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1. Introduction

The present paper is devoted to a method to obtain explicit solutions to
equation

m∑
i=0

Ai(−∞D
αi
t y)(t) = f(t), −∞ < t <∞, (1.1)

where −∞Dαi
t are Riemann-Liouville left fractional derivatives. In the lit-

erature there are different results of special cases of equation (1.1) defined
on a bounded interval, on real axis and on Half-axis. In the monograph [3],
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published in year 2006, such results have been quoted giving a rich literature
on equation (1.1).

In the meantime, other papers, books and conference proceedings have
also appeared. We mention only two books: [13] published in 2005 and
[9] in 2008. We believe that such a method, as it is ours, which gives the
generalized solutions and classical too, to equation (1.1) was a missing link.

2. Preliminaries

2.1. Wright’s functions

The Wright’s function (cf. [12]) is defined by the series

ϕ(β, ρ; z) =
∞∑
i=0

zi

Γ(i+ 1)Γ(ρi+ β)
, z ∈ C,

where −1 < ρ < 0 and β ∈ R are fixed.
We use functions Fν(x),

Fν(x) = ϕ(0,−ν,−x−ν), x > 0, 0 < ν < 1.

We quote some properties of Fν (cf. [12] and [7]):

1)
∞∫
0
exp(−st)Fν(t/x

1/ν) dt
νx = sν−1 exp(−xsν), x > 0, s ∈ C, Re s > 0;

2) Fν(x) ∼ 1
π sin νπ Γ(ν+1)

xν , x→ ∞;

3) Fν(x) > 0, x > 0;

4) Fν(σ/x
1/ν) = y1/2 exp(−y)

M∑
m=0

Amy
−m +O(y−M ),

where y = (1− ν)ν
ν

1−ν x
1

1−ν /σ
ν

1−ν and Am are constants depending on
ν, m = 0, ...,M.
It follows that |Fν(σ/x

1/ν)| ≤ C(x1/(1−ν)/σν/1−ν)1/2 exp(−γx1/(1−ν)/σν/1−ν),
where C and γ are positive constants.

5)
∞∫
0
Fν(σ/x

1/ν)xα dx
νx = Γ(α+1)

Γνα+1 σ
να, α > −1.

2.2. The Fourier transform in S ′ (S ′ is the space of tempered distribu-
tions)
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1) Let φ ∈ S, the Fourier transform Fφ is

Fφ =

∞∫
−∞

e−ωtφ(t)dt, F−1(φ) =
1

2π

∞∫
−∞

eiωtφ(t)dt. (2.1)

If f ∈ S ′, then Ff is defined as

⟨Ff, φ⟩ = ⟨f,Fφ⟩, φ ∈ S.

2) If the distribution f is defined by the function f belonging to L1(R),
then Ff is given by the same formula as in the case f ∈ S.

3) The Fourier transform of the n-the derivative of f ∈ S ′ is

F(f (m)) = (iω)mFf. (2.2)

4) Finally we have for b < 0 and β ≥ 1 (cf. [6], p.207):

F(H(−t)eb|t| |t|
β−1

Γ(β)
)(iω) =

(−1)β

(b+ iω)β
, β ≥ 1.

For the space of tempered distributions S ′ cf. [5], [8] and [10].

2.3. The left Riemann-Lionville derivative on R

Let Y ∈ Lp(R)(x) and α = k + γ, k ∈ N0, γ ∈ [0, 1). Then

−∞I
1−γ
x Y (x) =

1

Γ(1− γ)

x∫
−∞

Y (t)dt

(x− t)γ
. (2.3)

The left fractional integral −∞I
1−γ
x Y is defined for Y ∈ Lp(R), 1 ≤ p <

1
1−γ . The operator −∞I

1−γ
x is bounded from Lp(R) to Lq(R) if and only if

1 < p < 1
γ−1 and q = p

1−(1−γ)p . (cf. [4],p.102-103).
The left fractional derivative is

−∞D
α
t Y = (

d

dt
)k+1

−∞I
1−γ
t Y.

We extend the left fractional derivative −∞D
α
t to a subclass of tempered

distributions S ′.
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The function

hη(t) =

{
tη−1/Γ(η), t > 0
0, t < 0, η > 0,

(2.4)

defines a regular tempered distribution. Then the fractional integral −∞I
1−γ
t Y

given by (2.3) can be written as:

−∞I
1−γ
t Y = hγ ∗ Y

(cf. [4],p.94).

Definition 2.1. Let f ∈ S ′. If hγ ∗ f exists and belongs to S ′, then

−∞D
α
t f = δ(k+1) ∗ (hγ ∗ f), α = k + γ, α ∈ N0, γ ∈ [0, 1).

We quote some classes of tempered distributions for which there exist

−∞D
α
t :

1) Space of rapidly decreasing distributions (denoted by O′
C). Since hα ∈

S ′, α > 0, for every g ∈ O′
C , hα ∗ g ∈ S ′ (cf. [5], T.II, p.103). Then

−∞D
α
t g exists for every α > 0.

2) f ∈ Lp(R), 1 < p < 1
1−γ , has −∞D

α
t f, α = k + γ. If f ∈ Lp(R), 1 <

p < 1
1−γ , we have seen that −∞I

1−γ
t f ∈ Lq(R), q = p

1−(1−γ)p .

3) Class ρ:
f ∈ L1

loc(R), suppf ⊂ [a,∞), a > −∞ and for some k ∈ N0, 0 <
M <∞, admitting the estimation |f(x)| ≤M(x−a)k for x sufficiently
large.

If f ∈ ρ, then −∞D
α
t f exists for every α > 0.

Namely, for γ < 1,

|(−∞I
1−γ
t f)(t)| = | 1

Γ(1− γ)

t∫
−∞

f(τ)

(t− τ)γ
dτ |

≤ H(t− a)
M(t− a)k+1−γ

Γ(2− γ)
.

Hence, −∞I
1−γ
t f ∈ ρ ⊂ S ′ and −∞D

α
t f exists.
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Lemma 2.1. If f = DlF = δ(l) ∗ F, l ∈ N, then

−∞D
α
t f = δ(k+1) ∗ (hγ ∗DlF ) = δ(k+1+l) ∗ (hγ ∗ F ).

The proof follows from the property of the derivative of the convolution
(cf. [10],p.65 or [5], T. II , p.16).

3. A theorem for the Fourier transform

Theorem 3.1. Let 0 < ν < 1, β ≥ 1.

1) If f(t) = H(t)e−at tβ−1

Γ(β) , Re a > 0, then

(F−∞D
1−ν
t H(t)

∞∫
−∞

Fν(t/τ
1/ν)H(τ)e−aτ τ

β−1

Γ(β)

dτ

ντ
)(iω)

=
1

(a+ (iω)ν)β
. (3.1)

2) If f(t) = H(−t)eb|t| |t|
β−1

Γ(β) , Re b < 0, then

(F−∞D
1−ν
t H(t)

∞∫
−∞

Fν(t/|τ |1/ν)H(−τ)eb|τ | τ
β−1

Γ(β)

dτ

ντ
)

=
(−1)β

(b+ (iω)ν)β
. (3.2)

P r o o f. First we prove some properties of the functions

ψ1,β,1/q0(a, t) ≡ H(t)

∞∫
−∞

F1/q0(t/τ
q0)H(τ)e−aτ τ

β−1

Γ(β)

q0dτ

τ
, (3.3)

ψ2,β,1/q0(b, t) ≡ H(t)

∞∫
−∞

F1/q0(t/|τ |
q0)H(−τ)eb|τ | |τ |

β−1

Γ(β)

q0dτ

τ
,

where a > 0, b < 0.
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We consider first the function ψ1,β,1/q0(a, t).
Since F1/q0(x) > 0, x > 0 and F1/q0(x) → 0, x → 0, (cf. 2.1 3) and 4)),

we have

|ψ1,β,1/q0(a, t)| ≤
∞∫
0

F1/q0(t/τ
q0)
τβ−1

Γ(β)

q0dτ

τ
.

By (2.1 5)) it follows that

|ψ1,β,1/q0(a, t)| ≤ H(t)Ct
1
q0

(β−1)
, t ∈ (−∞,∞), β ≥ 1.

Also, if we take care that the function

e−aτ τ
β−1

Γ(β)
, a > 0, β ≥ 1,

is bounded on [0,∞), we have by 2.1 5)

|ψ1,β,1/q0(a, t)| ≤ H(t)K

∞∫
0

F1/q0(t/τ
1/ν)

q0dτ

τ
= K.

By the last two inequalities it follows that ψ1,β,1/q0(a, t) is a bounded func-

tion on (−∞,∞), suppψ1,β,1/q0(a, t) ⊂ [0,∞) and ψ1,β,1/q0(a, t) ∼ Ct
1
q0

(β−1)
,

t→ 0.
For the function ψ2,β,1/q0(b, t) the procedure is just the same because

|ψ2,β,1/q0(b, t)| ≤ H(t)|
0∫

−∞

Fν(t/|τ |1/ν)H(−τ)eb|τ | |τ |
β−1

Γ(β)

dτ

ντ
|

≤ H(t)

∞∫
0

Fν(t/u
1/ν)ebu

uβ−1

Γ(β)

du

νu
.

The function ψ2,β,1/q0(b, t) is also a bounded function on (−∞,∞),

suppψ2,β,1/q0(b, t) ⊂ [0,∞), ψ2,β,1/q0(b, t) ∼ t
1
q0

(β−1)
, t→ 0.

Hence, ψ1,β,1/q0 and ψ2,β,1/q0 belong to the class ρ and there exist

−∞D
α
t ψ1,β,1/q0(a, t) and −∞D

α
t ψ2,β,1/q0(b, t), α > 0. Now we can prove

the first part of the Theorem.
Since f ∈ L1(R), we have

∞∫
−∞

e−iωtf(t)dt =

∞∫
0

e−(a+iω)t t
β−1

Γ(β)
dt =

1

(a+ iω)β
. (3.4)
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We have to prove that for ω ∈ (−∞,∞):

(iω)1−ν

∞∫
−∞

e−iωtdtH(t)

∞∫
−∞

Fν(t/τ
1/ν)H(τ)e−aτ τ

β−1

Γ(β)

dτ

ντ
(3.5)

= (iω)1−ν

∞∫
−∞

H(τ)e−aτ τβ−1

Γ(β + 1)
dτ

∞∫
−∞

H(t)e−iωtFν(t/τ
1/ν)

dt

ντ
.

By Fubini’s theorem for 0 < τ1 ≤ τ ≤ τ2 <∞, and by the properties 2) and
4) of the function Fν (cf. 2.1) we have

(iω)1−ν

τ2∫
τ1

f(τ)dτ

∞∫
0

e−iωtFν(t/τ
1/ν)

dτ

ντ
(3.6)

= (iω)1−ν

∞∫
0

e−iωtdt

τ2∫
τ1

Fν(t/τ
1/ν)f(τ)

dτ

ντ
.

Let us prove that

lim
τ1→0

lim
τ2→∞

(iω)1−ν

∞∫
0

eiωtdt

τ2∫
τ1

Fν(t/τ
1/ν)f(τ)

dτ

ντ
=

= (−iω)1−ν

∞∫
0

e−iωt

∞∫
0

Fν(t/τ
1/ν)f(τ)

dτ

ντ
.

First we show that

lim
τ1→0

I = lim
τ1→0

(iω)1−ν

∞∫
0

e−iωtdt

τ1∫
0

Fν(t/τ
1/ν)f(τ)

dτ

ντ
= 0.

By (3.6) and by property 1) of Fν , for any ϵ > 0 there exists τ ϵ1 such that
0 < τ ′′1 < τ ′1 < τ ϵ and

|I(τ ′1)− I(τ ′′1 )| = |(iω)1−ν

∞∫
0

e−iωtdt

τ ′1∫
τ ′′1

Fν(t/τ
1/ν)f(τ)

dτ

ντ
|

≤ |e−τ ′′(ωi)ν |
τ ′1∫

τ ′′1

|f(τ)|dτ < ϵ.
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Analogously we can proceed in the case τ2 → ∞. Thus (3.5) is proved. If
we use once more property 1) of Fν and (3.5) we have by (3.4):

(F−∞D
1−ν
x H(t)

∞∫
−∞

Fν(t/τ
1/ν)H(τ)e−aτ τ

β−1

Γ(β)

dτ

ντ
)(iω)

= (iω)1−ν(FH(t)

∞∫
−∞

Fν(t/τ
1/ν)H(τ)e−aτ τ

β−1

Γ(β)

dτ

ντ
)(iω)

= (iω)1−ν

∞∫
−∞

H(τ)e−aτ τ
β−1

Γ(β)
(iω)ν−1e−τ(iω)νdτ

=
( 1

a+ (iω)ν

)β
,

where Re τ(iω)ν = τ |ω| cos ν π
2 > 0, τ > 0.

The first part of Theorem 3.1 is proved.
As regards the second part of the Theorem, we start with (cf. 2.2 4))

F(H(−τ)eb|τ | |τ |
β−1

Γ(β)
)(iω) =

1

(− b− (iω))β
=

(−1)β

(b+ (iω))β
. (3.7)

Then for f(t) = eb|τ | |τ |
β−1

Γ(β) , t ≥ 0, we have, similar to (3.6),

I = (iω)1−ν

∞∫
−∞

e−iωtH(t)dt

−τ2∫
−τ1

Fν(t/|τ |1/ν)H(−τ)f(τ)dτ
ντ

= (iω)1−ν

−τ2∫
−τ1

H(−τ)f(τ)dτ
∞∫
0

e−iωtFν(t/|τ |1/ν)
1

ντ
dt (3.8)

= (iω)1−ν

−τ2∫
−τ1

H(−τ)f(τ)(iω)ν−1e−|τ |(iω)ν dτ

ντ
.

The proof that

lim
τ1→∞

lim
τ2→0

I = (3.9)

= (iω)1−ν

∞∫
−∞

e−ωtH(t)dt

∞∫
−∞

Fν(t/|τ |1/ν)H(−τ)f(t)dτ
ντ

)
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is the same as the proof of (3.6). It remains only to use (3.7) in (3.8) taking
care of (3.9), which gives:

lim
τ1→∞

lim
τ2→0

I =
(−1)β

(b+ (iω)ν)β
.

This proves Theorem 3.1.

4. Equation with left fractional derivatives on R

4.1. A method to find solutions

Assume for equation

m∑
i=0

Ai(−∞D
αi
t Y )(t) = f(t), t ∈ R, f ∈ S ′, (4.1)

the following conditions: α0 = 0, αi =
pi
qi

= βi
q0

= ki + γi; pi, βi, ki ∈ N0 and
q1, q0 ∈ N; γi ∈ [0, 1) for i = 1, ...,m; α1 < α2 < ... < αm.

Let us suppose that Y ⊂ S ′ and such that −∞D
αi
t Y, i = 1, ...,m, exist

(cf. Definition 2.1).

We apply the Fourier transform to (4.1) which gives

m∑
i=0

Ai(iω)
αi(FY )(iω) = (Ff)(iω), ω ∈ R. (4.2)

Hence,

(FY )(iω) =
1

m∑
i=0

Ai(iω)αi

(Ff)(iω)

=
1

m∑
i=0

Ai((iω)1/q0)βi

(Ff)(iω). (4.3)

Let P (z) and Q(z) denote the following functions:

P (z) =
m∑
i=0

Aiz
βi , Q(z) =

1

P (z)
. (4.4)
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Then Q(z) can be written as the sum of elements of the form Cr(z + r)−kr

and zC ′
r(z

2 + r2)−kr , where Cr and C ′
r are constants, r ∈ R and k ∈ N. If

z = (iω)1/q0 , we have by (4.3)

Y = (F−1Q((iω)1/q0)) ∗ f. (4.5)

This gives only formally a solution to (4.1). Therefore we have to analyse
(4.5).

4.2. The function F−1Q((iω)1/q0)

Let in the polynomial P (z) =
m∑
i=0

Aiz
βi the coefficient A0 ̸= 0. With our

supposition α0 = 0, we have P (0) ̸= 0 and

Q(z) =
1

P (z)
=

p0∑
p=1

kp∑
i=1

Mi,p

(z − rp)i
, (4.6)

where rp are the zeros of P (z) and kp are theirs multiplicities, p = 1, ..., p0, k1+
... + kp0 = βm, k1 ≤ ... ≤ kp0 . In this case we have rp ̸= 0, p = 1, ..., p0.
First we consider this situation. But if A0 = 0, then P (z) = zlP1(z), l ∈ N
where P1(0) ̸= 0. This will be considered separately.

Case A0 ̸= 0. To realize F−1Q((iω)1/q0), we have to find

(F−1((iω)1/q0 + r)−k)(t), Re r ̸= 0 (4.7)

and

(iω)1/q0((iω)2/q0 + (Im r)2)−k(t), Re r = 0, Im r ̸= 0. (4.8)

By Theorem 3.1 we have to separate three cases:
Re rp > 0, Re rp < 0 and Re rp = 0. In cases Re rp > 0 and Re rp < 0,
(4.7) is realized by Theorem 3.1, i.e., by (3.1) and by (3.2), respectively. We
have for rp > 0

((iω)1/q0 + rp)
−kp = F

(
−∞D

1−1/q0
t H(t)×

×
∞∫

−∞

F1/q0(t/τ
q0)H(τ)e−rpτ τ

kp−1

Γ(kp)

q0dτ

τ

)
(iω), (4.9)
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and for rp < 0:

(−1)kp

((iω)1/q0 + rp)
= F(−∞D

1−1/q0
t H(t)

∞∫
−∞

F1/q0(t/|τ |
q0)×

× H(−τ)e−rp|τ | |τ |
kp−1

Γ(kp)

q0dτ

τ

)
(iω), (4.10)

It remains the case Re r = 0. If Re r = 0 and Im r ̸= 0, we can take q0 > 2
(otherwise equation (4.1) reduces to ordinary differential equation). We can
apply (3.1) to (4.8) to obtain

(iω)1/q0((iω)2/q0 + (Im rp)
2)−kp =

= F [−∞D
1−1/q0
t H(t)

∞∫
−∞

F2/q0(t/τ
q0/2)H(τ)e−(Im rp)2τ τ

β−1

Γ(β)

q0dτ

2τ
](iω)

= F [−∞D
1−1/q0
t ψ1,i,2/q0((Im rp)

2, t)](iω). (4.11)

Case A0 = 0. Then P (z) = zlP1(z), l ∈ N and P1(0) ̸= 0. Hence,

Q(z) =
1

P (z)
=

1

zlP1(z)
,

and

Q((iω)1/q0) = (iω)−l/q0 1

P1((iω)1/q0)
= (iω)−l/q0Q1((iω)

1/q0). (4.12)

4.3. Existence and the analytical form of the solutions to (4.1)

Supposing that Y (t) in (4.1) has all the left fractional derivatives −∞D
αi
t , i =

1, ...,m, (Definition 2.1) and that they belong to S ′. We find its possible
analytical form given by (4.5). Selecting an f in (4.1) we have to prove that
Y given by (4.5) has all presumed properties.

If we find f ”sufficiently good” such that Y given by (4.5) is a numerical
function which has all classical fractional derivatives −∞D

αi
t , i = 1, ...,m,

then this function Y is a classical solution. This follows from Definition 2.1.
As an application of the proposed solving method we prove the following

theorem.

Theorem 4.1.Let −∞D
1−1/q0
t f = F , where F belongs to the class ρ.

The equation (4.1) has a generalized solution Y belonging to the class ρ, as
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F does. The solution Y is given by (4.5) which can be realized by (4.9),
(4.10), (4.11) and (4.12) in case A0 ̸= 0 and for A0 = 0 we have to use
(4.13) in addition.

P r o o f. From (4.3) it follows that

(FY )(iω) = Q((iω)1/q0)(Ff)(iω).

If A0 ̸= 0, the zeros rp of P (z) are different from zero. Hence

Q((iω)1/q0)(Ff)(iω) =
p0∑
p=1

kp∑
i=1

Mi,p

((iω)1/q0 + rp)i
(Ff)(iω),

where rp ̸= 0.

If rp > 0, then by (4.9) and by using notation in (3.3) we have:

1

((iω)1/q0 + rp)i
(Ff)(iω) =

= (iω)1−1/q0(Fψ1,i,1/q0(rp, ·))(iω)(Ff)(iω)

= (Fψ1,i,1/q0(rp, ·))(iω)(F−∞D
1−1/q0f)(iω)

= (Fψ1,i,1/q0(rp, ·))(iω)(FF )(iω)
= F(ψ1,i,1/q0(rp, ·) ∗ F )(iω).

The function ψ1,i,1/q0 is a continuous and bounded function on [0,∞) and
the function F belongs to the class ρ. Then

Y = ψ1,i,1/q0(rp, ·) ∗ F

belongs also to the class ρ.

If we use (4.10) and notation (3.3) we obtain for rp < 0:

1

((iω)1/q0 + rp)i
(Ff)(iω) =

= (iω)1−1/q0(Fψ2,i,1/q0(rp, ·))(iω)(Ff)(iω)

= (Fψ2,i,1/q0(rp, ·))(iω)(F−∞D
1−1/q0f)(iω)

= (Fψ2,i,1/q0(rp, ·) ∗ F )(iω).

So we have the same situation as for rp > 0.
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Finally if Re rp = 0, Im r ̸= 0, by (4.11) is

(iω)1/q0((iω)2/q0 + (Im rp)
2)−i(Ff)(iω) =

= (iω)1/q0(F−∞D
1−2/q0
t ψ1,β,2/q0((Im rp)

2, t))(iω)(Ff)(iω)

= (Fψ1,β,2/q0((Im rp)
2, t))(iω)(F−∞D

1−1/q0f)(iω)

= (Fψ1,β,2/q0((Im rp)
2, ·) ∗ F )(iω).

Hence, in case Re rp = 0 Im rp ̸= 0, we have

Y =
(
ψ1,β,2/q0((Im rp)

2, ·) ∗ F
)
∈ ρ.

If A0 = 0, then by (4.3) FY is

(FY )(iω) =
1

(iω)l/q0
1

P1((iω)1/q0)
(Ff)(iω).

We have seen that

Q((iω)1/q0)(Ff)(iω) ≡ FU , U ∈ ρ.

Now we can write the solution Y to (4.1) as

Y = −∞I
l/q0
t U ∈ ρ. (4.13)

This completes the proof.

Remark.

1) Since −∞D
1−1/q0
t H(t − a)(t − a)1/q0−1 = 0, and since H(t − a)(t −

a)1/q0−1 ∈ ρ for any a > −∞, we have the same solution Y to (4.1)
even though we add to f the function CH(t − a)(t − a)1/q0−1, where
C is a constant.

2) With the exposed method we can obtain the classical solutions too.
We have only to suppose that f has ”enough good” properties. So, if in
Theorem 4.2 we have for F additional property: F ∈ ACkm+1([a, b])
for every b < ∞, F (k)(a) = 0, k = 0, ..., km, then the solution to
equation (4.1), with A0 ̸= 0, is given as in 4.2. Let us remark that
ACn([a, b]) is the space of absolute continuous functions. To prove
this assertion it is enough to show that there exists

−∞D
αi
t (ψj,i,1/q0(rp, ·) ∗ F )(t)
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for j = 1, 2, i = 1, ...,m and for all zeros rp of P (z).

We know (cf. [4], p.39) that −∞D
α
t G, α > 0, exists on (a, b) if G ∈

ACn([a, b]). Then by [2], p.119 and properties of F , the derivative of
the convolution is

E = (
d

dt
)km(ψj,i,1/q0(rp, ·) ∗ F ) = ψj,i,1/q0(rp, ·) ∗ (

d

dt
)kmF

=

t∫
0

(ψj,i,1/q0(rp, ·) ∗ F
(km+1))(τ)dτ.

This proves that E ∈ AC[a, b] and that(
ψj,i,1/q0(rp, ·) ∗ F

)
∈ ACkm+1, j = 1, 2.
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