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1. Introduction

Point-like matter.
The Dirac equation turned out to be one of the most successful equations

of the XX century physics - it describes the basic matter constituents (both
particles and fields), and very significantly, it paved a way to develop the
concept of gauge theories thus playing an important role in description of
the basic interactions (forces) as well. It is a Poincaré covariant linear field
equation which describes relativistic spin 1

2 matter objects, that a coupled to
fundamental interactions in Nature through the gauge (minimal coupling)
prescription.

The first natural step towards a generalization of the Poincaré invariant
theories to those defined in a generic curved spacetime is to study spino-
rial and tensorial matter representations and generalizations of the Dirac
equation in the Affine invariance framework. Subsequently, a genuine gen-
eralization that will describe world spinors, spinorial matter in a generic
curved spacetime (Ln, g) characterized by arbitrary torsion and general-
linear curvature, is in order. Note that descriptions of the spinorial matter
in theories based on higher-dimensional orthogonal-type groups that gener-
alize the Lorentz group in 4-dimensions (non-affine generalizations of GR)
are mathematically possible for special spacetime configurations only, and
thus fail to extend to the generic curved spacetime.

The finite-dimensional world tensor fields of Einstein’s General Relativity
theory in Rn (n-dimensional spacetime) are characterized by non-unitary
irreducible representations of the general linear subgroup GL(n,R) of the
General Coordinate Transformations (GCT) group, i.e. the Diffeomorphism
group Diff(n,R). In the flat-space limit they split up into the SO(1, n−1)
(SL(2, C)/Z2 for n = 4) group irreducible pieces. The corresponding particle
states are defined in the tangent flat-space only. They are characterized
by the unitary irreducible representations of the (inhomogeneous) Poincaré
group P (n) = Tn ∧ SO(1, n − 1), and they are defined by the labels of a
relevant ”little” group unitary irreducible representations.

In the first step towards generalization to world spinors, the double
covering group, SO(1, n − 1) = Spin(n), of the SO(1, n − 1) one, that
characterizes a Dirac-type fields in D = n dimensions, is enlarged to the
SL(n,R) ⊂ GL(n,R) group,

SO(1, n− 1) 7→ SL(n,R) ⊂ GL(n,R)

while the special Affine group SA(n,R) = Tn ∧ SL(n,R) is to replace the
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Poincaré group itself.

P (n) 7→ SA(n,R) = Tn ∧ SL(n,R)

Now, affine ”particles” are characterized by the unitary irreducible repre-
sentations of the SA(n,R) group, that are actually nonlinear unitary repre-
sentations over an appropriate ”little” group. E.g. for m ̸= 0:

Tn−1 ⊗ SL(n− 1,R) ⊃ Tn−1 ⊗ SO(n)

Affine fields are, in its turn, characterized by infinite-dimensional SL(n,R)
representations. A mutual particle–field correspondence is achieved by re-
quiring (i) that fields have appropriate mass (Klein-Gordon-like equation
condition, for m ̸= 0), and (ii) that the subgroup of the field-defining ho-
mogeneous group, which is isomorphic to the homogeneous part of the ”lit-
tle” group, is represented unitarily. Furthermore, one has to project away
all representations except the one that characterizes the particle states. A
physically correct picture, in the affine case, is obtained by making use of
the SA(n,R) group unitary (irreducible) representations for ”affine” parti-
cles. The affine-particle states are characterized by the unitary (irreducible)
representations of the Tn−1⊗SL(n− 1,R) ”little” group. The intrinsic part
of these representations is necessarily infinite-dimensional (c.f. [1, 8] for the
n = 3 case) due to non-compactness of the SL(n,R) group. The correspond-
ing affine fields should be described by the non-unitary infinite-dimensional
SL(n,R) representations, that are unitary when restricted to the homoge-
neous ”little” subgroup SL(n− 1,R). Therefore, as already stated, the first
step towards world spinor fields is a construction of infinite-dimensional non-
unitary SL(n,R) representations, that are unitary when restricted to the
SL(n− 1,R) group. These fields reduce to an infinite sum of (non-unitary)
finite-dimensional SO(1, n− 1) fields.

Extended objects matter.

The subject of extended objects was initiated in the particle/field the-
ory framework by the Dirac action for a closed relativistic membrane as the
(2 + 1)-dimensional world-volume swept out in spacetime. It evolved and
become one of the central topics following the Nambu-Goto action for a
closed relativistic string, as the (1 + 1)-dimensional world-sheet area swept
out in spacetime. An important step was the Polyakov action for a closed
relativistic string, with auxiliary metric, that enabled consequent formula-
tions of the Green-Schwarz superstring, and the bosonic, and super p-branes



100 Dj. Šijački

with manifest spacetime supersymmetry. In this work, we follow the orig-
inal path of the Nambu-Goto-like formulation of the bosonic p-brane and
address the question of spinors of the brane world-volume symmetries. For
p = 1, these spinors are well known, and represent an important ingredient
of the spinning string formulation and the Neveu-Schwarz-Ramond infinite
algebras.

It is interesting to point out that there is a direct analogy between the
spinors of the p-brane action symmetry, that are considered in this work,
and the so world spinors that describe the spinorial matter fields of the
Metric-Affine [2] and Gauge-Affine theories of gravity formulated in a generic
(non)Riemannian spacetime of arbitrary torsion and curvature. This is due
to common geometric and group-theoretic structures of p-brane theories and
affine generalizations of Einstein’s gravity theory. The global symmetry of
these matter fields in 4 dimensions is the affine SA(4,R) group, that gen-
eralizes the P (4) Poincaré group of the conventional gauge approach to the
theory of gravity. When gauging the affine group, one has a complete paral-
lel of both anholonomic (local) and holonomic (world) description of bosonic
and fermionic matter fields. In contradistinction to the gauge Poincaré the-
ory, where spinors are scalars of the General Coordinate Transformations
group, in the affine case there are both local (tangent) and world (curved)
spinors. Analogously, the spinors of the spinning string theory are just the
faithful world-sheet spinors.

It was shown by Ogievetsky that the infinite algebra of the General Co-
ordinate Transformation group in 4 dimensions arises upon a Lie algebra
closure of the finite algebras of the SL(3,R) group and the 4-dimensional
Conformal group. This result paved a way for various approaches to grav-
ity theory, especially those that utilized the nonlinear representations tech-
niques. In particular, it was proven that Einstein’s theory of gravity is
obtained by simultaneous nonlinear realizations of the affine and Conformal
symmetries. The affine and its linear subgroup are nonlinearly realized w.r.t.
the Poincaré and Lorentz subgroups, respectively. Thus, the General Coor-
dinate Transformations group is realized over its Poincaré and/or Lorentz
subgroup is a nonlinear manner, resulting in a loss of the world (curved
space) spinors that demand linear representations over its affine and/or
linear subgroup. The spinorial representations of the infinite algebras of
the General Coordinate Transformations in three and four dimensions were
studied in [3].

Consider a bosonic p-brane embedded in a D-dimensional flat Minkowski
spacetime M1,D−1. The classical Dirac-Nambu-Goto-like action for p-brane
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is given by the volume of the world volume swept out by the extended object
in the course of its evolution from some initial to some final configuration:

S = −1

κ

∫
dp+1ξ

√
−det∂iXm∂jXnηmn ,

where i = 0, 1, . . . , p labels the coordinates ξi = (τ, σ1, σ2, . . .) of the brane
world volume with metric γij(ξ), and γ = det(γij); m = 0, 1, . . . , D−1 labels
the target space coordinates Xm(ξi) with metric ηmn. The world volume
metric γij = ∂iX

m∂jX
nηmn is induced from the spacetime metric ηmn.

The Poincaré P (1, D− 1) group, i.e. its homogeneous Lorentz subgroup
SO(1, D − 1), are the physically relevant spacetime symmetries, while the
(p + 1)-dimensional brane world volume is preserved by the homogeneous
volume preserving subgroup SDiff0(p + 1,R) of the General Coordinate
Transformation group Diff(p+ 1,R).

The sdiff0(p+1,R) algebra operators, that generate the SDiff0(p+1,R)
group, are given as follows [12],

sdiff0(p+ 1,R) =
{
L
i1i2...in−1

(n)k = ξi1ξi2 . . . ξin−1
∂

∂ξk
| n = 2, 3, . . .∞

}
.

Preservation of the world volume requires the L(2) operator to be trace-

less as achieved by subtracting the dilation operator, i.e. Li
(2)k = ξi ∂

∂ξk
−

1
p+1δ

i
kξ

j ∂
∂ξj

. The L(n), n = 2, 3, . . .∞, operators are irreducible tensor op-

erators of the SL(p + 1,R) subgroup, and therfore naturally labeled by
the SL(p + 1,R) irreducible representations given by the Young tableaux
[λ1, λ2, . . . , λp] with λ1 = 2, 3, . . .∞, and λ2 = λ3 = . . . = λp = 1.

The SDiff0(p+ 1,R) commutation relations read:

[L
i1i2...im−1

(m)k , L
j1j2...jn−1

(n)l ]

= δj1k L
i1i2...im−1j2j3...jn−1

(m+n−2)l + δj2k L
i1i2...im−1j1j3...jn−1

(m+n−2)l

+ . . .+ δ
jn−1

k L
i1i2...im−1j1j2...jn−2

(m+n−2)l

−δi1l L
i2i3...im−1j1j2...jn−1

(m+n−2)k − δi2l L
i1i3...im−1j1j2...jn−1

(m+n−2)k

− . . .− δ
im−1

l L
i1i2...im−2j1j2...jn−1m
(m+n−2)k .

The above symmetry considerations are purely classical. In the quan-
tum case, the corresponding classical symmetry is modified, up to eventual
anomalies, in two ways: (i) the classical group is replaced by its universal
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covering group, and (ii) the group is minimally extended by the U(1) group
of phase factors. The corresponding Lie algebra remains unchanged in the
first case, while in the second one, it can have additional central charges.

The feasible ways how to extend the Dirac-Nambu-Goto bosonic p-brane
action by the fermionic degrees of freedom are determined by the univer-
sal covering group SDiff0(p + 1,R) of the SDiff0(p + 1,R) group and
the form of its spinorial representations. In the following we address at
first the topological issues that define the type of the universal covering of
the SDiff0(p + 1,R) group, and subsequently, we face the problem of the
SDiff0(p+ 1,R) group spinorial representations construction.

2. GL(n,R) and Diff(n,R) double-coverings

Let us state first some relevant mathematical results.
Theorem 1: Let g0 = k0+a0+n0 be an Iwasawa decomposition of a semisim-
ple Lie algebra g0 over R. Let G be any connected Lie group with Lie algebra
g0, and let K,A,N be the analytic subgroups of G with Lie algebras k0,a0
and n0 respectively. The mapping (k, a, n) → kan (k ∈ K, a ∈ A,n ∈ N)
is an analytic diffeomorphism of the product manifold K × A ×N onto G,
and the groups A and N are simply connected.

Any semisimple Lie group can be decomposed into the product of the
maximal compact subgroupK, an Abelian group A and a nilpotent groupN .
As a result of Theorem 1, only K is not guaranteed to be simply-connected.
There exists a universal covering group K of K, and thus also a universal
covering of G: G ≃ K ×A×N.

For the group of diffeomorphisms, let Diff(n,R) be the group of all
homeomorphisms f or Rn such that f and f−1 are of class C1. Stewart
proved the decomposition Diff(n,R) = GL(n,R)×H×Rn, where the sub-
group H is contractible to a point. Thus, as O(n) is the compact subgroup
of GL(n,R), one finds

Theorem 2: O(n) is a deformation retract of Diff(n,R).
As a result, there exists a universal covering of the Diffeomorphism group

Diff(n,R) ≃ GL(n,R)×H ×Rn.
Summing up, we note that SL(n,R) as well as GL(n,R) and Diff(n,R)

all have double coverings, defined by SO(n) and O(n) respectively, the
double-coverings of the SO(n) and O(n) maximal compact subgroups.

Let us consider now the question of the universal, i.e. double, covering
of the SL(n,R) and SDiff0(n,R) groups themselves. The universal cov-
ering group G of a given group G is a group with the same Lie algebra
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and with a simply-connected group manifold. A finite dimensional covering
SL(n,R),i.e. SDiff0(n,R), exists provided one can embed SL(n,R) into
a group of finite complex matrices that contain Spin(n) as subgroup. A
scan of the semi-simple classical algebras, as given by the Cartan classifica-
tion, points at first to the SL(n,C) groups as a natural candidates for the
SL(n,R) groups coverings. However, there is no match whatsoever of the
defining dimensionalities of the SL(n,C) and Spin(n) groups for n ≥ 3,

dim(SL(n,C)) = n < 2[
n−1
2 ] = dim(Spin(n)),

except for n = 8. In the n = 8 case, one finds that the orthogonal subgroup
of the SL(8,R) and SL(8, C) groups is SO(8) and not Spin(8). For a de-
tailed account of the D = 4 case cf. [6]. Thus, we conclude that there are no
covering groups of the SL(n,R), i.e SDiff0(n,R) groups for any n ≥ 3 that
are given by finite matrices (defined in finite-dimensional complex spaces).
An explicit construction of all spinorial, unitary and nonunitary multiplicity-
free and unitary non-multiplicity-free [1], SL(3,R) representations shows
that they are indeed all defined in infinite-dimensional spaces.

3. The deunitarizing automorphism

The unitarity properties, that ensure correct physical characteristics of
the affine fields, can be achieved by combining the unitary (irreducible)
representations and the so called ”deunitarizing” automorphism [6] of the
SL(n,R) group.

The commutation relations of the SL(n,R) generators Qab, a, b =
0, 1, . . . , n− 1 are

[Qab, Qcd] = i(ηbcQad − ηadQcb),

taking ηab = diag(+1,−1, . . . ,−1). The important subalgebras are as fol-
lows.

(i) so(1, n − 1): The Mab = Q[ab] operators generate the Lorentz-like

subgroup SO(1, n− 1) with Jij = Mij (angular momentum) and Ki = M0i

(the boosts) i, j = 1, 2, . . . , n− 1.
(ii) so(n): The Jij and Ni = Q{0i} operators generate the maximal

compact subgroup SO(n).
(iii) sl(n− 1): The Jij and Tij = Q{ij} operators generate the subgroup

SL(n− 1,R) - the ”little” group of the massive particle states.
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The SL(n,R) commutation relations are invariant under the “deunita-
rizing” automorphism,

J ′
ij = Jij , K ′

i = iNi , N ′
i = iKi ,

T ′
ij = Tij , T ′

00 = T00 (= Q00) ,

so that (Jij , iKi) generate the new compact SO(n)′ and (Jij , iNi) generate
SO(1, n− 1)′.

For the massive (spinorial) particle states we use the basis vectors of the
unitary irreducible representations of SL(n,R)′, so that the compact sub-
group finite multiplets correspond to SO(n)′: (Jij , iKi) while SO(1, n −
1)′: (Jij , iNi) is represented by unitary infinite-dimensional representa-
tions. We now perform the inverse transformation and return to the un-
primed SL(n,R) for our physical identification: SL(n,R) is represented
non-unitarily, the compact SO(n) is represented by non-unitary infinite rep-
resentations while the Lorentz group is represented by non-unitary finite
representations. These finite-dimensional non-unitary Lorentz group repre-
sentations are necessary in order to ensure a correct particle interpretation
(i.g. boosted proton remains proton). Note that SL(n− 1,R), the stability
subgroup of SA(n,R), is represented unitarily.

4. World spinor field transformations

The world spinor fields transform w.r.t. Diff(n,R) as follows [7]
(D(a, f̄)ΨM )(x) = (DDiff0(n,R)

)NM (f̄)ΨN (f−1(x− a)),

(a, f̄) ∈ Tn ∧Diff0(n,R),
where Diff0(n,R) is the homogeneous part of Diff(n,R), and DDiff0(n,R)

⊃
∑⊕DSL(n,R) is the corresponding representation in the space of world

spinor field components. As a matter of fact, we consider here those rep-
resentations of Diff0(n,R) that are nonlinearly realized over the maximal
linear subgroup SL(n,R) (here given in terms of infinite matrices). Due to
these more complex field transformation properties, a question of generaliz-
ing the Dirac equation to the Affine case is rather subtle [9].

The affine ”particle” states transform according to the following repre-
sentation

D(a, s̄) → ei(sp)·aDSL(n,R)(L
−1(sp)s̄L(p)), (a, s̄) ∈ Tn ∧ SL(n,R),



Spinorial matter and general relativity theory 105

where L ∈ SL(n,R)/SL(n− 1,R), and p is the n-momentum. The unitarity
properties of various representations in these expressions are as described in
the previous section.

Provided the relevant SL(n,R) representations are known, one can first
define the corresponding general/special Affine spinor fields in the tangent
to Rn, and than make use of the infinite-component pseudo-frame fields
EA

M (x), ”alephzeroads”, that generalize the tetrad fields of R4. Let us define
a pseudo-frame EA

M (x) [5] s.t.

ΨM (x) = EA
M (x)ΨA(x),

where ΨM (x) and ΨA(x) are the world (holonomic), and general/special
Affine spinor fields respectively. The EA

M (x) (and their inverses EM
A (x)) are

thus infinite matrices related to the quotient Diff0(n,R)/SL(n,R). Their
infinitesimal transformations are

δEA
M (x) = iϵab (x){Qb

a}ABEB
M (x) + ∂µξ

νeaνe
µ
b {Q

a
b}ABEB

M (x),

where ϵab and ξµ are group parameters of SL(n,R) and
Diff(n,R)/Diff0(n,R) respectively, while eaν are the standard n-bine fields.

The infinitesimal transformations of the world spinor fields themselves
are given as follows:

δΨM (x) = i{ϵab (x)EM
A (x)(Qb

a)
A
BE

B
N (x)+ξµ[δMN ∂µ+EM

B (x)∂µE
B
N (x)]}ΨN (x).

The (Qb
a)

M
N = EM

A (x)(Qb
a)

A
BE

B
N (x) is the holonomic form of the SL(n,R)

generators given in terms of the corresponding anholonomic ones in the
space of spinor fields ΨM (x) and ΨA(x) respectively.

The above outlined construction allows one to define a fully Diff(n,R)
covariant Dirac-like wave equation for the corresponding world spinor fields
provided a Dirac-like wave equation for the SL(n,R) group is known [10].
In other words, one can lift an SL(n,R) covariant equation of the form

(ieµa(X
a)BA∂µ −M)ΨB(x) = 0,

to a Diff(n,R) covariant equation

(ieµaE
N
B (Xa)BAE

A
M∂µ −M)ΨN (x) = 0,

provided a spinorial SL(n,R) representation for the Ψ field is given, with
the corresponding representation Hilbert space invariant w.r.t. Xa action.
Thus, the crucial step towards a Dirac-like world spinor equation is a con-
struction of the corresponding SL(n,R) wave equation.
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5. SL(n,R) vector operator X

For the construction of a Dirac-type equation, which is to be invariant
under (special) affine transformations, there are two possible approaches to
derive the matrix elements of the generalized Dirac matrices Xa.

One can consider the defining commutation relations of a SL(n,R) vector
operator Xa,

[Mab, Xc] = iηbcXa − iηacXb

[Tab, Xc] = iηbcXa + iηacXb,

and obtain the matrix elements of the generalized Dirac matrices Xa by
solving these relations for Xa in the Hilbert space of some suitable repre-
sentation of SL(n,R).

Alternatively, one can embed [11] SL(n,R) into SL(n + 1,R). Let the
generators of SL(n + 1,R) be QA

B, A,B = 0, ..., n. Now, there are two
natural SL(5,R) vectors Xa, and Ya defined by

Xa = Qan, Ya = Qna, a = 0, 1, . . . n.

The operator Xa (Ya) obtained in this way fulfills the required SL(n,R)
vector commutation relations by construction. It is interesting to point out
that the operator Ga = 1

2(Xa − Ya) satisfies

[Ga, Gb] = −iMab,

thereby generalizing a property of Dirac’s γ-matrices. Since Xa, Mab and
Tab form a closed algebra, the action of Xa on the SL(n,R) states does not
move out of the SL(n+ 1,R) representation Hilbert space.

In order to illustrate the general structure of the operator Xa action,
let us consider the following embedding of three finite-dimensional tensorial
SL(n,R) irreducible representations into the corresponding SL(n + 1,R)
representation ,

SL(n+ 1,R) ⊃ SL(n,R)
(n+1)(n+2)/2︸ ︷︷ ︸

φAB

⊃
n(n+1)/2︸ ︷︷ ︸

φab

⊕
n

×︸︷︷︸
φa

⊕
1

××︸︷︷︸
φ

,

where ”box” is the Young tableau for an irreducible vector representation
of SL(m,R), m = n, n + 1. The effect of the action of the SL(n,R) vector
Xa on the fields φ, φa and φab is as follows,

Xa

⊗
φ

×× 7→
φa

,
Xa

⊗
φa

× 7→
φab

,
Xa

⊗
φab

7→ 0 .



Spinorial matter and general relativity theory 107

Other possible Young tableaux do not appear due to invariance of the
representation Hilbert space. Gathering these fields in a vector φM =
(φ,φa, φab)

T, we can read off the structure of Xa, which in the case n = 4
reads:

Xa =



0

x
x
x
x

04

xxxx
xxxx
xxxx
xxxx
xxxx
xxxx
xxxx
xxxx
xxxx
xxxx

010


.

It is a significant result that Xa has zero matrices on the block-diagonal
which implies that the mass operator κ of an affine invariant equation must
vanish.

This can be proven for a general finite representation of SL(4,R). Let
us consider the action of a vector operator on an arbitrary irreducible repre-
sentation D(g) of SL(4,R) labeled by [λ1, λ2, . . . λn−1], λi being the number
of boxes in the i-th raw,

[λ1, λ2, . . . λn−1]⊗ [1, 0, . . . 0]

= [λ1 + 1, λ2, . . . λn−1]⊕ [λ1, λ2 + 1, . . . λn−1] ⊕
[λ1, λ2, . . . λn−1 + 1]⊕ [λ1 − 1, λ2 − 1, . . . λn−1 − 1] .

None of the resulting representations coincides neither with the representa-
tion D(g) itself nor with its contragradient representation Dc(g) = DT(g−1)
given by

[λ1, λ2, λ3]
c = [λ1, λ1 − λn−1, . . . λ1 − λ2] .

For a general (reducible) representation this implies, by a similar argumen-
tation, that the vector operator Xa has null matrices on the block-diagonal
positions. Let the representation space be spanned by Φ = (φ1, φ2, ...)

T

with φi irreducible. Now we consider the Dirac-type equation in the rest
frame, i.e. for pµ = (E, 0, . . . 0), restricted to the subspaces spanned by φi

(i = 1, 2, . . .),

E < φi, X
0φj > = < φi,Mφi > = miδij ,
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where we assumed the mass operator M to be diagonal. Due to the above
properties of the Xa operator (vanishing block diagonal parts), it follows
that the mass eigenvalues mi vanish and the entire mass operator M equals
zero since < φi, X

0φi >= 0. Therefore, for an affine invariant Dirac-type
wave equation the mass generation can only be dynamical, i.e. a result of
an interaction. This agrees with the fact that the Casimir operator of the
special affine group SA(4,R) vanishes leaving the masses unconstrained. It
is natural to expect that this result holds also for infinite representations of
the SL(n,R) symmetry group.

6. Lie group decontraction and SL(n,R) (unitary) irreducible
representations

The key issue of the affine and/or world matter description, as well as
of the corresponding physical applications, is a detailed knowledge of the
SL(n,R) group (unitary) irreducible spinorial and tensorial representations.
We present briefly a new approach to this problem based on an inverse
procedure to the Lie algebra/group contraction.

The “decontraction” or Gell-Mann formula, advocated by Hermann, is
an expression designed to play a role of an ”inverse” to the well known Lie
algebra/group contraction notion introduced by Inönü and Wigner. Let A
be a symmetric Lie algebra A = M+ T with a subalgebra M such that:

[M,M] ⊂ M, [M, T ] ⊂ T , [T , T ] ⊂ M.

Further, let A′ be its Inönü-Wigner contraction algebra w.r.t its subalgebra
M, i.e. A′ = M+ U , where

[M,M] ⊂ M, [M,U ] ⊂ U , [U ,U ] = {0}.

The Gell-Mann formula states that the elements T ∈ T can be obtained
in terms of the contracted algebra elements M ∈ M and U ∈ U by the
following rather simple expression:

T = i
α√
U · U

[C2(M), U ] + σU,

Where C2(M) denotes the second order Casimir operator of the M subal-
gebra, α is a normalization constant and σ is an arbitrary parameter.

This formula is valid on the algebraic level in the case ofA = so(p, q) con-
tracted w.r.t. M = so(p−1, q) and/or M = so(p, q−1) subalgebras, while it
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has a rather limited validity in the case of sl(n,R) contracted w.r.t. its max-
imal compact so(n) subalgebra. In the latter case, the original Gell-Mann
formula holds only for the algebra representation spaces that are multiplic-
ity free when reduced under the so(n) subalgebra representations. Recently,
we generalized the Gell-Mann formula to hold for an arbitrary sl(n,R) irre-
ducible representation, thus paving an efficient way of constructing explic-
itly, in a closed form, all matrix elements of the (unitary) infinite-dimensional
irreducible sl(n,R) representations [13].

In the case of the sl(4,R) algebra, the 9 noncompact algebra operators, as
given in the basis of its maximal compact subalgebra so(4) = so(3)⊕so(3) ⊃
so(2)⊕ so(2) are given by the generalized Gell-Mann formula as follows

Tµ1µ2 = σD11
00µ1µ2

+
i

2
[C2(so(4)), D

11
00µ1µ2

]

+δ1(D
11
11µ1µ2

+D11
−1−1µ1µ2

) + (D11
11µ1µ2

−D11
−1−1µ1µ2

)(K10
00 +K01

00 )

+δ2(D
11
−11µ1µ2

+D11
1−1µ1µ2

) + (D11
−11µ1µ2

−D11
1−1µ1µ2

)(K10
00 −K01

00 ),

where µ1, µ2 = 0,±1. As the rank of the sl(4,R) algebra is three, there are
precisely three representation labels σ, δ1, and δ2 (if complex, only three
real are independent).

In the case of the sl(5,R) algebra, the 14 noncompact algebra operators,
as given in the basis of its maximal compact subalgebra so(5) ⊃ so(4) =
so(3) ⊕ so(3) ⊃ so(3) are given by the generalized Gell-Mann formula as
follows :

T j1j2
µ1µ2

= σ1D
11
00j1 j2
00µ1µ2

+ [C2(so(5)), D
11
00j1 j2
00µ1µ2

]

+
√

5
4

(
σ2D

11
11j1 j2
00µ1µ2

+ [C2(so(4)K), D
11
11j1 j2
00µ1µ2

]

−D
1 1
1 1 j1 j2
1−1µ1µ2

(δ1 +K
10
10
00

−K
10
01
00

)−D
1 1
1 1j1 j2
− 11µ1µ2

(δ1 −K
10
10
00

+K
10
01
00

)

+D
11
11j1 j2
11µ1µ2

(δ2 +K
10
10
00

+K
10
01
00

) +D
1 1
1 1 j1 j2
− 1−1µ1µ2

(δ2 −K
10
10
00

−K
10
01
00

)

)
,

(1)

where C2(so(5)) and C2(so(4)) are the second order Casimir invariants of
the so(5) and so(4) algebras, respectively, D are the corresponding matrix
elements of the 14-dimensional SO(5) group representation, and the K op-
erators are the SO(5) generators “acting to the left” in the group manifold.
The four parameters σ1, σ2, δ1 and δ2 label the sl(5,R) irreducible repre-
sentations.
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Having these expressions of the noncompact algebra elements, it is rather
straightforward to evaluate the required matrix elements for an arbitrary
irreducible representation.

7. Dirac-like world spinor equation in 3D

There are three principal steps in the process of constructing a general-
ization of the Dirac equation for the SL(3,R) spinorial fields: (i) construc-
tion of physically relevant spinorial unitary irreducible representations, (ii)
their appropriate modification via deunitarizing automorphism, in order to
have a viable physical interpretation, and (iii) construction of an sl(3,R)
vector operator Xµ, acting it the space of spinorial field components, that
generalized Dirac’s “gamma” matrices. As stated above, the most efficient
method to construct explicitly the Xµ operator is to embed sl(3,R) into
sl(4,R) and to chose in the latter algebra a vector operator in the appropri-
ate spinorial representation. Such an equation can subsequently be adapted
to be fully Diff(3,R) covariant by appropriate modifications making use of
the “triad” eµa(x) and pseudo-frame EA

M (x) fields.
The SL(4,R) commutation relations in the Minkowski space are given

by,
[Qab, Qcd] = iηbcQad − iηadQcb.

where, a, b, c, d = 0, 1, 2, 3, and ηab = diag(+1,−1,−1,−1). The relevant
subgroup chain reads:

SL(4,R) ⊃ SL(3,R)
∪ ∪

SO(4), SO(1, 3) ⊃ SO(3), SO(1, 2).

There are three (independent) SO(3) vectors in the algebra of the SL(4,R)
group. They are the SO(3) generators themselves and the operators:

Ai = Qi0, Bi = Q0i.

Ai and Bi are SL(3,R) vectors transforming as the 3-dimensional represen-
tation [1, 0], and as its contragradient 3-dimensional representation [1, 1],
respectively. Either choice Xi ∼ Ai and Xi ∼ Bi insures that a Dirac-like
wave equation (iX∂ −m)Ψ(x) = 0 for an infinite-component spinor field is
fully SL(3,R) covariant.

Due to complexity of the generic unitary irreducible representations of
the SL(4,R) group, we confine to the multiplicity-free representation case.
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In this case, there are just two, mutually contragradient, representations
that contain spin J = 1

2 representation of the SO(3) subgroup, and belong
to the set of the so called Discrete Series [4] i.e.

Ddisc
SL(4,R)(

1

2
, 0) ⊃ D

( 1
2
,0)

SO(4)
⊃ D

1
2

SO(3)
Ddisc

SL(4,R)(0,
1

2
) ⊃ D

(0, 1
2
)

SO(4)
⊃ D

1
2

SO(3)
.

The full reduction of these representations to the representations of the
SL(3,R) subgroup reads [10]:

Ddisc
SL(4,R)(j0, 0) → Σ⊕∞

j=1D
disc
SL(3,R)(j0;σ2, δ1, j)

Ddisc
SL(4,R)(0, j0) → Σ⊕∞

j=1D
disc
SL(3,R)(j0;σ2, δ1, j)

By making use of the known expressions of the SL(4,R) generators matrix
elements for these spinorial representations, we can write down an SL(3,R)
covariant wave equation in the form

(iXµ∂µ −M)Ψ(x) = 0,

Ψ ∼ Ddisc
SL(4,R)(

1

2
, 0)⊕Ddisc

SL(4,R)(0,
1

2
),

Xµ = Qµ0, Q0µ.

Finally, the fully Diff(3,R) field equation reads:

(ieµaE
N
B (Xa)BAE

A
M∂µ −M)ΨN (x) = 0.
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[9] I. Kirsh and Dj. Šijački, Class. Quant. Grav. 19 (2002) 3157.



112 Dj. Šijački
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