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A b s t r a c t. In this paper, we introduce and analyze the class of
(a, k)-regularized (C1, C2)-existence and uniqueness families in the setting of
sequentially complete locally convex spaces. The classes of (a, k)-regularized
C1-existence families and (a, k)-regularized C2-uniqueness families are also
defined and considered. The subordination principle as well as many other
structural characterizations of (local) exponentially equicontinuous (a, k)-
regularized (C1, C2)-existence and uniqueness families are proved.
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1. Introduction and Preliminaries

In recent years, considerable interest in fractional calculus has been stim-
ulated by the applications in many fields of science and technology, including
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ical Development, Republic of Serbia.



10 M. Kostić

physics and chemistry. It is well known (E. Bazhlekova [2], 2001) that ab-
stract time-fractional equations with Caputo fractional derivatives can be
studied by converting them into equivalent abstract Volterra equations (J.
Prüss [16], 1993). On the other hand, R. deLaubenfels ([5], 1991) gener-
alized the notion of C-regularized semigroups by introducing the classes of
C1-existence families and C2-uniqueness families. For controlling the second
order abstract differential equations, the notions of C1-cosine existence fam-
ilies and C2-cosine uniqueness families were introduced by J. Z. Zhang ([20],
2002). It is also worthwhile to mention that the ideas from [5] play a crucial
role in the papers of S. W. Wang ([17], 1997) and T.-J. Xiao, J. Liang ([19],
2003). The purpose of this paper is to develop the corresponding theory for
abstract Volterra equations and abstract time-fractional equations in locally
convex spaces ([7]-[11]).

Now we will collect the material needed later on. By E is denoted a
complex Hausdorff sequentially complete locally convex space, SCLCS for
short; the abbreviation ~ stands for the fundamental system of seminorms
which defines the topology of E, and by L(E) is denoted the space which
consists of all continuous linear mappings from E into E. The domain, range
and resolvent set of a closed linear operator A on E are denoted by D(A),
R(A) and ρ(A), respectively. Suppose F is a linear subspace of E. Then the
part of A in F, denoted by A|F , is a linear operator defined by D(A|F ) :=
{x ∈ D(A) ∩ F : Ax ∈ F} and A|Fx := Ax, x ∈ D(A|F ). Let L(E) ∋ C be
injective. Then the C-resolvent set of A, denoted by ρC(A), is defined by
ρC(A) := {λ ∈ C : λ − A is injective and (λ − A)−1C ∈ L(E)}. The space
D∞(A) :=

∩
n∈N D(An), topologized by the following system of seminorms

pn(x) :=
∑n

j=0 p(A
jx) (p ∈ ~, n ∈ N), becomes a SCLCS. The notion of

local Hölder continuity of a function f : [0,∞) → E is understood in the
sense of [7]. In the case that E is a Banach space, we denote by [D(A)] the
Banach space D(A) equipped with the graph norm.

Given s ∈ R in advance, set ⌊s⌋ := sup{l ∈ Z : s ≥ l} and ⌈s⌉ := inf{l ∈
Z : s ≤ l}. The Gamma function is denoted by Γ(·) and the principal branch
is always used to take the powers. Set 0α := 0 and gα(t) := tα−1/Γ(α)
(α > 0, t > 0). If δ ∈ (0, π] and d ∈ (0, 1], then we define Σδ := {λ ∈ C :
λ ̸= 0, | arg λ| < δ} and Bd := {z ∈ C : |z| ≤ d}. Denote by L and L−1 the
Laplace transform and its inverse transform, respectively.

Let α > 0, let β ∈ R and let the Mittag-Leffler function Eα,β(z) be
defined by Eα,β(z) :=

∑∞
n=0 z

n/Γ(αn + β), z ∈ C. In this place, we assume
that 1/Γ(αn + β) = 0 if αn + β ∈ −N0. Set, for short, Eα(z) := Eα,1(z),
z ∈ C. The Wright function Φγ(t) is defined by Φγ(t) := L−1(Eγ(−λ))(t),
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t ≥ 0, and Dα
t denotes the Caputo fractional derivative of order α ([2]).

Definition 1.1. ([6]-[7]) Suppose 0 < τ ≤ ∞, k ∈ C([0, τ)), k ̸= 0,
a ∈ L1

loc([0, τ)), a ̸= 0 and β ∈ (0, π].

(i) Let A be a closed linear operator on E. Then a strongly continuous
operator family
(R(t))t∈[0,τ) ⊆ L(E) is called a (local, if τ < ∞) (a, k)-regularized
C-resolvent family having A as a subgenerator iff the following holds:

(i.1) R(t)A ⊆ AR(t), t ∈ [0, τ), R(0) = k(0)C and CA ⊆ AC,

(i.2) R(t)C = CR(t), t ∈ [0, τ) and

(i.3) R(t)x = k(t)Cx+
∫ t
0 a(t− s)AR(s)x ds, t ∈ [0, τ), x ∈ D(A);

(R(t))t∈[0,τ) is said to be non-degenerate if the condition R(t)x =
0, t ∈ [0, τ) implies x = 0, and (R(t))t∈[0,τ) is said to be locally
equicontinuous if, for every t ∈ (0, τ), the family {R(s) : s ∈ [0, t]} is
equicontinuous. In the case τ = ∞, (R(t))t≥0 is said to be exponen-
tially equicontinuous (equicontinuous) if there exists ω ∈ R (ω = 0)
such that the family {e−ωtR(t) : t ≥ 0} is equicontinuous. Further-
more, (R(t))t≥0 is said to be quasi-exponentially equicontinuous (q-
exponentially equicontinuous, for short) (a, k)-regularized C-resolvent
family iff, for every p ∈ ~, there exist Mp ≥ 1, ωp ≥ 0 and qp ∈ ~ such
that:

p(R(t)x) ≤ Mpe
ωptqp(x), t ≥ 0, x ∈ E. (1)

(ii) Let A be a subgenerator of a global (a, k)-regularized C-resolvent
family (R(t))t≥0. Then it is said that (R(t))t≥0 is an analytic (a, k)-
regularized C-resolvent family of angle β, if there exists a function
R : Σβ → L(E) satisfying that, for every x ∈ E, the mapping
z 7→ R(z)x, z ∈ Σβ is analytic as well as that:

(ii.1) R(t) = R(t), t > 0 and

(ii.2) limz→0,z∈Σγ R(z)x = k(0)Cx for all γ ∈ (0, β) and x ∈ E;

(R(t))t≥0 is said to be an exponentially equicontinuous, analytic (a, k)-
regularized C-resolvent family, resp. equicontinuous analytic (a, k)-
regularized C-resolvent family of angle β, if for every γ ∈ (0, β), there
exists ωγ ≥ 0, resp. ωγ = 0, such that the set {e−ωγ |z|R(z) : z ∈ Σγ} is
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equicontinuous. Furthermore, (R(t))t≥0 is said to be a q-exponentially
equicontinuous, analytic (a, k)-regularized C-resolvent family of angle
β, if for every p ∈ ~ and ϵ ∈ (0, β), there exist Mp,ϵ ≥ 1, ωp,ϵ ≥ 0 and
qp,ϵ ∈ ~ such that:

p(R(z)x) ≤ Mp,ϵe
ωp,ϵ|z|qp,ϵ(x), z ∈ Σβ−ϵ, x ∈ E.

Since there is no risk for confusion, we will identify R(·) and R(·).

Henceforth we shall assume that the function k(t) is a scalar-valued
kernel. Consider now the following condition:

(P0): a(t) is a kernel, or a(t), k(t) satisfy (P1) and A is a subgenerator of a
non-degenerate q-exponentially bounded (a, k)-regularized C-resolvent
family (R(t))t≥0.

In the case that (P0) holds, we are in a position to define the integral gen-
erator Â of (R(t))t∈[0,τ) by setting

Â :=
{
(x, y) ∈ E × E : R(t)x− k(t)Cx =

∫ t

0
a(t− s)R(s)y ds, t ∈ [0, τ)

}
.

(2)
The integral generator Â of (R(t))t∈[0,τ) is a linear operator in E which

extends any subgenerator of (R(t))t∈[0,τ) and satisfies C−1ÂC = Â. The local

equicontinuity of (R(t))t∈[0,τ) guarantees that Â is a closed linear operator
in E; if, additionally,

A

t∫
0

a(t− s)R(s)x ds = R(t)x− k(t)Cx, t ∈ [0, τ), x ∈ E, (3)

then R(t)R(s) = R(s)R(t), t, s ∈ [0, τ), Â itself is a subgenerator of
(R(t))t∈[0,τ) and Â = C−1AC. For further information on subgenerators
of (a, k)-regularized C-resolvent families, we refer the reader to [6]-[7] and
[9]-[10].

The following definition of a (local) (a, k)-regularized C-resolvent family
is motivated by the recent researches of C. Chen, M. Li [3] and C. Lizama,
F. Poblete [15].

Definition 1.2. Suppose 0 < τ ≤ ∞, k ∈ C([0, τ)), k ̸= 0, a ∈
L1
loc([0, τ)) and a ̸= 0. Then a strongly continuous operator family (R(t))t∈[0,τ)

is called a (local, if τ < ∞) (a, k)-regularized C-resolvent family iff the fol-
lowing conditions hold:
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(i) R(0) = k(0)C, R(t)C = CR(t), t ∈ [0, τ) and R(t)R(s) = R(s)R(t),
t, s ∈ [0, τ).

(ii) R(s)(a ∗ R)(t) − (a ∗ R)(s)R(t) = k(s)(a ∗ R)(t)C − k(t)(a ∗ R)(s)C,
t, s ∈ [0, τ).

The notions of integral generator and local equicontinuity of (R(t))t∈[0,τ),
as well as the notions of (exponential, q-exponential) equicontinuity of
(R(t))t≥0 and (exponential, q-exponential) analyticity of (R(t))t≥0 are un-
derstood in the sense of the previous definition. By a subgenerator of
(R(t))t∈[0,τ) we mean any closed linear operator A on E satisfying CA ⊆ AC,
R(t)A ⊆ AR(t), t ∈ [0, τ) and the condition (i.3) stated above.

Now we would like to compare Definition 1.1 and Definition 1.2. Suppose
that A is a subgenerator of a non-degenerate, locally equicontinuous (a, k)-
regularized C-resolvent family (R(t))t∈[0,τ) in the sense of Definition 1.1 and
that (3) holds. Using the proof of [15, Theorem 3.1] (cf. also [3]), we infer
that (R(t))t∈[0,τ) is an (a, k)-regularized C-resolvent family in the sense of

Definition 1.2. Furthermore, if (P0) holds, then the operator Â, defined by
(2), equals C−1AC and is a subgenerator (the integral generator, in fact) of
an (a, k)-regularized C-resolvent family (R(t))t∈[0,τ) in the sense of Defini-
tion 1.2. Suppose, conversely, that (R(t))t∈[0,τ) is a non-degenerate, locally
equicontinuous (a, k)-regularized C-resolvent family in the sense of Defini-
tion 1.2, and that (P0) holds. Then the operator Â is a subgenerator (the
integral generator) of an (a, k)-regularized C-resolvent family (R(t))t∈[0,τ) in

the sense of Definition 1.1, and (3) holds with A replaced by Â therein.

2. The Main Structural Properties of (a, k)-Regularized (C1, C2)-Existence
and Uniqueness Families

We start this section with the following definition.

Definition 2.1. Suppose 0 < τ ≤ ∞, k ∈ C([0, τ)), k ̸= 0, a ∈
L1
loc([0, τ)), a ̸= 0 and A is a closed linear operator on E.

(i) Then it is said that A is a subgenerator of a (local, if τ < ∞) mild
(a, k)-regularized (C1, C2)-existence and uniqueness family
(R1(t), R2(t))t∈[0,τ) ⊆ L(E)×L(E) iff the mapping t 7→ (R1(t)x,R2(t)x),
t ∈ [0, τ) is continuous for every fixed x ∈ E and if the following con-
ditions hold:
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(a) Ri(0) = k(0)Ci, i = 1, 2,

(b) C2 is injective,

(c)

A

t∫
0

a(t− s)R1(s)x ds = R1(t)x− k(t)C1x, t ∈ [0, τ), x ∈ E and (4)

t∫
0

a(t− s)R2(s)Axds = R2(t)x− k(t)C2x, t ∈ [0, τ), x ∈ D(A). (5)

(ii) Let (R1(t))t∈[0,τ) ⊆ L(E) be strongly continuous. Then it is said that
A is a subgenerator of a (local, if τ < ∞) mild (a, k)-regularized C1-
existence family (R1(t))t∈[0,τ) iff R1(0) = k(0)C1 and (4) holds.

(c) Let (R2(t))t∈[0,τ) ⊆ L(E) be strongly continuous. Then it is said that
A is a subgenerator of a (local, if τ < ∞) mild (a, k)-regularized C2-
uniqueness family (R2(t))t∈[0,τ) iff R2(0) = k(0)C2, C2 is injective and
(5) holds.

The notions of (q-)exponential equicontinuity, analyticity and
(q-)exponential analyticity of mild (a, k)-regularized C1-existence families
(C2-uniqueness families) are understood in the sense of Definition 1.1. For
a global mild (a, k)-regularized (C1, C2)-existence and uniqueness family
(R1(t), R2(t))t≥0 havingA as subgenerator, it is said that is (q-)exponentially
equicontinuous (analytic, (q-)exponentially analytic) iff both (R1(t))t≥0 and
(R2(t))t≥0 are.

If a(t) = gα(t) for some α > 0, then it is not difficult to prove that, for
every (a, k)-regularized C1-existence family (R1(t))t∈[0,τ) with subgenerator

A, the following holds:
∪

t∈[0,τ)R(R1(t)) ⊆ D(A). In the case that A is a
subgenerator of a mild (a, k)-regularized (C1, C2)-existence and uniqueness
family (R1(t), R2(t))t∈[0,τ), we have intuitively that R1(t) = Eα(t

αA)C1 and
R2(t) = C2Eα(t

αA) for t ∈ [0, τ). Further on, it is clear that the notion
of a mild (a, k)-regularized C2-uniqueness family is more general than that
of an (a, k)-regularized C-resolvent family. Observe also that the notion of
a mild (a, k)-regularized C1-existence family extends the notion of a global
n times integrated C-existence family (n ∈ N0), introduced by S. S. Wang
[17, Definition 3.1] in the Banach space setting (for the exponential case,
cf. [5, Definition 4.1]). It could be interesting to transfer the assertion of
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[17, Theorem 3.3] to mild (a, k)-regularized (C1, C2)-existence and unique-
ness families (cf. also [11, Section 2] for some other recent results in this
direction).

Notice that (4)-(5) together imply that, for every 0 ≤ t, s < τ and
x ∈ E,

(a ∗R2)(s)R1(t)x = (a ∗R2)(s)[A(a ∗R1)(t)x+ k(t)C1x]

= k(t)(a ∗R2)(s)C1x+ (a ∗R2)(s)A(a ∗R1)(t)

= k(t)(a ∗R2)(s)C1x+R2(s)(a ∗R1)(t)x− k(s)C2(a ∗R1)(t)x.

This motivates the introduction of the following definition of a mild
(a, k)-regularized (C1, C2)-existence and uniqueness family, slightly different
from the previous one.

Definition 2.2. Suppose 0 < τ ≤ ∞, k ∈ C([0, τ)), k ̸= 0, a ∈
L1
loc([0, τ)) and a ̸= 0. Then it is said that a strongly continuous opera-

tor family (R1(t), R2(t))t∈[0,τ) ⊆ L(E) × L(E) is a (local, if τ < ∞) mild
(a, k)-regularized (C1, C2)-existence and uniqueness family iff the following
conditions hold:

(i) Ri(0) = k(0)Ci, i = 1, 2,

(ii) C2 is injective,

(iii) for every 0 ≤ t, s < τ and x ∈ E, the following equality holds:

(a ∗R2)(s)R1(t)x−R2(s)(a ∗R1)(t)x

= k(t)(a ∗R2)(s)C1x− k(s)C2(a ∗R1)(t)x.
(6)

A closed linear operator A acting on E is said to be a subgenerator of
(R1(t), R2(t))t∈[0,τ) iff (4)-(5) hold.

We shall occasionally use the following condition

(P): a(t) is a kernel, or a(t), k(t) satisfy (P1) and (R2(t))t≥0 is a non-
degenerate operator family satisfying (1) with R(·) replaced by R2(·)
therein.

No matter which one of the introduced definitions of (a, k)-regularized (C1, C2)-
existence and uniqueness family one uses, the validity of condition (P) im-
plies that we can define the integral generator Â of (R1(t), R2(t))t∈[0,τ) by
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setting

Â :=
{
(x, y) ∈ E×E : R2(t)x−k(t)C2x =

∫ t

0
a(t− s)R2(s)y ds, t ∈ [0, τ)

}
.

(7)
Certainly, Â is a linear operator and the local equicontinuity of (R2(t))t∈[0,τ)
implies that Â is closed. Moreover, if R2(t)C2 = C2R2(t), t ∈ [0, τ), then
C−1
2 ÂC2 = Â; the notion of integral generator of a mild (a, k)-regularized

C2-uniqueness family (R2(t))t∈[0,τ) can be also understood in the sense of (7).
Suppose now that (R1(t), R2(t))t∈[0,τ) is a mild (a, k)-regularized (C1, C2)-
existence and uniqueness family in the sense of Definition 2.2. If, addition-
ally, (R2(t))t∈[0,τ) is locally equicontinuous and (P) holds, then it readily

follows from (6) that the integral generator Â is a maximal subgenerator of
(R1(t), R2(t))t∈[0,τ) with respect to the set inclusion.

Remark 2.3. Suppose a(t) ≡ t, k(t) ≡ 1, E is a Banach space and A is a
subgenerator of a mild (a, k)-regularized (C1, C2)-existence and uniqueness
family in the sense of Definition 2.1. Then the proof of implication (b) ⇒
(a) of [20, Theorem 1.8] implies that

2R2(t)R1(s) = C2[R1(t+ s) +R1(|t− s|)]

= [R2(t+ s) +R2(|t− s|)]C1, 0 ≤ t, s, t+ s < τ.
(8)

In particular, (R1(t), R2(t))t∈[0,τ) is a mild (C1, C2)-regularized cosine
existence and uniqueness family in the sense of [20, Definition 1.1], provided
that τ = ∞. Suppose, conversely, that (R1(t), R2(t))t∈[0,τ) is a strongly
continuous operator family, Ri(0) = Ci, i = 1, 2, C2 is injective and (8) holds.
Then we may define the infinitesimal generator Ă of (R1(t), R2(t))t∈[0,τ) by

Ă :=
{
(x, y) ∈ E × E : lim

t→0+

2

t2
(R2(t)x− C2x) = C2y

}
.

Using the proof of [20, Theorem 1.6], we get that Ă is a subgener-
ator of a mild (a, k)-regularized (C1, C2)-existence and uniqueness family
(R1(t), R2(t))t∈[0,τ) in the sense of Definition 2.1 (Definition 2.2); moreover,

Ă coincides with the integral generator of (R1(t), R2(t))t∈[0,τ). The previous
conclusions can be reformulated in the case that a(t) ≡ k(t) ≡ 1 (cf. [4,
Section XVI]) or that E is a general SCLCS.

The proof of following theorem is left to the reader as an easy exercise.
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Theorem 2.4. Suppose A is a closed linear operator on E, C1, C2 ∈
L(E), C2 is injective, ω0 ≥ 0, a(t), k(t) satisfy (P1) and ω ≥ max(ω0,
abs(a), abs(k)).

(i) Let (R1(t), R2(t))t≥0 be strongly continuous and let the family {e−ωtRi(t) :
t ≥ 0} be equicontinuous for i = 1, 2.

(a) Suppose (R1(t), R2(t))t≥0 is a mild (a, k)-regularized (C1, C2)-
existence and uniqueness family with a subgenerator A. Then, for
every λ ∈ C with ℜλ > ω and k̃(λ) ̸= 0, the operator I − ã(λ)A
is injective, R(C1) ⊆ R(I − ã(λ)A),

k̃(λ)(I − ã(λ)A)−1C1x =

∞∫
0

e−λtR1(t)x dt, x ∈ E, (9)

{ 1

ã(z)
: ℜz > ω, k̃(z)ã(z) ̸= 0

}
⊆ ρC1(A) (10)

and

k̃(λ)C2x =

∞∫
0

e−λt[R2(t)x− (a ∗R2)(t)Ax] dt, x ∈ D(A). (11)

(b) Let R2(0) = k(0)C2x, x ∈ E \ D(A), let (10) hold, and let
(9) and (11) hold for any λ ∈ C with ℜλ > ω and k̃(λ) ̸=
0. Then (R1(t), R2(t))t≥0 is a mild (a, k)-regularized (C1, C2)-
existence and uniqueness family with a subgenerator A.

(ii) Let (R1(t))t≥0 be strongly continuous, and let the family {e−ωtR1(t) :
t ≥ 0} be equicontinuous. Then (R1(t))t≥0 is a mild (a, k)-regularized
C1-existence family with a subgenerator A iff for every λ ∈ C with
ℜλ > ω and k̃(λ) ̸= 0, one has R(C1) ⊆ R(I − ã(λ)A) and

k̃(λ)C1x = (I − ã(λ)A)

∞∫
0

e−λtR1(t)x dt, x ∈ E.

(iii) Let (R2(t))t≥0 be strongly continuous, let R2(0) = k(0)C2x, x ∈ E \
D(A), and let the family {e−ωtR2(t) : t ≥ 0} be equicontinuous. Then
(R2(t))t≥0 is a mild (a, k)-regularized C2-uniqueness family with a sub-
generator A iff for every λ ∈ C with ℜλ > ω and k̃(λ) ̸= 0, the operator
I − ã(λ)A is injective and (11) holds.
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The subsequent theorem can be shown following the lines of the proof of
[10, Theorem 2.1] (cf. also Theorem 2.4(b), [7, Theorem 3.9] and [2, Section
3]).

Theorem 2.5. Assume kβ(t) satisfies (P1), 0 < α < β, γ = α/β and A
is a subgenerator of an exponentially equicontinuous (gβ , kβ)-regularized C1-
existence family (R1,β(t))t≥0, resp. a q-exponentially equicontinuous (gβ , kβ)-
regularized C2-uniqueness family (R2,β(t))t≥0 satisfying that the family
{e−ωtR1,β(t) : t ≥ 0} is equicontinuous for some ω ≥ 0, resp. (1) with
R(·) replaced by R2,β(·) therein. Assume that there exist a continuous func-
tion kα(t) satisfying (P1) and a number υ > 0 such that kα(0) = kβ(0)
and

k̃α(λ) = λγ−1k̃β(λ
γ), λ > υ.

Then A is a subgenerator of an exponentially equicontinuous, resp. a q-
exponentially equicontinuous, mild (gα, kα)-regularized C1-existence family
(R1,α(t))t≥0, resp. mild (gα, kα)-regularized C2-uniqueness family (R2,α(t))t≥0,
given by Ri,α(0) := kα(0)Ci, i = 1, 2 and

Ri,α(t)x :=

∫ ∞

0
t−γΦγ(st

−γ)Ri,β(s)x ds, x ∈ E, t > 0, i = 1, 2.

Furthermore,

p(R2,α(t)x) ≤ cγMp exp(ω
1/γ
p t)qp(x), p ∈ ~, t ≥ 0, x ∈ E.

Let p ∈ ~. Then the following estimate holds

p(R2,α(t)x) ≤ cγMp exp(ω
1/γ
p t)qp(x), t ≥ 0, x ∈ E,

and the condition

p(R2,β(t)x) ≤ Mp(1 + tξp)eωptqp(x), t ≥ 0, x ∈ E (ξp ≥ 0),

resp.,
p(R2,β(t)x) ≤ Mpt

ξpeωptqp(x), t ≥ 0, x ∈ E,

implies that there exists M ′
p ≥ 1 such that

p(R2,α(t)x) ≤ M ′
p(1 + tξpγ)(1 + ωpt

ξp(1−γ)) exp(ω1/γ
p t)qp(x), t ≥ 0, x ∈ E,

resp.,

p(R2,α(t)x) ≤ M ′
pt

ξpγ(1 + ωpt
ξp(1−γ)) exp(ω1/γ

p t)qp(x), t ≥ 0, x ∈ E.

Furthermore, in the above inequalities we may replace R2,α(·) and ωp by
R1,α(·) and ω respectively. We also have the following:
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(i) The mapping t 7→ Ri,α(t), t > 0 admits an extension to Σmin(( 1
γ
−1)π

2
,π)

and, for every x ∈ E, the mapping z 7→ Ri,α(z)x, z ∈ Σmin(( 1
γ
−1)π

2
,π)

is analytic (i = 1, 2).

(ii) Let ε ∈ (0,min(( 1γ − 1)π2 , π)). If, for every p ∈ ~, one has ωp =
0, then (R1,α(t))t≥0 is an equicontinuous analytic (gα, kα)-regularized
C1-existence family of angle min(( 1γ − 1)π2 , π), resp. (R2,α(t))t≥0 is
an equicontinuous analytic (gα, kα)-regularized C2-uniqueness family
of angle min(( 1γ − 1)π2 , π).

(iii) If ωp > 0 for some p ∈ ~, then (R1,α(t))t≥0 is an exponentially
equicontinuous, analytic (gα, kα)-regularized C1-existence family of an-
gle min(( 1γ − 1)π2 ,

π
2 ), and (R2,α(t))t≥0 is a q-exponentially equicon-

tinuous, analytic (gα, kα)-regularized C2-uniqueness family of angle
min(( 1γ − 1)π2 ,

π
2 ).

Notice that it is not clear how one can prove an analogue of Theo-
rem 2.5 for a general q-exponentially equicontinuous (gβ , kβ)-regularized
C1-existence family (Rβ(t))t≥0.

The main objective in the subsequent theorem, whose standard proof
is omitted, is to transfer the assertion of subordination principle [7, Theo-
rem 2.11] to mild exponentially equicontinuous (a, k)-regularized (C1, C2)-
existence and uniqueness families. The notions of completely positive, creep
and log-convex functions are understood in the sense of [16] and the n-th
convolution power of the kernel a(t) is denoted by a∗n(t).

Theorem 2.6. Suppose C1, C2 ∈ L(E) and C2 is injective.

(i) Let a(t), b(t) and c(t) satisfy (P1), and let
∫∞
0 e−βt|b(t)| dt < ∞ for

some β ≥ 0. Let

α = c̃−1
( 1
β

)
if

∞∫
0

c(t) dt >
1

β
, α = 0 otherwise,

and let ã(λ) = b̃( 1
c̃(λ)), λ ≥ α. Let A be a subgenerator of a (b, k)-

regularized C1-existence family (R1(t))t≥0 ((b, k)-regularized
C2-uniqueness family (R2(t))t≥0) satisfying that the family {e−ωbtR1(t) :
t ≥ 0} ({e−ωbtR2(t) : t ≥ 0}) is equicontinuous for some ωb ≥ 0. As-
sume, further, that c(t) is completely positive and that there exists a
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scalar-valued continuous kernel k1(t) satisfying (P1) and

k̃1(λ) =
1

λc̃(λ)
k̃
( 1

c̃(λ)

)
, λ > ω0, k̃

( 1

c̃(λ)

)
̸= 0, for some ω0 > 0.

Let

ωa = c̃−1
( 1

ωb

)
if

∞∫
0

c(t) dt >
1

ωb
, ωa = 0 otherwise.

Then, for every r ∈ (0, 1], A is a subgenerator of a global (a, k1 ∗ gr)-
regularized C1-existence family (Rr,1(t))t≥0 ((a, k1 ∗gr)-regularized C2-
uniqueness family (Rr,2(t))t≥0) such that the family {e−ωatRr,i(t) : t ≥
0} is equicontinuous and that the mapping t 7→ Rr,i(t), t ≥ 0 is locally
Hölder continuous with exponent r, if ωb = 0 or ωbc̃(0) ̸= 1 (i =
1, 2), resp., for every ε > 0, there exists Mε ≥ 1 such that the family
{e−εtRr,i(t) : t ≥ 0} is equicontinuous and that the mapping t 7→
Rr,i(t), t ≥ 0 is locally Hölder continuous with exponent r, if ωb > 0
and ωbc̃(0) = 1 (i = 1, 2). Furthermore, if A is densely defined, then
A is a subgenerator of a global (a, k1)-regularized C1-existence family
(R1(t))t≥0 ((a, k1)-regularized C2-uniqueness family (R2(t))t≥0) such
that the family {e−ωatRi(t) : t ≥ 0} is equicontinuous, resp., for every
ε > 0, the family {e−εtRi(t) : t ≥ 0} is equicontinuous (i = 1, 2).

(ii) Suppose α ≥ 0, A is a subgenerator of a global exponentially equicon-
tinuous (1, gα+1)-regularized C1-existence family ((1, gα+1)-regularized
C2-uniqueness family), a(t) is completely positive and satisfies (P1),
k(t) satisfies (P1) and k̃(λ) = ã(λ)α, λ sufficiently large. Then,
for every r ∈ (0, 1], A is a subgenerator of a locally Hölder con-
tinuous (with exponent r), exponentially equicontinuous (a, k ∗ gr)-
regularized C1-existence family ((a, k ∗ gr)-regularized C2-uniqueness
family); if α = n ∈ N, resp. α = 0, then A is a subgenerator of a lo-
cally Hölder continuous (with exponent r), exponentially equicontinu-
ous (a, a∗n∗gr)-regularized C1-existence family ((a, a∗n∗gr)-regularized
C2-uniqueness family) if α = n ∈ N, resp. (a, gr+1)-regularized C1-
existence family ((a, gr+1)-regularized C2-uniqueness family). If, addi-
tionally, A is densely defined, then A is a subgenerator of an exponen-
tially equicontinuous (a, 1∗k)-regularized C1-existence family ((a, 1∗k)-
regularized C2-uniqueness family); if α = n ∈ N, resp., α = 0, then
A is a subgenerator of an exponentially equicontinuous (a, 1 ∗ a∗n)-
regularized C1-existence family ((a, 1 ∗ a∗n)-regularized C2-uniqueness
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family), resp. (a, 1)-regularized C1-existence family ((a, 1)-regularized
C2-uniqueness family).

(iii) Suppose α ≥ 0 and A is a subgenerator of an exponentially equicon-
tinuous (t, gα+1)-regularized C1-existence family ((t, gα+1)-regularized
C2-uniqueness family). Let L1

loc([0,∞)) ∋ c be completely positive
and let a(t) = (c ∗ c)(t), t ≥ 0. ( Given L1

loc([0,∞)) ∋ a in ad-
vance, such a function c(t) always exists provided a(t) is completely
positive or a(t) ̸= 0 is a creep function and a1(t) is log-convex. )
Assume k(t) satisfies (P1) and k̃(λ) = c̃(λ)α/λ, λ sufficiently large.
Then, for every r ∈ (0, 1], A is a subgenerator of a locally Hölder
continuous (with exponent r), exponentially equicontinuous (a, k ∗ gr)-
regularized C1-existence family ((a, k ∗ gr)-regularized C2-uniqueness
family); if α = n ∈ N, resp. α = 0, then A is a subgenerator of a
locally Hölder continuous (with exponent r), exponentially equicontin-
uous (a, c∗n∗gr)-regularized C1-existence family ((a, c∗n∗gr)-regularized
C2-uniqueness family), resp. (a, gr+1)-regularized C1-existence fam-
ily ((a, gr+1)-regularized C2-uniqueness family). If, additionally, A is
densely defined, then A is a subgenerator of an exponentially equicon-
tinuous (a, 1 ∗ k)-regularized C1-existence family ((a, 1 ∗ k)-regularized
C2-uniqueness family); if α = n ∈ N, resp. α = 0, then A is a subgen-
erator of an exponentially equicontinuous (a, 1 ∗ c∗n)-regularized C1-
existence family ((a, 1 ∗ c∗n)-regularized C2-uniqueness family), resp.
(a, 1)-regularized C1-existence family ((a, 1)-regularized C2-uniqueness
family).

Proposition 2.7. Suppose (R1(t), R2(t))t∈[0,τ) is a mild (a, k)-regularized
(C1, C2)-existence and uniqueness family with a subgenerator A, the family
{R2(t) : t ∈ [0, τ)} is locally equicontinuous, and the following condition
holds:

(P1): the function (a∗k)(t) is a kernel, or (a∗k)(t) satisfies (P1), (C2R1(t))t≥0

and (R2(t)C1)t≥0 satisfy (1) with R(·) replaced by C2R1(·) (R1(·)C2)
therein (i = 1, 2).

Then C2R1(t) = R2(t)C1, t ∈ [0, τ).

P r o o f. Let x ∈ E be fixed. Then the mapping t 7→ (a ∗ R2)(t)x,
t ∈ [0, τ) is continuous. Due to the local equicontinuity of the family {R2(t) :
t ∈ [0, τ)}, the mappings t 7→ (R2 ∗ (a ∗ R1))(t)x, t ∈ [0, τ) and t 7→ ((a ∗
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R2) ∗ R1)(t)x, t ∈ [0, τ) are also continuous and coincide. Therefore, for
every 0 ≤ t < τ,

R(t, x) := −[(a ∗R2) ∗ (R1(·)− k(·)C1)](t)x

+[(k(0)− k(·)) ∗ C2(a ∗R1)](t)x+ (R2 ∗ (a ∗R1))(t)x

= [(k(0)− k(·)) ∗ C2(a ∗R1)](t)x− [(a ∗R2) ∗ k(·)C1](t)x.

On the other hand, a trivial computation involving the equalities (4)-(5)
shows that

R(t, x) = [k(0) ∗ C2(a ∗R1)](t)x, 0 ≤ t < τ.

The above implies (a ∗ k ∗ C2R1)(t)x = (a ∗ k ∗ R2C1)(t)x, t ∈ [0, τ), which
completes the proof by (P1).

Of importance is the following abstract Volterra equation:

u(t) = f(t) +

t∫
0

a(t− s)Au(s) ds, t ∈ [0, τ), (12)

where f ∈ C([0, τ) : E). A function u ∈ C([0, τ) : E) is called amild solution,
resp. a strong solution, of (12) iff (a ∗ u)(t) ∈ D(A), t ∈ [0, τ) and A(a ∗
u)(t) = u(t)−f(t), t ∈ [0, τ), resp. u(t) ∈ D(A), t ∈ [0, τ), the mapping t 7→
Au(t), t ∈ [0, τ) is continuous and (12) holds. Suppose (R1(t), R2(t))t∈[0,τ)
is a mild (a, k)-regularized (C1, C2)-existence and uniqueness family with a
subgenerator A. Then it is clear that the function t 7→ R1(t)x, t ∈ [0, τ),
resp. t 7→ R2(t)x, t ∈ [0, τ), is a mild solution of (12) with f(t) = k(t)C1x,
t ∈ [0, τ) (x ∈ E), resp. a strong solution of (12) with f(t) = k(t)C2x, t ∈
[0, τ) (x ∈ D(A)), provided additionally in the last case that R2(t)x ∈ D(A),
t ∈ [0, τ) and AR2(t)x = R2(t)Ax, t ∈ [0, τ). Every strong solution of (12) is
a mild solution of (12), while the converse statement is not true, in general.
It would be a rather long to consider various types of the (exponential) C-
wellposedness of the problem (12); for further information concerning the
cases a(t) ≡ 1 and a(t) ≡ t, the interested reader may consult [5] and [20].

Suppose now that (R2(t))t∈[0,τ) is a locally equicontinuous C2-uniqueness
family with a subgenerator A. By the proof of [14, Theorem 2.7], we easily
infer that every strong solution u(t) of (12) satisfies the following equality:

(R2 ∗ f)(t) = (kC2 ∗ u)(t), 0 ≤ t < τ. (13)
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Since k(t) is a kernel and C2 is injective, the above equality implies that
(12) has at most one strong solution. Now we will prove the uniqueness of
mild solutions of the problem (12). Towards this end, suppose u1(t) and
u2(t) are two such solutions. Put u(t) := u1(t) − u2(t), t ∈ [0, τ). Then
A(a ∗ u)(t) = u(t), t ∈ [0, τ) and (a ∗ A(a ∗ u))(t) = (a ∗ u)(t), t ∈ [0, τ),
which implies that the function U(t) := (a ∗ u)(t), t ∈ [0, τ) is a strong
solution of (12) with f(t) ≡ 0. Therefore, u(t) = AU(t) = A0 = 0, t ∈ [0, τ)
and we have proved the following proposition.

Proposition 2.8. Suppose (R2(t))t∈[0,τ) is a locally equicontinuous C2-
uniqueness family with a subgenerator A. Then every strong solution u(t) of
(12) satisfies (13). Furthermore, the problem (12) has at most one strong
(mild) solution.

We continue by stating the following proposition.

Prposition 2.9. (cf. also [8, Theorem 2.1.11] and [6, Theorem 2.34])
Assume τ ∈ (0,∞], L1

loc([0, τ)) ∋ a1(t) is a kernel, L1
loc([0, τ)) ∋ k(t) is a

kernel, a(t) = (a1 ∗ a1)(t), t ∈ [0, τ) and k1(t) = (k ∗ a1)(t), t ∈ [0, τ). Let
A be a closed linear operator on E, let C1, C2 ∈ L(E), and let C2 be injec-

tive. Put A ≡
( 0 I

A 0

)
and Ci ≡

( Ci 0
0 Ci

)
, i = 1, 2. Then A is a sub-

generator of an (a, k)-regularized C1-existence family (R1(t))t∈[0,τ) ((a, k)-
regularized C2-uniqueness family (R2(t))t∈[0,τ)) iff A is a subgenerator of
an (a1, k1)-regularized C1-existence family (S1(t))t∈[0,τ) ((a1, k1)-regularized
C2-uniqueness family (S2(t))t∈[0,τ)).

The main objective in the following theorem is to clarify a rescaling result
for subgenerators of (local) (1, k)-convoluted C1-existence (C2-uniqueness)
families. We omit the proof since it follows from the argumentation given
in that of [8, Theorem 2.5.1].

Theorem 2.10. Suppose z ∈ C, K(t) and F (t) satisfy (P1), Θ(t) =∫ t
0 K(s) ds, t ∈ [0, τ), there exists ω > 0 such that

K̃(λ)− K̃(λ+ z)

K̃(λ+ z)
=

∞∫
0

e−λtF (t) dt, ℜλ > ω, K̃(λ+ z) ̸= 0,

and A is a subgenerator of a (local) (1,Θ)-convoluted C1-existence family
(RK,1(t))t∈[0,τ), resp. (1,Θ)-convoluted C2-uniqueness family (RK,2(t))t∈[0,τ).
Then A−z is a subgenerator of a (local) (1,Θ)-convoluted C1-existence fam-
ily (RK,1,z(t))t∈[0,τ), resp. (1,Θ)-convoluted C2-uniqueness family
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(RK,2,z(t))t∈[0,τ), given by

RK,i,z(t) := e−tzRK,i(t)+

t∫
0

F (t−s)e−zsRK,i(s) ds, t ∈ [0, τ), i = 1, 2. (14)

Furthermore, in the case τ = ∞, (RK,i,z(t))t≥0 is (q-)exponentially equicon-
tinuous provided that F (t) is exponentially bounded and that (RK,i(t))t≥0 is
(q-)exponentially equicontinuous (i = 1, 2).

Before proceeding further, we would like to point out that the assertion
of [8, Theorem 2.5.3] (cf. also [8, Remark 2.5.4(iii)] and [7, Theorem 4.2]) can
be reformulated for (1,Θ)-convoluted C1-existence (C2-uniqueness) families.

In the remaining part of the paper, we will illustrate the obtained results
with some examples. First of all, it is worth noting that there exist examples
of exponentially bounded, analytic (gα, k)-regularized (C1, C2)-existence and
uniqueness families whose angle of analyticity can be strictly greater than
π/2 (0 < α < 1). In order to illustrate this, we will make use of the following
adaptation of [20, Example 3.1] (cf. also [4]-[5] for the first examples of such
kind). Let E := {f ∈ C(R) ; lim|x|→∞ f(x)ex

2
= 0}. Then E, endowed

with the norm ||f || := supx∈R |f(x)ex
2 |, f ∈ E, is a Banach space. Let A :=

d2/dx2 act on E with its maximal domain and let (Cif)(x) := e−x2
f(x),

x ∈ R, f ∈ E, i = 1, 2. Put, for every t ≥ 0, f ∈ E and x ∈ R :

(C1(t)f)(x) :=
1

2
(e−(x+t)2f(x+ t) + e−(x−t)2f(x− t))

and

(C2(t)f)(x) :=
1

2
e−x2

(f(x+ t) + f(x− t)).

Then (C1(t), C2(t))t≥0 is a contractive mild (C1, C2)-regularized cosine ex-
istence and uniqueness family generated by A, which implies by Theorem
2.5(ii) that, for every α ∈ (0, 2), A is the integral generator of an exponen-
tially bounded analytic (gα, 1)-regularized (C1, C2)-existence and uniqueness
family of angle min(( 2α − 1)π2 , π). Suppose now that L1

loc([0,∞)) ∋ c is com-
pletely positive and a(t) = (c ∗ c)(t), t ≥ 0. By Theorem 2.6(iii), A is the
integral generator of an exponentially bounded (a, 1)-regularized (C1, C2)-
existence and uniqueness family.

It is also worth noting that the conclusions established in [12, Example
36(iii)] and [8, Example 3.1.35(ii)] are false. In the following example, we
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shall correct some inconsistencies in the first of two above-mentioned exam-
ples, providing in such a way a new application of subordination principles
established in Theorem 2.5/Theorem 2.6.

Example 2.11. We deal with the space Lp
ϱ(Ω,C), where Ω is an open

non-empty subset of Rn, ϱ : Ω → (0,∞) is a locally integrable function, mn

is the Lebesgue measure in Rn, 1 ≤ p < ∞, and the norm of an element
f ∈ Lp

ϱ(Ω,C) is given by ||f ||p := (
∫
Ω |f(·)|pϱ(·) dmn)

1/p. Set |x| := (x21 + · ·
·+x2n)

1/2, x = (x1, · · ·, xn) ∈ Rn, ϱ(x) := exp(−|x|), x ∈ Rn, E := Lp
ϱ(Rn,C),

(T1(t)f)(x) := e−(|e
tx|2+1)f(etx), t ∈ R, x ∈ Rn, f ∈ E,

(T2(t)f)(x) := e−(|x|
2+1)f(etx), t ∈ R, x ∈ Rn, f ∈ E,

C1 = C2 := T1(0) and

Ci(t) :=
1

2
(Ti(t) + Ti(−t)), t ∈ R, i = 1, 2.

Let A be the closure of the operator f 7→
∑n

i=1 xi
∂f
∂xi

, f ∈ D(A) ≡ {g ∈
C1(Rn : E) : supp(g) is a compact subset of Rn}. Then it is straightforward
to see that the operator A2 is the integral generator of a mild (C1, C2)-
regularized cosine existence and uniqueness family (C1(t), C2(t))t∈R. Fur-
thermore, (C1(t))t≥0 is exponentially bounded and (C2(t))t≥0 is not expo-
nentially bounded.

We close the paper with the observation that many other examples
of (gα, gβ)-regularized C1-existence families (C2-uniqueness families), where
α > 0 and β ≥ 1, can be constructed by using the matricial operators (cf.
[5, Section 7] and [20]).
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