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A b s t r a c t. We propose a new approach to the network alignment
problem. We define the measure of similarity between vertices of considered
networks using the numbers of self-returning walks at particular vertices.
These numbers are related to graph invariants called graph angles which are
known in spectral graph theory. We indicate advantages of our approach in
comparison with existing procedures for network alignment.
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1. Introduction

An undirected graph G is a mathematical structure that can be defined
as an ordered pair G = (V,E), where elements of the set V are called vertices
of G, while the elements of the set E are two-element subsets of V and they
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are called edges. If a real number, denoted as a weight, is associated with
each edge e ∈ E, then G is called a weighted graph. Graphs with large
number of vertices are usually called networks.

Networks can be used to model a wide range of real-world relations,
processes and phenomena in various research domains, such as computer
science, linguistics, chemistry and physics, sociology and biology. In com-
puter science, graphs are used to represent networks of communication, data
organization, computational devices, etc. A graph is an evident model for a
molecule, where vertices represent atoms and edges bonds. As a consequence
of the usage of the graph theory in sociology, many different types of social
network graphs are developed. On that way, the friendship graphs represent
whether given number of people know each other, while the collaboration
graphs model whether two people cooperate.

Analyzing the structure of the biological networks can provide insights
into evolution, protein function, cells function and protein-protein inter-
action, which will imply prediction of disease progress, synthesis of new
medicaments and better understanding of biology and evolution, as well.
Numerous biological theoretical and experimental studies have led to various
types of biological networks: gene regulatory networks, metabolic networks,
signaling networks, neuronal networks, etc. The most intensely analyzed
are the protein-protein interaction (PPI) networks, that are modelled as an
undirected unweighted graph, whose vertex set represents the set of proteins,
while the edge set represents the interactions between them.

Comparative analysis of, specially biological, networks are one of the
foremost challenges for today researchers. Nevertheless, comparison of large
graphs is computationally infeasible, because it means to solving the sub-
graph isomorphism problem: if one graph exists as an exact subgraph of
another graph? This problem is NP-complete, so there is a need to develop
heuristic strategies for its approximate solving. Network alignment is one of
them.

The main task in network alignment is to detect one or multiple pos-
sible mappings between the vertices of the comparative networks. These
mappings need not be defined for all vertices in the network. By network
alignment one aims to find as largest as possible a common subgraph between
the two networks. The edges of this subgraph correspond to the conserved
edges implied by defined mappings. We distinguish two types of network
alignment algorithms depends on the nature of mappings - local and global
network alignment algorithms. While local alignments detect local regions of
similarity between the networks, global network alignment algorithms match
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every vertex in the one of the networks to some vertex in the other network
or mark some of the vertices as ”gap nodes” (i.e. with no match in the other
network) (see [17]). That is, a global network alignment algorithm means
the presence of a single mapping across all parts of the input network. So,
a global alignment of two networks, G(VG, EG) and H(VH , EH), such that
|VG| ≤ |VH |, is the set of ordered pairs (i, j), i ∈ VG and j ∈ VH , such that
no two ordered pairs have the common vertex. Each such ordered pair is
called an aligned pair (see [13] or [14]).

Numerous algorithms for global network alignment have been developed
and mostly of them have been implemented for aligning of PPI networks:
the first between them was IsoRank (see [17]) that has been extended to
perform local and global alignments between multiple networks (see [12]),
PATH and GA algorithms (see [20]), next algorithms that can align any type
of network not only biological one as GRAAL (see [10]) and H-GRAAL (see
[14]), followed by MI-GRAAL (see [11]) that can use any number and type of
vertex similarity measures and C-GRAAL (see [13]) whose measure depends
only of the underlying network topology, etc. In general case, all of these
algorithms have been realized in two phases. In the first one, the measure
of similarity between vertices of G and vertices of H have been computed,
and in the second the mappings between vertices, i.e. the aligned pairs,
are constructed related to the computed vertex similarity. The measure
of similarity is always defined taking into account the neighbourhoods of
the corresponding vertices and mainly is not spectrally based, except, for
example, for the case of IsoRank algorithm. Although by global network
alignment we seek to find a solution among all possible global matchings,
we, in fact, need to find a maximal matching in a weighted bipartite graph on
vertex sets of the graphs G and H whose edge weights are defined measures
of similarity between vertices of graphs G and H, respectively.

As proposed in [3] and [8], a new measure of similarity between vertex
i of G and vertex j of H should be based on the difference HG

i (t) −HH
j (t)

of generating functions for the numbers of self-returning walks for these
vertices. On that way, this spectrally characterized measure will also involve
the vertex neighbourhood, which will be extended to the whole graph unlike
the measures where the neighbourhood is very limited (see, for example,
[10]). In this paper, we shall point out the main advantages of this approach
and compare it with the existing algorithms for global network alignment
by theoretical tools.

The rest of the paper is organized as follows. Section 2 gives some def-
initions and results on walks in graphs. In Section 3 we present necessary
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material on graph angles which is relevant for our approach to network
alignment. Section 4 reviews existing algorithms for the network alignment
problem. Our approach to the network alignment problem is described in
Section 5. Sections 6 and 7 are devoted to complexity analysis and conclud-
ing remarks.

2. Walks in graphs

Let G be a graph without loops and with the vertex set V = {1, 2, . . . , n}.
In this note, we are concerned with the number of self-returning walks of
the graph G at its vertex j. Remember, by a walk of length k in G we
mean any sequence of (not necessarily distinct) vertices j1, j2, . . . , jk, jk+1

∈ {1, 2, . . . , n} such that for each i = 1, 2, . . . , k there is an edge from ji
to ji+1. A walk starting and terminating at the vertex j ∈ {1, 2, . . . , n}
is called a closed walk or a self-returning walk at j. A self-returning walk
in a graph is called a spanning self-returning walk if it is passes through
all vertices of the graph. A new spectrally based formula for counting the
number of spanning self-returning walks of certain length in a rooted graph
(i.e. a graph with a distinguished vertex) is proposed in [9].

Counting walks with specified properties in a graph (or digraph) is re-
lated to graph spectra by the following well-known result (see [4] p. 44).

Theorem 1. If A is the adjacency matrix of a graph, then the (i, j)-

entry a
(k)
ij of the matrix Ak is equal to the number of walks of length k that

originate at vertex i and terminate at vertex j.

The normalized positive eigenvector belonging to the largestA-eigenvalue
of a connected graph is called the principal eigenvector.

Coordinates of the principal eigenvector are related to vertex neighbour-
hoods because they are asymptotically proportional to the number of walks
of length k starting at particular vertices (out-going walks). The following
relevant theorem of T.H. Wei [19] is noted in [5], p. 26:

Theorem 2. Let Nk(i) be the number of walks of length k starting at
vertex i of a non-bipartite connected graph G with vertices 1, 2, . . . , n. Let

sk(i) = Nk(i) ·
(∑n

j=1Nk(j)
)−1

. Then, for k → ∞, the vector (sk(1), sk(2),

. . . , sk(n))
T tends towards the principal eigenvector of G.
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3. Graph angles

Since eigenvectors are not graph invariants it is reasonable to extend
eigenvalue based techniques by some invariants of the eigenspaces called
graph angles.

Let G be a graph on n vertices with distinct eigenvalues µ1, µ2, . . . , µm

(µ1 > µ2 > · · · > µm) and let S1, S2, . . . , Sm be the corresponding eigenspaces.
Let {e1, e2, . . . , en} be the standard (orthonormal) basis of Rn. The num-
bers αpq = cosβpq (p = 1, 2, . . . ,m; q = 1, 2, . . . , n), where βpq is the an-
gle between Sp and eq, are called graph angles. The sequence αpq (q =
1, 2, . . . , n) is called the eigenvalue angle sequence corresponding to the eigen-
value µp (p = 1, 2, . . . ,m). We also define the angle matrix of G, i.e. an
m × n matrix (m is the number of its distinct eigenvalues, while n is the
order of G) as a matrix (αij). This matrix is a graph invariant if its columns
are ordered lexicographically. The rows of the angle matrix are called the
standard eigenvalue angle sequences.

Let xi = (xi1, xi2, . . . , xin) (i = 1, 2, . . . , n) be orthonormal eigenvectors
of G. Define Mp = {j | Axj = µpxj}. We have α2

pq =
∑

j∈Mp

x2jq for squares of

angles of G. This formula holds for any choice of orthonormal eigenvectors
of G (cf. [5], p. 76).

An overview of results on graph angles is given in [5] including the char-
acterizing properties of graph angles.

Let A be the adjacency matrix of a graph G , and let Nk(j) = a
(k)
jj

be the number of walks of length k in G originating and terminating at
vertex j. The following formula follows from the spectral decomposition of
the adjacency matrix A (cf. [5], p. 81):

Ns(j) = a
(s)
jj =

n∑
i=1

µs
iα

2
ij .

If Hj(t) denotes the generating function
∑∞

k=0Nk(j)t
k, using the previ-

ous formula, we can obtain (see [5], p. 82):

Hj(t) =
∞∑
k=0

Nk(j)t
k =

∞∑
k=0

tk
m∑
i=1

α2
ijµ

k
i =

m∑
i=1

α2
ij

1− µit
.

On the other hand, we have Hj(t) = 1 + djt
2 + 2tjt

3 + · · ·, where dj is
the degree of vertex j and tj is the number of triangles containing j. The
quantity tj is also called the clustering coefficient of the vertex j.
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The degree dj of the vertex j, and the number tj of triangles containing
the vertex j, can also be represented using graph angles:

dj =
m∑
i=1

α2
ijµ

2
i , tj =

1

2

m∑
i=1

α2
ijµ

3
i .

Similar formulas that use graph angles describe the number of quadran-
gles and pentagons in a graph, and can be also found in [5], p. 82.

If PG(λ) = det(λI −A) is the characteristic polynomial of the graph G,
then the generating function can be obtained by the formula

HG
j (t) = PG−j(

1

t
)/tPG(

1

t
),

since

PG−j(x) = PG(x)
m∑
i=1

α2
ij

x− µi

holds for the characteristic polynomial of vertex-deleted subgraph of a graph.

4. Algorithms for the network alignment problem

As we have seen, detecting similarities between networks is frequently
called alignment of networks. The general idea is realized in two phases in
the following way.

In the first phase, for the two given graphs G = (VG, EG) and H =
(VH , EH), a measure of similarity between vertices of G and vertices of H is
introduced by some definition, that always takes into account the neighbour-
hoods of the corresponding vertices. On that way, for example, vertices of
the same degree should be considered as being more similar than those with
different degrees. Let Ri,j be the measure of similarity between vertex i of G
and vertex j of H. Let B be the bipartite graph on vertex sets of the graphs
G and H with edge weights Ri,j . Via the second phase of optimal alignment,
we want to find a maximal matching with a maximal sum of weights in B.
This matching defines subgraphs of graphs G and H which are similar w.r.t.
the introduced similarity between vertices of G and vertices of H. Finding
a maximal matching with a maximal sum of weights in a bipartite graph
can efficiently be performed by existing algorithms for the assignment prob-
lem in combinatorial optimization (see, for example, [16]), among whom the
Hungarian algorithm is mostly used. In contrast to the exposed technique,
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some algorithms are based on the so called ”seed-and-extend” approach in
the second phase.

The first algorithm for global network alignment is called IsoRank. The
computation of the optimal global alignment between two networks is based
on a heuristic that vertices i and j should be matched if their neighbors can
also be well matched (see [17]). This measure has the property that for any
pair (i, j) it is equal to the mean value of similarities between all pairs (u, v)
where u is a neighbour of i and v is a neighbour of j. That is represented
by the following formula:

Rij =
∑

u∈N(i)

∑
v∈N(j)

1

|N(u)||N(v)|
Ruv,

for i ∈ VG and j ∈ VH , and where N(a) is the set of neighbors of vertex a.

The algorithm uses graph eigenvectors, and is similar to the algorithm
PageRank, used in the Internet search (see [2]). Here the measure of simi-
larity Ri,j is spectrally based because the vector of Ri,j , for all i ∈ VG and
j ∈ VH , is the principal eigenvector of |VG||VH | × |VG||VH | matrix A defined
as follows: A[i, j][u, v] = 1

|N(u)||N(v)| , if {i, u} ∈ EG and {j, v} ∈ EH , and

A[i, j][u, v] = 0, otherwise.

By Theorem 2 this approach is related to enumeration of long out-going
walks of particular vertices.

The principal eigenvector of a graph whose adjacency matrix is very
large can efficiently be computed by an iterative algorithm called the power
method (see, for example, [6]).

A similar concept of the measure of similarity has been introduced in
[1], even more generally between vertices of two digraphs and applied to
synonym extraction from a dictionary. When considering undirected graphs,
we obtain the construction used in IsoRank.

After the principal eigenvector has been computed, the vertex mappings,
i.e. the aligned pairs, are detected by solving the maximum - weight match-
ing problem in the bipartite graph, as we described previously.

The same approach as in the second phase of the IsoRank algorithm,
i.e. finding the aligned pairs by solving maximum (or minimum)-weight
bipartite matching problem that includes optimal matching algorithms, as
Hungarian algorithm is, has been implemented in the algorithm called H-
GRAAL (see [14]) and also used as one of the strategies for solving node
matching problem between networks (see [18]).
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The node matching problem is essentially the same as the network align-
ment problem. In both of them the main task is to find the pairs of matched
vertices from compared networks, respectively, i.e. the aligned pairs, but in
the node matching problem not only by using the structural or topological
data of networks under study yet by using the revealed matched nodes, i.e.
the pairs of vertices that have been already revealed for matching. The set
of the revealed matched nodes consists of the pairs of vertices whose the
first component represents selected vertex with larger degree in the refer-
ence network, while the second component of the named pair is chosen in
the other network by some dedicated methods in dependence of the nature
of considered network. The measure of similarity of each pair of the re-
maining vertices, i.e. those different from revealed matched nodes, has been
calculated based on the number of pairs of revealed matched nodes around
that considered pair. In [18] for this calculation the Jaccard index has been
adopted (see [7]).

In its second phase H-GRAAL algorithm uses the Hungarian algorithm
for finding maximum-weight bipartite matching with respect to the measure
of similarity between vertices that, again, is not spectrally characterized.
Namely, the cost function in this approach is based on a signature similarity
between vertices of compared networks. It means that a vertex is charac-
terized by a 73-dimensional vector of graphlet degrees, which describes the
topology of its neighborhood.

A graph G with a distinguished vertex j is called a rooted graph. The
vertex j is called the root of G and G is said to be rooted at j. A connected
rooted graph is also called a graphlet. More precisely, a graphlet in a graph
is a connected induced rooted subgraph of a graph (see [10]). Suppose that
among graphlets there are g mutually non-isomorphic ones and suppose
that non-isomorphic graphlets are indexed by integers 0, 1, . . . , g − 1 in an
arbitrary way. The graphlet indexed k is called the graphlet of type k. Both
algorithms H-GRAAL (see [14]), and also GRAAL (see [10]), deals with
the graphlets up to five vertices. There are 30 connected graphs on 2 to
5 vertices with 73 different roots, i.e. 73 different connected rooted graphs
(i.e. graphlets) on 2 to 5 vertices. More precisely, 73 types of graphlets are
used in these two algorithms. In that case, the index k corresponds to one
of the 73 roots that are numerated with numbers 0,1,. . . ,72 (see the Figure
1). Let uik be the number of graphlets of type k at vertex i. On that way,
the k-th coordinate, uik, of the mentioned 73-dimensional vector represents
the number of graphlets of type k (graphlet degree) in which the considered
vertex i appears. This vector is called the signature of vertex i.
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Fig. 1. All graphlets up to five vertices with the labelled roots (from [10])

The weight that is assigned to the edge {i, j}, for every pair of vertices
i ∈ VG and j ∈ VH in the bipartite graph, for which in its second phase H-
GRAAL finds the minimum weight matching, is represented by the following
cost function:

C(i, j) = 2− ((1− α)T (i, j) + αS(i, j)).

In the exposed formula,

T (i, j) =
di + dj

maxi∈VG
di +maxj∈VH

dj
,

where di stands for the degree of the vertex i and maxi∈VG
di for the max-

imum vertex degree in the graph G (and respectively H); S(i, j) is the
signature similarity of vertices i and j, while a parameter α ∈ [0, 1] controls
the contribution of vertex signature similarity between vertices i and j.

Here and in the next section we shall assume that vertex sets VG and
VH of graphs G and H are disjoint so that all quantities indexed by i, j are
related to graphs G and H respectively.

The signature similarity S(i, j) between vertices i and j can be computed
as: S(i, j) = 1−D(i, j), where D(i, j) is the total distance between vertices
i and j, and is given by the following formula:
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D(i, j) =

∑72
k=0Dk(i, j)∑72

k=0wk

.

Here, wk is the weight of the graphlet of type k and is defined as (see [15]):

wk = 1− log(ok)

log(73)
.

The integer ok counts the number of connected induced subgraphs of the
graphlet of type k rooted at the same vertex, including the graphlet itself.
Thus, for example, o16 = 6, because the graphlets of types 0, 1, 2, 4, 5, 16
are the connected induced subgraphs of the graphlet of type 16, that contain
the same root. The computational results show that the values of wk belong
to the interval [0.488, 0.838] except for w0 = 1. We have w53 = w60 = 0.488
and w1 = w2 = w3 = 0.838. If w =

∑72
k=0wk, from the previous formula we

can easily obtain that w ≈ 45.135.
The distance Dk(i, j) between the k-th coordinates of the 73-dimensional

vectors of graphlet degrees assigned to the vertices i and j is designated by:

Dk(i, j) = wk
| log(uik + 1)− log(ujk + 1)|

log(max(uik, u
j
k) + 2)

.

If we introduce the function LD(x, y) = | log(x+1)−log(y+1)|
log(max(x,y)+2) , the formula

for the total distance becomes:

D(i, j) = 1
w

∑72
k=0Dk(i, j) = 0.022

∑72
k=0Dk(i, j) =

0.022× (w0 LD(ui0, u
j
0) + w1 LD(ui1, u

j
1) + w2 LD(ui2, u

j
2)

+w3 LD(ui3, u
j
3) + · · ·) =

0.022× (LD(di, dj) + 0.838LD(ui1, u
j
1) + 0.838LD(

(di
2

)
−ti,

(dj
2

)
− tj) + 0.838LD(ti, tj) + 0.744LD(ui4, u

j
4) + · · ·) =

0.022LD(d1, dj) + 0.018LD(ui1, u
j
1) + 0.018LD(

(di
2

)
− ti,

(dj
2

)
− tj)

+0.018LD(ti, tj) + 0.016LD(ui4, u
j
4) + · · · ,

where dl and tl denote, as before, the degree of the vertex l and the number
of triangles containing the vertex l, respectively. All presented numerical
values are approximate.

Our feeling is that the formula for D(i, j) is a bit artificially constructed.
It is not clear when D(i, j) = 1 although it is in the interval [0, 1]. It could
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happen that for all pairs i, j it is much below 1. Also the weights wk are
in a narrow interval so that the influence of particular graphlet frequencies
seems not to be well balanced.

The paper [14] also suggests application of a dynamic version of the
Hungarian algorithm. Perturbation of a small number of edge weights in
the original problem, for which the optimal matching is already known, will
imply a new variant of a problem which recalls to the strategy with revealed
matched nodes and can be performed for O(n2) time. Besides, the paper
[10] underlines the possibility of adding protein sequence component to the
cost function, which imply eventually better alignment of the PPI networks.
However, one of the mostly important advantages of GRAAL is that there
is no need to implement such kind of information, so it can align any two
networks, not only biological.

While H-GRAAL and GRAAL practically coincide in the first phase,
their second phase is quite different. H-GRAAL gives an optimal network
alignment during GRAAL stands for the greedy seed-and-extend approach
(see [10]). It means that the algorithm at the beginning of the second phase
chooses a pair of vertices from the networks under study with high graphlet
degree similarity. This pair is designated as the initial seed. Then, it greedily
expands the alignment radially outward around the seed as far as possible.

The algorithm GRAAL has been upgraded into the advanced global
alignment algorithms that are all equal in the second phase i.e. that have
seed-and-extend nature. One of them, MI-GRAAL algorithm (i.e. Matching-
based Integrative GRAph ALigner, see [11]) represents the improvement
related to GRAAL in the first phase. Namely, it has a possibility to inte-
grate any number and type of similarity measures between network vertices,
that as a consequence has the stable alignments (i.e. the alignments that
are very similar for almost all runs of the algorithm). C-GRAAL algorithm
(Common-neighbors based GRAph ALigner, see [13]) in choosing a seed uses
a measure that is denoted as combined neighbour density and is based solely
on the underlying network topology. A larger combined neighbour density
between two vertices means a higher topological similarity between their ex-
tended neighborhoods out to distance 2, in comparison to the strategy with
graphlets where distance is 4.

All previously mentioned algorithms are summarized in the following
table according to the similarities in one of the two working phases.
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Table 1. Network alignment algorithms
phase 1 phase 2

H-GRAAL

optimal matching seed-and-extend matching

IsoRank GRAAL
H-GRAAL MI-GRAAL

Optimal node matching
algorithm from [18]

C-GRAAL

GRAAL

5. A new approach

We suggest a new approach to the network alignment algorithms in their
first phase. Namely, we think that in problems of network alignment ver-
tices should be characterized by generating functions Hj(t) for the number
of self-returning walks at vertex j. This function depends on the vertex
neighbourhood which is in this case extended to the whole graph unlike
the method with graphlets realized in GRAAL and H-GRAAL, where the
neighbourhood is very limited.

For example, the measure of similarity between vertices i and j can
be defined in some way using the difference HG

i (t) − HH
j (t) of generating

functions of vertex i in G and vertex j in H. In particular, we can use the
formula:

d(i, j) = A|HG
i (t0)−HH

j (t0)|

for a sufficiently small positive value t0 with A chosen in such a way that
the maximal value of d(i, j) over all pairs (i, j) is equal to 1. Note that the
choice of A depends on t0. In this way the distance 1 is always achieved
while in the approach by graphlets it is not always the case.

The value t0 can be chosen in the interval (0, R), where R is the radius
of convergence of the power series:

HG
i (t)−HH

j (t) =
+∞∑
k=0

(NG
k (i)−NH

k (j))tk

=
+∞∑
k=0

mG∑
p=1

(µG
p )

k(αG
pi)

2 −
mH∑
q=1

(µH
q )k(αH

qj)
2

 ,
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where NG
k (s) (NH

k (s)) is the number of self-returning walks of length k at
vertex s in G (H), mG and mH denote the number of distinct eigenvalues
of graphs G and H, respectively, while µG

p and αG
pi, for p = 1, 2, . . . ,mG

and i = 1, 2, . . . , |V (G)|, as before, stand for the distinct eigenvalues and
angles of graph G (and analogously for graph H). One can easily conclude
that if µG

1 > µH
1 , than R = 1

µG
1
, and analogously, if µG

1 < µH
1 , the radius

of convergence will be R = 1
µH
1
. In the case when µG

1 = µH
1 , the radius of

convergence is R = 1
µG
1
if αG

1i ̸= αH
1j , while in contrary, the value of the radius

of convergence will depend from the relation of the second largest distinct
eigenvalues of graphs G and H, similarly as in the previous case. So, we can

assume that the value t0 belongs to the interval

(
0, 1

max{µG
1 ,µH

1 }

)
.

The following formulas for the number od self-returning walks of certain
length at a particular vertex j of a graph F have been proved in [9]:

N2(j) = dj ;

N3(j) = 2tj ;

N4(j) = u0 + u1 + 2u2 + 4u3 + 2qj ;

N5(j) = 10u3 + 2u9 + 2u10 + 4u11 + 8u12 + 12u13 + 30u14 + 2pj ;

N6(j) = u0+3u1+6u2+20u3+u4+2u5+2u6+6u7+18u8+4u9+5u10+10u11+
30u12+42u13+120u14+2u35+2u36+2u37+4u38+2u39+2u40+2u41+4u42+
4u43+8u44+2u45+2u46+4u47+2u48+12u49+18u50+4u51+4u52+6u53+
12u54+18u55+6u56+6u57+12u58+12u59+14u60+20u61+16u62+22u63+
18u64+32u65+34u66+46u67+46u68+56u69+90u70+108u71+216u72+2hj ,

where dj , tj , qj , pj and hj denote the degree of vertex j, the number of
triangles containing the vertex j, the number of quadrangles containing the
vertex j, the number of pentagons containing the vertex j and the number of
hexagons containing the vertex j, respectively, while ui are the coordinates
of the signature of the vertex j.

We shall apply these formulas to our graphs G and H and then the value
of j will determine to which of these two graphs all mentioned quantities
are related. Quantities us will have a superscript i or j.

Using these formulas our formula for the distance between vertices i and
j becomes:
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d(i, j) = A |HG
i (t0)−HH

j (t0)| =

A |
∑+∞

k=0(N
G
k (i)−NH

k (j)) tk0| =

A |(NG
2 (i)−NH

2 (j)) t20 + (NG
3 (i)−NH

3 (j)) t30 + (NG
4 (i)−NH

4 (j)) t40

+(NG
5 (i)−NH

5 (j)) t50 + · · · | =

A t20 |(di − dj) + 2(ti − tj) t0 + ((di − dj) + (ui1 − uj1) + 2(ui2 − uj2) + 4(ti − tj)+

+2(qi − qj)) t
2
0 + (10 (ti − tj) + 2 (ui9 − uj9) + 2 (ui10 − uj10) + 4 (ui11 − uj11)+

+8 (ui12 − uj12) + 12 (ui13 − uj13) + 30 (ui14 − uj14) + 2 (pi − pj)) t
3
0 + · · · |.

(1)
Since the value of t0 practically is very small, the summands from formula

(1) containing t50 and higher powers of t0 can be ignored, so we can take:

d(i, j) ≈ A t20 |(1 + t20)(di − dj) + t20(u
i
1 − uj1) + 2t20(u

i
2 − uj2)+

+2t0(1 + 2t0 + 5t20)(ti − tj) + 2t20(qi − qj)|.

As ul2 + tl =
(di
2

)
holds, we get:

d(i, j) ≈ At20 |(di − dj)(1 + t20(di + dj)) + t20(u
i
1 − uj1)+

+2t0(1 + t0 + 5t20)(ti − tj) + 2t20(qi − qj)|.

Cutting the series (1) including terms with t50 we get:

d(i, j) = At20 |(1 + t20)(di − dj) + t20 (u
i
1 − uj1) + 2 t20 (u

i
2 − uj2)

+2 t0 (1 + 2t0 + 5t20)(ti − tj)

+2 t20 (qi − qj) + 2 t30 (u
i
9 − uj9) + 2 t30 (u

i
10 − uj10)

+4 t30 (u
i
11 − uj11) + 8 t30 (u

i
12 − uj12)+

12 t30 (u
i
13 − uj13) + 30 t30 (u

i
14 − uj14) + 2 t30 (pi − pj) + · · · |.

We see that our distance d(i, j) depends on structural parameters char-
acterizing the neighbourhoods of vertices i and j, including graphlet degrees.
It seems that only particular graphlets contribute to this measure of vertex
similarity. However, higher terms in (1) could be taken into consideration,
as well. The choice of t0 regulates the impact of higher terms. The greater
t0 is, the greater is the length of self-returning walks which significantly
contribute to the distance d(i, j).



Network alignment using self-returning walks 57

We shall use a more general result from [9].

Let G be a graph rooted at vertex j. Connected induced subgraphs of G
that contain vertex j are called graphlets of G at vertex j. These graphlets
are also connected rooted graphs that are rooted at j. The number of such
graphlets is finite. Suppose that among graphlets there are g mutually non-
isomorphic ones and suppose that non-isomorphic graphlets are indexed by
integers 0, 1, . . . , g − 1 in an arbitrary way. As before, the graphlet indexed
i is called the graphlet of type i. We shall now consider all graphlets that
may be present in our graphs, not necessarily those with at most 5 vertices.
Let ui be the number of graphlets of type i. Let further nk

i be the number
of spanning self-returning walks of length k of the graphlet of type i.

The following theorem has been proved in [9]:

Theorem 3. For any positive integer k and any vertex j of a graph F
we have

Nk(j) =
g−1∑
i=0

nk
i ui.

Using this theorem we have

Hj(t) =
∞∑
k=0

Nk(j)t
k =

∞∑
k=0

tk
g−1∑
i=0

nk
i ui =

g−1∑
i=0

ui

∞∑
k=0

nk
i t

k.

Let us introduce Si(t) =
∑∞

k=0 n
k
i t

k the generating function for the num-
bers nk

i of spanning self-returning walks of length k of the graphlet of type
i. Then we have

Hj(t) =
g−1∑
i=0

uiSi(t).

Finally we arrive at the following theorem.

Theorem 4. We have

d(i, j) = A|
g−1∑
s=0

(uis − ujs)Ss(t0)|.

We see that an expression for the generating function Ss(t) would be
useful. This will be the subject of future investigations.
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6. Complexity analysis

In this section we shall analyze the time complexity of a few previously
mentioned algorithms in their first phase (determination of similarities be-
tween vertices).

As we have seen, GRAAL and H-GRAAL in defining the measure of
similarity between vertices of the networks under study use 73-dimensional
vector of graphlet degrees. These algorithms are looking for the graphlets
up to five vertices in an n-vertex graph. The number of five vertex graphlets
is

(n
5

)
= 1

5!n(n− 1)(n− 2)(n− 3)(n− 4), so the time complexity of the first
phase is O(n5) (see [15]).

In IsoRank’s first phase the measure of similarity Ri,j between the vertex
i of n-vertex graph G and the vertex j of m-vertex graph H is interpreted as
a coordinate of the principal eigenvector of the product G×H. However, it
is well-known that the adjacency matrix of G×H is equal to the Kronecker
product of adjacency matrices of graphs G and H and that the principal
eigenvector of G × H is the Kronecker product of principal eigenvectors
of graphs G and H (see, for example, [4], pp. 69-70). Hence, principal
eigenvectors of graphsG andH can be computed separately. If we for getting
each of them apply, for example, the power method, the time complexity will
be O(n2).

Since the measure of similarity Ri,j is equal to the product of the i-th
coordinate of the principal eigenvector of the graph G and the j-th coor-
dinate of the principal eigenvector of the graph H, the time complexity of
IsoRank’s first phase is O(n2). Note that in [17] the power method has been
adopted to the nm×nm adjacency matrix (i.e. n2×n2 for equal sized vertex
sets) what implied the time complexity O(n4).

It is well known that the time complexity for finding the eigenvalues
and the eigenvectors of an matrix is O(n3). By formulas given in Section 3
graph angles can be quickly computed from eigenvectors. The computation
of our measure of similarity requires just finding the eigenvalues and the
eigenvectors of corresponding adjacency matrices, so the time complexity
in this case will be O(n3), which is better than in the GRAAL’s and H-
GRAAL’s first phase.

7. Concluding remarks

Our treatment of network alignment algorithms is strictly mathematical
contrary to the literature of bio-informatics where facts from biology are
also taken into account.
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We have presented three approaches for determining the measure of sim-
ilarity between vertices:

- approach based on enumeration of long out-going walks at particular
vertices (IsoRank),

- approach based on enumeration of graphlet frequencies at particular
vertices (GRAAL),

- approach based on enumeration of self-returning walks at particular
vertices (our approach).

Our approach with complexity O(n3) lies in the middle of the other
two. Analysis given in Section 5 shows that the quality of the measure of
similarity is comparable with the one in the graphlet approach obtained at
a higher computational cost.

The comparison of the approaches can be refined by looking at the cases
of failure. In regular graphs the principal eigenvector has all components the
same. If both graphs G and H are regular, the measure of similarity for any
pair i, j of vertices is constant; hence IsoRank is useless. This happens in our
approach for a narrower class of graphs: strongly regular graphs. In strongly
regular graphs with same eigenvalues, the angles are also equal and equal
for all vertices (see [5], p. 77). However, in other regular graphs angles are
powerful. For example, some classes of cubic graphs are characterized up to
an isomorphism by eigenvalues and angles (see [5], p. 119). Bad cases with
the graphlet approach is more difficult to construct although they probably
exist.

In the literature of bio-informatics when comparing network alignment
algorithms the stress is led on the quality of obtained alignment in terms of
biology. Complexity analysis is not crucial since the number of potentially
interesting PPI networks to be aligned is small and it is not much important
how long a computer runs.

Since the time complexity of the GRAAL’s first phase is greater than
the complexity of IsoRank’s first phase, there is no doubt that concrete
implementation of this algorithm produces better alignments, in fact one of
the most complete topological alignments of biological networks (see [10]).
It was also reported in [10] that GRAAL finds common subgraphs with more
vertices than IsoRank.

It would be interesting and useful to integrate our new measure of sim-
ilarity into the second phase of some of the mentioned algorithms and im-
plement it for aligning concrete biological networks.
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des jura, Bulletin de la Société Vaudoise des Science Naturelles, 37(1901), 547–579.
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