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A b s t r a c t. The irregularity of a graph G is defined as irr(G) =∑
|d(x) − d(y)| where d(x) is the degree of vertex x and the summation

embraces all pairs of adjacent vertices of G. We characterize the trees with
the five smallest and five largest irr-values.
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1. Introduction

In this paper we are concerned with graphs without directed, multiple,
or weighted edges, and without loops. Let G be such a graph with vertex
set V (G) and edge set E(G). An edge of G, connecting the vertices u and
v will be denoted by uv. The degree of a vertex v of the graph G will be
denoted by d(v|G) or, when misunderstanding is avoided, by d(v).

As well known, a graph whose all vertices have mutually equal degrees is
said to be regular. Then, a graph in which not all vertices have equal degrees
can be viewed as somehow deviating from regularity. In the mathematical
literature several measures of such irregularity were proposed; for details
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and additional references see [2, 3, 5, 7, 8]. One of such measures was put
forward by Albertson [1], who considered the quantity

irr(G) =
∑

uv∈E(G)

|d(u)− d(v)| .

This quantity is sometimes referred to as the Albertson index [5, 6] and in a
recent work [4] it was called the third Zagreb index . In what follows, we shall
say that irr(G) is the irregularity of the graph G. Evidently, irr(G) = 0 if
and only if every component of G is a regular graph.

For uv ∈ E(G), define irr(uv) = |d(u)− d(v)| and call it the irregularity
of the edge uv. Then, of course,

irr(G) =
∑

e∈E(G)

irr(e) .

In this note we characterize the most and least irregular trees (with
regard to the measure irr).

Let n ≥ 3. As usual, by Pn is denoted the n-vertex path (the tree in
which the maximal vertex degree is two) and by Sn the n-vertex star (the
tree possessing a vertex of degree n− 1).

Denote by T the set of all trees of order greater than two.

Let P = {P∋,P△,P▽, . . .}. It is an elementary task to verify that if
T ∈ P, then irr(T ) = 2.

Lemma 1.1. In the set T , the elements of P, and only these, have the
smallest irregularity, equal to 2.

P r o o f. Albertson [1] proved that the irregularity of any graph is an even
number. Therefore, for any tree T of order greater than two, irr(T ) ≥ 2.
Consequently, the paths Pn , n ≥ 3 , are the least irregular trees.

It remains to show that these are the only trees with minimal irregularity,
namely that if T ∈ T \ P, then irr(T ) > 2.

Indeed, if T ∈ T \ P, then T possesses at least one vertex of degree
greater than two. Then T possesses at least three pendent edges. Let uv be
a pendent edge, such that d(u) = 1 and d(v) ≥ 2. Then irr(uv) ≥ 1 and
therefore irr(T ) ≥ 3. �

For an edge e of an n-vertex graph, the maximal value that irr(e) can
assume is n − 2, which happens if e is connecting a pendent vertex with a
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vertex of degree n− 1. If irr(e) = n− 2 would hold for all edges of a graph,
then this graph would have maximal irregularity.

In the case of trees, this condition is obeyed by the star (and only by it).
Thus we arrive at the following simple result:

Lemma 1.2. Among trees of order n, the star Sn is the unique tree with
greatest irregularity, satisfying:

irr(Sn) = (n− 1)(n− 2) . (1)

In what follows we characterize the trees with second–, third–, fourth–,
and fifth-extremal (minimal and maximal) irr-values. For this we need some
preparations.

2. Auxiliary results

Lemma 2.1. Let G be a graph possessing a pendent edge uv, such that
d(u|G) = 1 and d(v|G) ≥ 2. Construct the graph G∗ by inserting a new
vertex x on the edge uv. Then irr(G∗) = irr(G).

P r o o f. The graph G∗ has edges ux and xv , and d(u|G∗) = 1 ,
d(x|G∗) = 2 , d(v|G∗) = d(v|G) . Then

irr(G∗)− irr(G) = |d(x|G∗)− d(u|G∗)|+ |d(v|G∗)

−d(x|G∗)| − |d(v|G)− d(u|G)|

= [2− 1] + [d(v)− 2]− [d(v)− 1] = 0 . �

In a fully analogous manner we can demonstrate the validity of the fol-
lowing result:

Lemma 2.2. Let G be a graph possessing a vertex u of degree 2 adjacent
to the vertices v and v′. Construct the graph G∗∗ by inserting a new vertex
x on the edge uv. Then irr(G∗∗) = irr(G).

Let G be any graph. Denote by Γ(G) the set consisting of the graph G
and of the graphs obtained from G by repeated application of the transfor-
mations G → G∗ and G → G∗∗, specified in Lemmas 2.1 and 2.2. Then the
results of the Lemmas 2.1 and 2.2 can be summarized as follows:
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Theorem 2.3. For any graph G, the irregularities of all elements of
Γ(G) are mutually equal.

At this point it is worth noting that P ≡ −(P∋).

Theorem 2.4. For any positive even integer k, except k = 4, there exist
infinitely many trees whose irregularity is equal to k.

P r o o f. The case k = 2 is settled by Lemma 1.1.
Let k ≥ 6. Choose a tree T (k) possessing n3 = k/2 − 2 vertices of

degree 3 and no vertices of degree greater than 3. This can be done for any
n3 = 1, 2, 3, . . ., i.e., for any k = 6, 8, 10, . . ..

The tree T (k) has k/2 pendent edges, each with irregularity 2. All other
edges of T (k) connect two vertices of degree 3 and thus their irregularity is
zero. Consequently, irr(T (k)) = k. Then by Theorem 2.3, all the infinitely
many elements of Γ(T (k)) have irregularity k.

It remains to show that there are no trees with irregularity 4. By Lemma
1.1, any tree T with irregularity greater than 2 must possess a vertex of
degree greater than 2. Let v be such a vertex, d(v) ≥ 3. Then T possesses
at least d(v) pendent vertices. Let u be a pendent vertex and let the vertices
u, x1, . . . , xp, v form the (unique) path connecting u and v. The edges in this
path contribute to irr(T ) by:

|d(x1)− d(u)|+ |d(x2)− d(x1)|+ · · ·+ |d(v)− d(xp)|
≥ [d(x1)− d(u)] + [d(x2)− d(x1)] + · · ·+ [d(v)− d(xp)]

= d(v)− d(u) ≥ 3− 1 = 2 .

Consequently, irr(T ) ≥ 2 d(v) ≥ 6. �

3. Trees with small irregularities

Trees with the smallest irregularity are characterized in Lemma 1.1. We
now characterize the next four classes of trees with smallest irr.

From Theorem 2.4 we know that for any small value of k, there will be
infinitely many trees whose irregularity is equal to k. Therefore we seek for
the smallest representatives of such trees. In view of Lemmas 2.1 and 2.2,
such representatives must have the following properties:
(a) no pendent vertex is attached to a vertex of degree 2, and
(b) no two vertices of degree 2 are adjacent.
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Theorem 3.1. Let T1 , T2 , T3 , T4 , T5 , T7 , T8 , and T17 be the trees
depicted in Fig. 1. Let T be a tree. Then
(a) irr(T ) = 6 if and only if T ∈ Γ(T1);
(b) irr(T ) = 8 if and only if T ∈ Γ(T2);
(c) irr(T ) = 10 if and only if T ∈ Γ(T3) ∪ Γ(T4);
(d) irr(T ) = 12 if and only if T ∈ Γ(T5) ∪ Γ(T7) ∪ Γ(T8) ∪ Γ(T17).
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Fig. 1. Trees used in the statement and proof of Theorem 3.1.
with their irr-values indicated

P r o o f. Denote by ni the number of vertices of degree i. In Fig. 1 are
depicted all trees satisfying conditions (a) and (b), having either n3 ≤ 4 and
ni = 0 for all i ≥ 4 or n3 ≤ 1 , n4 = 1 and ni = 0 for all i ≥ 5. From the
calculated irr-values (indicated in Fig. 1) and from Theorem 2.3, the “if”
part of Theorem 3.1 is evident.
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The “only if” claims in Theorem 3.1 follow from the fact that if n3 ≥ 5
and/or n4 ≥ 2 and/or ni > 0 for any i ≥ 5, then irr(T ) ≥ 14. Therefore, all
trees satisfying conditions (a) and (b) and having 6 ≤ irr ≤ 12 are among
T1–T19 in Fig. 1. �

Remark. Continuing the same line of reasoning, it would be possible
to characterize further trees with small irregularity.

4. Trees with large irregularities

In view of Theorem 2.4, trees with maximal irregularity can be deter-
mined only for fixed values of the number of vertices n. From Lemma 1.2 we
already know that this is the star Sn . This result was obtained by requiring
that the tree has a vertex of as large as possible degree, and as many as
possible pendent vertices.

Denote by ∆ = ∆(T ) the maximal degree of a vertex of the tree T . As
before, let n1 = n1(T ) be the number of pendent vertices of T . Recall that
∆(Sn) = n− 1 and n1(Sn) = n− 1 .

In order to determine the second–maximal, third–maximal, etc. trees of
order n we need to examine cases different from Sn , where both ∆ and n1

are as large as possible. The trees of order n with ∆ = n − 2, ∆ = n − 3,
and ∆ = n− 4 are depicted in Fig. 2.
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Fig. 2. Trees used in the statement and proof of Theorem 4.1.
These are all trees of order n in which the maximal vertex degree ∆

is equal to n− 2, n− 3, and n− 4
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Theorem 4.1. Let R1 , R2 , R3 , R4 , and R5 be the trees depicted in
Fig. 2.
(a) R1 is the unique tree of order n , n ≥ 5, with second–greatest irregularity.
(b) R2 is the unique tree of order n , n ≥ 6, with third–greatest irregularity.
(c) R3 and R4 are the two trees of order n , n ≥ 6, with fourth–greatest
irregularity. (d) R5 is the unique tree of order n , n ≥ 8, with fifth–greatest
irregularity.

P r o o f. Bearing in mind Lemma 2.1, we recognize that irr(R1) =
irr(Sn−1), irr(R3) = irr(R4) = irr(Sn−2), irr(R9) = irr(R10) = irr(R11) =
irr(Sn−3), and irr(R7) = irr(R8). Expressions for the irregularity of the
trees from Fig. 2 are now readily obtained, either by using Eq. (1) or by
direct calculation:

irr(R1) = n2 − 5n+ 6 (2)

irr(R2) = n2 − 7n+ 14 (3)

irr(R3) = irr(R4) = n2 − 7n+ 12 (4)

irr(R5) = n2 − 9n+ 27 (5)

irr(R6) = n2 − 9n+ 24 (6)

irr(R7) = irr(R8) = n2 − 9n+ 22 (7)

irr(R9) = irr(R10) = irr(R11) = n2 − 9n+ 20 . (8)

In the general case, the expression for the irregularity of a tree of order
n and ∆ = n − k is a quadratic polynomial in the variable n of the form
n2 − (2k+1)n+C where C is some constant. Therefore, the trees with the
first few greatest irr-vales are among those depicted in Fig. 2. Theorem 3.1
is now straightforwardly deduced from Eqs. (2)–(8).

The unique tree with ∆ = n− 2 automatically becomes the unique tree
with second maximal irr-value. Among trees with ∆ = n − 3, R2 has
the greatest number of pendent vertices, which puts it on the third-maximal
position. The remaining two trees with ∆ = n−3 have then fourth–maximal
irregularities. Finally, among the trees with ∆ = n− 4, R5 has the greatest
number of pendent vertices. �

Remark. Continuing the same line of reasoning, it would be possible
to characterize further trees with large irregularity.
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