremal complex
dilatations.

Theorem HKRS. (Hamilton-Krushkal and Reich-Strebel) Let G be a
plane region whose complement CrG contains at least three points. Let f be
a qc mapping whose domain is G, and let µ = µf be its Beltrami coefficient.
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A necessary and sufficient condition that f is an EQC (extremal) mapping
in [f ] is that

||µ||∗ = ||µ||∞.

The proof that the Hamilton-Krushkal condition is sufficient is based on
the Reich-Strebel inequality ( so-called the Main Inequality). Various forms
of this inequality play a major role in the theory of quasiconformal map-
pings and have many applications. In particular, using the Main Inequal-
ity in [BLMM] the generalized Delta inequality (Theorem 3 in [BLMM]) is
proved, which is a very convenient tool in the theory of uniquely extremal
qc mappings.
A Hamilton sequence for µf , is a sequence in A, such that ||φn|| = 1, for

all n, and

lim
n→∞

(µ, φn) = ||µ||∞.

Now we can state the theorem of Hamilton-Krushkal and Reich-Strebel
in the form: f is extremal in its class [f ] if and only if µf has a Hamilton
sequence.

Theorem HKRS gives, via Hamilton sequences, what may be called an
“analytic” method to test for extremality in distinction to the earlier meth-
ods that were more ”geometric” in character.

If χ ∈ L∞(G) is extremal in its infinitesimal class we say shortly χ is
extremal or χ is EDa (we also write χ ∈ EDa). By the Hamilton-Krushkal
and Reich-Strebel theorem, if χ ∈ M, it means that χ is extremal in its
Teichmüller class.
The Equivalence Theorem I, which follows, is the parallel statement to The-
orem HKRS for unique extremality.

B. Unique extremality
We say that χ ∈ L∞(G) is uniquely extremal in its infinitesimal class (ab-
breviated by χ ∈ HBUa) if it is extremal and the linear functional Λχ ∈ A∗

induced by χ,

Λχ(φ) = (χ, φ) =

∫ ∫
G

χφdxdy,

has a unique norm-preserving extension from A to a bounded linear func-
tional on L1(G). It means that every other µ ∈ L∞(G), which is in the same
infinitesimal class, satisfies ||χ||∞ < ||µ||∞.



160 M. Mateljević

It is convenient to use notation

δn = δµ(φn;G) = ∥µ∥∞
∫
G
|φn| dxdy − Re

∫
G
φnµdxdy

and short notation δµ[φn], δG[φn], δ[φn] instead of δµ(φn;G) if the meaning
of this is clear from the context.

We say that a sequence φn ∈ L1
a is a weak Hamilton sequence for µ if

δµ[φn] converges to 0.
The next two theorems have been proved by Božin, Lakić, Marković and

Mateljević in [BLMM], [BMM] and [MM1].

Theorem B. [The Equivalence Theorem I] Let χ ∈ M. Then χ is
uniquely extremal in its Teichmüller class if and only if χ is uniquely ex-
tremal in its infinitesimal class.

If χ ∈ L∞(G) is uniquely extremal in its infinitesimal class we say shortly
χ is uniquely extremal or χ is HBUa (we also write χ ∈ HBUa). By
the Equivalence Theorem I, if χ ∈ M, then χ is uniquely extremal in its
Teichmüller class.

The proof of Equivalence Theorem I has been based on estimates which
allow us to compare two Beltrami coefficients µ and ν in the same global(Tei-
chmüller) equivalence class and two complex dilatations in the same infinites-
imal equivalence class. Note that the Equivalence Theorem I was a very
important step in understanding the notion of uniquely extremal complex
dilatation.

The next important step has been to analyze the proof of Hahn-Banach
theorem and its applications to our setting. In particular, using the Equiv-
alence Theorem I, we have obtained the following necessary and sufficient
criterion for the unique extremality of a given Beltrami coefficient χ.

Theorem C. [The Characterization Theorem I, [BLMM], [BMM]] The
Beltrami coefficient χ is uniquely extremal if and only if for every admissible
variation χ̂ of χ there exists a sequence φn in L1

a(G) such that
(a) δ[φn] = ∥φn∥∥χ̂∥∞ − Re

∫
G φnχ̂→ 0

(b) lim infn→∞ | φn(z) |> 0, for almost all z in E(χ̂).

Here, an admissible variation χ̂ of χ is any complex dilatation that does
not increase the L∞−norm of χ, and which is allowed to differ from χ only
on the set Es = | χ(z) |6 s < k, where k = ∥χ∥∞ and s is a constant, and
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the extremal set E(χ̂) is the set on which χ̂(z) = ∥χ̂∥∞; in this setting, if
χ̂ is different from χ only on a set F ⊂ Es, we say that χ̂ is an admissible
variation of χ on F .
Note that we do not require that χ̂ and χ are equivalent.

We say that µ ∈ L∞(G) satisfies the Reich condition (Re-condition) on
a set S ⊂ G or, we say that φn is a Reich sequence (Re-sequence) for µ on
S (relative to G if it is not clear from the context) if

(1) there exists a sequence φn ∈ L1
a(G) such that δµ(φn;G) → 0 ( i.e.

there is a weak Hamilton sequence φn for λµ)
(2) lim inf |φn(z)| > 0 a.e. in S.

Thus by the Characterization Theorem I, the Beltrami coefficient χ is
uniquely extremal if and only if for every admissible variation χ̂ of χ there
exists a Re- sequence φn in A(G) on the extremal set E(χ̂) .

Note that we mainly use the Characterization Theorem I and II in some
special situations.
In particular, if |χ| is constant on G, χ is uniquely extremal on G if and
only if there exists a Re-sequence for χ on G.

The Characterization Theorem gives, via Re- sequences, what may be
called an ”analytic” method to test for unique extremality. Roughly speak-
ing, we may say that there is analogue between Theorem HKRS (via Hamil-
ton sequences) and The Characterization Theorem (via what we call Re-
sequences).

Let χ ∈ L∞(G). Since χ is uniquely extremal in its infinitesimal Te-
ichmüller class (that is χ ∈ HBUa) if the normalization χk = k χ/||χ||∞ is
uniquely extremal in its Teichmüller class for some 0 < k < 1 (and hence for
every 0 < k < 1), it is convenient in some settings to express some results
by means of the HBUa property; or shortly to say χ ∈ L∞(G) is uniquely
extremal if it is uniquely extremal in its infinitesimal Teichmüller class.

Definition 3.1. [complex dilatation of Teichmüller type] Let G
be a domain in C. If µ = s(z)|ψ|/ψ, where s is a nonnegative measurable
function from G into [0, 1) and ψ is an analytic function, not identically
zero, on G we shortly say that µ is of general Teichmüller type (s, ψ) on G.
If, in addition, s is a constant k a.e. on G, we say that µ is of Teichmüller
type (k, ψ) on G and if ψ is an analytic integrable function on G we shortly
say that µ is a Teichmüller complex dilatation.

Thanks to the Characterization Theorem we can study uniquely extremal
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dilatations using an infinitesimal cotangent space A = L1
a, which is the

space of holomorphic integrable functions. Using new tools, some properties
of uniquely extremal dilatations of general Teichmüller type have been de-
scribed. In particular, we use compactness of certain families of holomorphic
functions and the mean value theorem to prove the following results [Ma5].

Theorem D. (The second removable singularity Theorem) Let Ω be a
bounded domain (multiply connected in general), Ω∞ the unbounded compo-
nent of Ωc and Ω0 = (Ω∞)c. Let χ be a uniquely extremal complex dilatation
of general Teichmüller type (s, φ) on Ω. Then

(a) χ = k|φ|/φ a.e. in Ω, where k is a constant.
If, in addition, χ has uniquely extremal extension to Ω0, then

(b) φ has an analytic extension φ̃ from Ω to Ω0

(c) χ = k|φ̃|/φ̃ a.e. in Ω0.

If D is a simply-connected domain and K a compact set such that K ⊂
D, we say that (K,D) is a pair.

Theorem E. Let (K,D) be a pair and V = D rK. Then
(A) The following condition
(a) |χ| is a constant a.e. on D and χ is HBUa on D
implies
(b) there is a Re -sequence consisting of polynomials for χ on D (and, in
particular, on V ).
(B) Suppose

(b1) there is a Re -sequence consisting of polynomials for χ on V .
(c) χ is a complex dilatation of general Teichmüller type (s, φ) on V .
Then (b1 ) and (c) imply that there is a unique complex dilatation χ0, which
is uniquely extremal extension of χ to D (and consequently which is of Te-
ichmüller type).

Note that there is the difference between the hypothesis in part (B) of
this theorem and Theorem D (The second removable singularity Theo-
rem). Namely, the assumption in Theorem D that χ is uniquely extremal
in D = Ω0 , is replaced by the assumption in Theorem E that holds: (b)
there is a Re -sequence consisting of polynomials for χ on V .

3.3. Unique extremality and oscillation.Let a complex valued func-
tion µ is defined on a domain G. The oscillation of µ on a set D is :
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ω(µ;D) = esssup{|µ(z1)−µ(z2)| : z1, z2 ∈ D∩G}, ωr(µ; a) = ω(µ;B), where
B = B(a; r),
and the oscillation of a complex valued function µ at a point a ∈ G is defined
as the limit as r → 0:
ω(µ; a) = limr→0 ωr(µ; a).
For b ∈ C, set |µ − b|∞,B = esssup{|µ(z) − b| : z ∈ B}. It is clear that
there is b ∈ C such that |µ − b|∞,B 6 ω(µ;B). In a similar way we define
ω−
r (µ; a) = inf{|µ(z) − b|∞,B : b ∈ C} and the lower oscillation ω−(µ; a) of
µ at a. We call the function ω−

µ defined on G by a 7→ ω−(µ; a) the lower
oscillation of µ.

In the statements that follow G denotes a C1,α- domains, 0 < α < 1.
Suppose that µ is a dilatation on G and V ⊂ G. If ω−(µ; a) < ||µ||∞;V

for every a ∈ V , we say that the lower oscillation of µ is less than L∞- norm
of µ on V . If ω−(µ; a) < ||µ||∞;G for every a ∈ ∂G, we say that the lower
oscillation of µ on the boundary is less than L∞- norm of µ on G.

Roughly we prove
(a1) If µ is extremal on G and the lower oscillation of µ on the boundary

is less than L∞- norm of µ on G, then µ is of Teichmüller type on G.
(a2) Let χ be uniquely extremal onG, ∥χ∥∞ = 1. Suppose that ω−(µ; a) <

1 (the lower oscillation of µ ) is strictly lees 1) expect on a discrete set in G.
Then χ is of Teichmüller type on G.

If µ(z) = k for z ∈ D+ and µ(z) = −k1 for z ∈ D−, where 0 < k1 < k < 1,
then by (a1) µ is not extremal on D.

Theorem 3.1. [[Ma9]] Let χ be uniquely extremal on G, ∥χ∥∞ = 1,
a ∈ G. Suppose that there exists B = B(a; r) ⊂ G such that
(ii) s = |µ − b|∞,B < 1 for some b ∈ C (more generally, respectively
ω−(µ; a) < 1).
Then χ is of Teichmüller type on B (respectively in some neighborhood of
a).

Let χ be uniquely extremal on G, ∥χ∥∞ = 1. Suppose that ω−(µ; a) < 1
expect on a discrete set in G. Then χ is of Teichmüller type on G.

In particular if χ is continuous at a, then (ii) holds.

3.4. Construction.Outline of new construction.
Let (K,D) be a doubly-connected pair. We will show that there exists

a sequence of Jordan-domains Jn such that

Jn ⊂ IntJn+1, ∪∞
1 Jk = D rK. (4)
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In this setting, we say that sequence of Jordan-domains Jn exhausts DrK.
Namely, since DrK is doubly connected and K contains at least two point,
then there is the closed disk B of radius r and a conformal mapping Φ of
∆ r B onto D r K, where ∆ denotes the unit disk. Let rn = r + 1/n,
J ′
n = {ρ eiθ : rn < ρ < 1, 0 < θ < 2π−1/n} and Jn = Φ(J ′

n). It is clear that
the sequence of Jordan-domains Jn satisfies condition (4).

Definition 3.2 [simply-connected triple] Let Ir = (r, 1) be an in-
terval, Λ = Φ(Ir), V = D r K, and V ′ = V r Λ. We call (K,D, V ′) a
simply-connected triple (a doubly-connected pair (K,D) with cut Λ). If, in
addition, K has empty interior we say that (K,D, V ′) is a special simply-
connected triple and that (K,D) is a special doubly-connected pair.

Suppose that (K,D) is a pair and χ is of a general Teichmüller type (s, φ)
on V = D rK. In this setting, we conclude:
a) The proof of Theorem E (see also Theorem D) tells us that if χ ̸= 0
a.e. on V, and has a Re- sequence consisting of polynomials on V , then the
corresponding normalized sequence of polynomials Pn c-uniformly converges
on D and gives the analytic continuation φ̃ of φ to D. Since φ̃ is not

identically zero on D, we can define χ̃ = k
|φ̃|
φ̃
. It is not difficult to verify

that Pn is a Re- sequence for χ̃ on D and therefore that χ̃ ∈ HBUa(D) (see
Theorem E).
In particular, if χ is uniquely extremal on D and χ = 0 on K, then χ = 0
on D a.e. or K is a finite set.

b) If, in addition, the normalized sequence of polynomials Pn is a special
for χ and pair (K,D), then first we conclude that φ̃ is zero on K. Therefore
χ cannot be of Teichmüller type on V unless if K is a finite set or s = 0 a.e.
on V .

Theorem 3.2. [Construction Theorem] Let (K,D, V ′) be a simply-connected
triple and ψ0 a holomorphic function on K.
a) There is a sequence of polynomials φn, which uniformly converge to ψ0

on K and which c-uniformly converges to a holomorphic nonzero function
φo on V ′, and which is a Re-sequence on V .
b) If, in addition, ψ0 is different than 0 a.e. in K, and if χ is defined

on D by χ = |ψ0|
ψ0

on K and χ = |φ0|
φo

on V ′, then the sequence φn is a
Re-sequence for χ on D, and therefore χ is HBUa on D.
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The situation described in the theorem is one that we will often encounter.
Hence it is convenient to introduce new terminology.

Definition 3.3 [(φo, ψ0)- special sequence of polynomials] We call
the sequence φn described in theorem, (φo, ψ0)- special sequence of polyno-
mials for a simply-connected triple (K,D, V ′).

Before we prove this theorem, we state some remarks and corollaries which
partially explain the significance of the result.

Remarks and corollaries of Theorem 3.2.

1. The theorem holds if we only suppose that ψ0 is a continuous function
on K and a holomorphic function in the interior of K.

2. the assumption that φn is a Re-sequence of polynomials on V ′, which
c-uniformly converges to a holomorphic not identically zero function φo on
V ′, implies φo is different than 0 on V ′.

3. (holomorphic function as germ of uniquely extremal complex dilata-
tion) If the holomorphic function ψ0 is different than 0 a.e. in K, and if χ

is defined on K by χ = |ψ0|
ψ0
, then it follows from part b) of the theorem that

χ has an extension which is uniquely extremal on D.
Namely, if we extend χ to D by χ = |φ0|

φo
on V ′, where the function φ0 is

defined by the sequence φn on V ′, then φn is a Re-sequence for χ on D.
Therefore, by a very special case of The Characterization Theorem (Propo-
sion B, see Section 3.4), χ is HBUa on D; that is χ is uniquely extremal.
In this way, we can roughly state that every ψ0 is a germ of a uniquely
extremal complex dilatation on D.
Continuous function as germ of uniquely extremal complex dilatation.
In particular, if K is a special set, f is a continuous function on K, which is
different than 0 a.e. in K, and if χ0 = |f |

f on K, then, using the method of
the proof of Theorem 3.2 and the Mergelyan theorem instead of Runge, one
can show that χ0 has a uniquely extremal extension to D ( see Corollary 2).

4. (construction of uniquely extremal complex dilatation with noncon-

stant modulus) If ψo ≡ 0, and if χ is defined on D by χ = |φ0|
φo

on V ′

and χ = 0 on K, using the Delta inequality in the tangent space B (as in
[BLMM]), one can show that χ is uniquely extremal on V relative to D.
If, in addition, the set K has empty interior and positive two-dimensional
measure, then using Lemma R, which roughly states that annihilators with
support on special sets vanish, one can show that χ is uniquely extremal
(HBUa) on D.
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This gives an example of uniquely extremal complex dilatation with non-
constant modulus.

Note that one can verify that χ defined in this item is uniquely extremal
by means of Theorem V. 3.1 [Re9], which is a special case of the Character-
ization theorem. That has sense because the proof of the theorem is much
simpler than the proof of the Characterization theorem.

5. If ψ0 has no analytic continuation to D, then, by Theorem D, the
complex dilatation χ is not of Teichmüller type on V (i.e. the function φo
has no analytic continuation to V ). Thus we can construct a uniquely ex-
tremal complex dilatation µ on D, which is of Teichmüller type on both V ′

and K, but not on K ∪ V ′. 2

The next statement is an immediate corollary of Theorem 3.2 .

Corollary 1. (the HBUa continuation of holomorphic function)
Let (K,D) be a doubly-connected pair, ψ0 a holomorphic function on K,

which is different than 0 a.e. in K, and χ0 = |ψ0|
ψ0

on K. Then there exists
a χ ∈ HBUa on D such that χ = χ0 on K.

Corollary 2. (the HBUa continuation of continuous function)
Let (K,D) be a special doubly-connected pair, and let f be a continuous

function on K, which is different than 0 a.e. in K ; If χ0 =
|f |
f on K, then

there is χ ∈ HBUa on D such that χ = χ0 on K.

Using Mergelyan’s theorem as in [BLMM], one can show that this corollary
holds if (K,D) is a pair and K a special M -set.

Outline of proof of Corollary 2. Proceeding in a similar way as in the
proof of Theorem 3.2 below one can prove Corollary 2. The difference is only
in the application of the Mergelyan theorem (instead of the Runge theorem)
which gives
(2”) φn − f = 0(1) on K.

The proof of the part b) of Theorem 3.2 is based on an important corol-
lary of the Characterization Theorem :

Proposition B. If |χ| is a constant on G, then χ is uniquely extremal
if and only if χ satisfies the Re- condition on G.

3.5. Extremal mappings in 3 dimensions.Suppose that f : Ω → Ω∗

is a homeomorphism. Consider a path family Γ in Ω and its image family
Γ∗ = {f ◦ γ : γ ∈ Γ}. We introduce the quantities

KI(f) = sup
M(Γ∗)

M(Γ)
, KO(f) = sup

M(Γ)

M(Γ∗)
,
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where the supremum are taken over all path families Γ in Ω such that M(Γ)
and M(Γ∗) are not simultaneously 0 or ∞.

Definition 3.4 Suppose that f : Ω → Ω∗ is a homeomorphism; we
call KI(f) the inner dilatation and KO(f) the outer dilatation of f . The
maximal dilatation of f is K(f) = max(KO(f),KI(f). If K(f) 6 K < ∞,
we say f is K-quasiconformal (abbreviated qc).

The inner coefficient of D with respect to D′ is the number KI(D,D
′) =

infKI(f) over all homeomorphisms f : D → D′. Similarly, the outer coef-
ficient is KO(D,D

′) = infKO(f). If D′ = Bn, we abbreviate KI(D,B
n) =

KI(D) and KO(D,B
n) = KO(D).

A mapping f : D → D′ is extremal for KI or KO if KI(f) = KI(D,D
′)

or KO(f) = KO(D,D
′), respectively.

Quasiconformal mappings in Euclidean n-space, n > 2, have been stud-
ied rather intensively in recent years by several authors. It turns out that
these mappings have many properties similar to those of plane quasicon-
formal mappings. On the other hand, there are also striking differences.
Probably the most important of these is that there exists no analogue of
the Riemann mapping theorem when n > 2. This fact gives rise to the
following two problems. Given a domain D in Euclidean n-space, does there
exist a quasiconformal homeomorphis f of D onto the n-dimensional unit
ball Bn. Next, if such a homeomorphism f exists, how small can the di-
latation of f be; more precisely determine KI(D) and KO(D)? Complete
answers to these questions are known when n = 2. For a plane domain D
can be mapped quasiconformally onto the unit disk D = B2 if and only if
D is simply connected and has at least two boundary points. The Riemann
mapping theorem then shows that if D satisfies these conditions, there ex-
ists a conformal homeomorphism f of D onto D. The situation is very much
more complicated in higher dimensions cf [GeVa].

Define K∗(f) = KI(f) +KO(f). Suppose that Q = Q3 is a unit cube (a
cube whose sides are 1), and R = R(a, b, c) = [0, a]× [0, b]× [0, c], a, b, c > 0,
is a rectangular parallelepiped.

In the literature we did not find even the answer to the following question
(which looks the simple):
Question 1. What is the vale for KI(Q,R) and KO(Q,R).
Let F be the family of qc maps f : Q→ R, which maps vertices to vertices,
then KO(f) > c2/ab. If c > a, b, then the affine map A0(x) = (ax1, bx2, cx3)
is KO extremal. Is it uniquely extremal?
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Occasionally, it is convenient to use (a, b, c) instead of (a1, a2, a3). Sup-
pose that a > b > c.

Concerning Question 1, we announce the following result:

Theorem 3.3. If f ∈ F , then K∗(f) >
a21
a2a3

+ a1a2
a23

. The affine map A0

is K∗ uniquely extremal in F .

In further research, we plan to generalize the method of extremal length
and derive analogies with the two dimensional Teichmüller theory. In par-
ticular, we relate extremal problems to the existence of special Lagrangian
fibrations, proposing a method for constructing them in the large complex
structure limit of Calabi-Yau manifolds and consider extremal problems for
rectangular parallelepiped and tori. This subject is initiated in [Bo]. An
extremal quasiconformal homeomorphisms in a class of homeomorphisms
between two CR 3-manifolds is one which has the least conformal distortion
among this class. Lempert proposed to develop Teichmüller theory in the
setting of Cauchy-Riemann (CR) manifolds. We plan to continue studies of
extremal quasiconformal homeomorphisms between CR 3-manifolds.

Note only here that harmonic quasiregular (briefly, hqr) mappings in
the plane are also active area of research. In particular, there is a group of
mathematicians related to Belgrade Analysis Seminar who are interested in
this subject. The subject has grown to include study of hqr maps in higher
dimensions, cf. for example [ Ma10, KaMM, KaM, AAMS] and references
cited there.
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tinuity of harmonic quasiregular mapping on smoothly bounded domains, Ann.
Acad. Sci. Fenn. Vol. 38, No. 2, p. 839–847 (2013)

[AIM] Astala, K., Iwaniec, T., and Martin, G. J., Elliptic partial differential equations
and quasiconformal mappings in the plane, Princeton University Press, 2009,
MR 2472875 (2010j:30040).

[AsMa] Astala, K. and Martin, G. J., Holomorphic motion, Papers on Analysis, A vol-
ume dedicated to Olli Martio on the occasion of his 60th birthday, Report. Univ.
Jyvaskyla 83 (2001), pp. 27-40.



Quasiconformal maps and Teicmüller theory 169

[BA] Beurling, A., Ahlfors, L. V., The boundary correspondence under quasiconformal
mappings, Acta Math. 96 (1956), 125–142.
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