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1. Introduction

The present paper is devoted to a method to obtain explicit solutions to
equation

m

ZAi(—ooD?iy)(t) = f(t), —oo <t < oo, (1.1)
1=0

where _ooDj' are Riemann-Liouville left fractional derivatives. In the lit-
erature there are different results of special cases of equation (1.1) defined
on a bounded interval, on real axis and on Half-axis. In the monograph [3],
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published in year 2006, such results have been quoted giving a rich literature
on equation (1.1).

In the meantime, other papers, books and conference proceedings have
also appeared. We mention only two books: [13] published in 2005 and
[9] in 2008. We believe that such a method, as it is ours, which gives the
generalized solutions and classical too, to equation (1.1) was a missing link.

2. Preliminaries

2.1. Wright’s functions
The Wright’s function (cf. [12]) is defined by the series

o(B, p; 2) ;erl YL z€C,

where —1 < p < 0 and B € R are fixed.
We use functions F,(z),

F,(x) =¢0,—v,—27"), >0, 0 <v <L

We quote some properties of F,, (cf. [12] and [7]):
1) [ exp(—st)F,,(t/xl/”)% = s Lexp(—ws”),2 >0, s€ C, Res>0;
0

1 F(u+1)

2) Fy(x) ~ —sinvn———,x — o0;

3) Fy(z) >0, x> 0;

M
4) F, (/') =y exp(—y) 3 Amy ™+ Oy M),
m=0

where y = (1 — 1/)1/ﬁ 2T /oT7 and A, are constants depending on
v,m=0,..,M.

It followsthat |, (o/zY")| < C(zV =) Jg 1=V )12 exp(—yal/ V) Jgv 1=V,
where C and ~ are positive constants.

oo
5) OfF,,(U/wl/”):z:o‘% = 1;(%111)0”0‘, a>—1.

2.2. The Fourier transform in 8" (S’ is the space of tempered distribu-
tions)
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1) Let p € S, the Fourier transform Fy is

T —w — 1 T tw
Fo = /e plt)dt, FU () = / e o(t)dt. (2.1)

If f €S, then Ff is defined as
(Ffoo)={[Fe), p€S.

2) If the distribution f is defined by the function f belonging to L!(R),
then Ff is given by the same formula as in the case f € S.

3) The Fourier transform of the n-the derivative of f € &' is

F(F™) = (iw)"Ff. (2.2)

4) Finally we have for b < 0 and g > 1 (cf. [6], p.207):

(=1)°

M 7!
(b + iw)B’

F(H(-t) T(5)

)(iw) = g =1

For the space of tempered distributions &’ cf. [5], [8] and [10].

2.3. The left Riemann-Lionville derivative on R

Let Y € LP(R)(x) and o = k+~, k € Ng, v € [0,1). Then

_OOI;_'YY(Q:):F(ll_V) / (};(_t);l;. (2.3)

—0o0

The left fractional integral _,,I}77Y is defined for Y € LP(R), 1 < p <

— . The operator —ooI77 is bounded from LP(R) to L4(R) if and only if
<p <5ty and ¢ = oy, (cf. [4],p.102-103).
The left fractional derivative is

‘H

==

d k11—
—o DY = (= el TY.
t (dt) t
We extend the left fractional derivative ., D' to a subclass of tempered

distributions &’.
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The function

e trm), t>0
fin () = { 0, t<0, n>0, (24)

defines a regular tempered distribution. Then the fractional integral ,Ooltl Yy
given by (2.3) can be written as:

Y = hy Y

(cf. [4],p.94).
Definition 2.1. Let f € §'. If hy x f exists and belongs to S’, then

—oo DR f =% x (hy % f), a =k +7, a € Ny, v €[0,1).

We quote some classes of tempered distributions for which there exist
_ DS
oo/t

1) Space of rapidly decreasing distributions (denoted by Of). Since hq €
S, a >0, for every g € Op, hq*g € S (cf. [5], T.II, p.103). Then
—ooDfg exists for every a > 0.

2) fe’R), 1<p< ﬁ, has oo D¢f, a=k+~. If f€ LP(R), 1<

p < ﬁ, we have seen that ,OoItlfvf € LY(R), g = 1—(1p—'y)p'

3) Class p:
f € LL.(R), suppf C [a,00), a > —oo and for some k € Ny, 0 <

M < oo, admitting the estimation |f(x)| < M(xz—a)* for  sufficiently
large.

If f € p, then _ oD f exists for every o > 0.
Namely, for v < 1,

(B0 = s [
_ )k
< He-o S0

Hence, ool f € pC S and _oo D f exists.
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Lemma 2.1. If f = D'F =60« F, [ € N, then

—oo DY f = 6" s (hy x D'F) = KDy (hy « F).

The proof follows from the property of the derivative of the convolution
(cf. [10],p.65 or [5], T. II , p.16).

3. A theorem for the Fourier transform

Theorem 3.1. Let0<v <1, f>1.

1) If f(t) = H(t)e %y, Rea >0, then

7 A=l qdr
1-v 1/v —ar T .
(oD () [ Rt/ ) H()e™ )
1
- (a+ (iw)¥)s" 3.1)
2) If f(t) = H(—t)eb!l ‘t'() Re b <0, then
7 A=l dr
1—v 1/V b|7‘7— R
(FooD () [ Folt/ ) H () )
(=
b+ (w)r)P (3.2)
P r o o f. First we prove some properties of the functions
T —aT ﬁil d
ipymlat) = H / Fyjag(1/7) H()e ™ s O (39
d
Vasajan(trt) = / b/ ) H (- L0

where a > 0, b < 0.
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We consider first the function 1 g1 /4, (a,?).

Since Fy/q,(z) >0, z > 0 and F /4 () — 0, = 0, (cf. 2.1 3) and 4)),
we have
-1 qodT
L)

‘¢17571/qo(a7t)’ < /Fl/qo(t/rqo)
0
By (2.1 5)) it follows that

1
|¢1,ﬁ,1/q0(a7t)’ S H(t)Ct%(B_l)’ te (—O0,00), /6 2 1.

Also, if we take care that the function

B-1 3
e T"—— a>0,>1,
L'(3)
is bounded on [0, 00), we have by 2.1 5)
¥ o GodT
V1p/a0(@:0] < HOK [ Fyygy(t/r) 2T ~ k.
0

By the last two inequalities it follows that 1 51,4, (a,t) is a bounded func-

1 5_
tion on (_007 00)7 SUppwl,B,l/qo (a7 t) - [07 OO) and 1/’1,5,1/(10 (a’7 t) ~ Ctw @ 1)7

t— 0.
For the function 15 5 14, (b, t) the procedure is just the same because
0
B—1
1/v b|T |T| dr
a0 < HEO! [ Rt/ H(-n) s O
Ll du

L(B) vu:

< H@) / Fo(t/u/")eb
0

The function 531 /4,(b,t) is also a bounded function on (—o0,0c0),

L (B-1
Suppy .1 g0 (by 1) C [0,00), U g1 /g0 (by1) ~ 107D ¢ 0,

Hence, v¥151/q, and 93 51/4, belong to the class p and there exist
—0o D1 g 1/g0(ast) and oo D3 g1/, (bs), a > 0. Now we can prove
the first part of the Theorem.

Since f € L*(R), we have

[e.e]

/ e f(t)dt = / eovinl g 1 (3.4)
0

03"~ la+iw)?

—00
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We have to prove that for w € (—o0, 00):

by B-1dr
(i)~ / eIt H (¢ / Bt/ (e B)ir (3.5)
/H o—aT dT/H 71th (t/ l/lz)lil:

By Fubini’s theorem for 0 < 71 < 7 < 75 < 00, and by the properties 2) and
4) of the function F, (cf. 2.1) we have

/ f(r)dr / e~ (t/7 1/'f)dT (3.6)

0
= (zw)lﬂ’/ ﬂmdt/F (t/T 1/V V(T )d
v’
0
Let us prove that
e o] T2 d
. . . 1— wt l/l/ l e
7111£>n072h£noo(1w) /e dt/Fu(t/T )J(7) .
0 T1
= (—iw)™ 76_M 7Fu(t/7'1/y)f(7_)d7—'
vT
0 0
First we show that
lim I = lim (iw)H/ “"tdt/F /) f(r )dT =0
71—0 71—0 vr '
0

By (3.6) and by property 1) of F),, for any € > 0 there exists 7 such that
0<7 <7 <7°and
oo 7
/ " - \1—v —iwt 1/v dr
[(r1) = I(m)] = |(iw) e”dt | F, (/") f(T) ]
0

vT

< \e*T“<w@'>”\/yf(T)|dT <e
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Analogously we can proceed in the case 79 — oco. Thus (3.5) is proved. If
we use once more property 1) of F,, and (3.5) we have by (3.4):

(FooDiH() [ /7))

oo ,B—
= (iw) " AYH (e ™ T2 (i
= (@) FHE) [ R ) )

oo 187
_ . N1—v —ar T v—1 —T(zw)
= (iw H(r)e w dr
(i) ZO 7)™ 57 )
 Na+ (iw)/
where Re 7(iw)” = T|w|cosvg >0, 7 > 0.

The first part of Theorem 3.1 is proved.
As regards the second part of the Theorem, we start with (cf. 2.2 4))

RO TP i) — 1 _ =
R TOR (=b—(iw)” b+ (iw))” 37
Then for f(t) = bl M?ﬂ) t > 0, we have, similar to (3.6),
I = ()™ / S (e / Fut/r ) H (=) f (1) T
_ _/H / _thFV(t/|T]1/”)%dt (3.8)
_ 1 1 Irl(iw)” 4T
— () / H(=7)f(r) (i) e =
The proof that
lim lim I = (3.9)

T1—00 790 —0
oo

= @) [ etHwd [ ReECED )

—00
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is the same as the proof of (3.6). It remains only to use (3.7) in (3.8) taking

care of (3.9), which gives:

A L= G W)y

This proves Theorem 3.1.

4. Equation with left fractional derivatives on R

4.1. A method to find solutions

Assume for equation

m

S MDY = f(), tER, fE S,
=0

(4.1)

the following conditions: ag = 0, «o; = 2 = % = k; +vi; pi, Bi, ki € N and

qi
41,90 EN; v, €[0,1) fori=1,...m; a1 < ag < ... < .-

Let us suppose that Y C & and such that _oD{"Y, i = 1,...,m, exist

(cf. Definition 2.1).
We apply the Fourier transform to (4.1) which gives

imuww (FY)(iw) = (Ff)(iw), w € R.
Hence,
(FY)(iw) = mew)
- (i),

S Ay ((iw)t/a0)Bi
=0

Let P(z) and Q(z) denote the following functions:

1
P(z)

P(z) = ZAz-zﬁ", Q(z) =
i=0

(4.4)
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Then Q(z) can be written as the sum of elements of the form C,(z + r)~*r
and zC.(2% + r2)7 where C, and C’ are constants, r € R and k € N. If
z = (iw)Y/ % we have by (4.3)

Y = (F'Q((iw)"/®))  f. (4.5)

This gives only formally a solution to (4.1). Therefore we have to analyse

(4.5).
4.2. The function F~'Q((iw)'/%)
Let in the polynomial P(z) = fj A;2P the coefficient Ag # 0. With our
supposition ag = 0, we have P(0) Z;OO and
po kp

=> Z (4.6)

p=1i=1 Z_TP

Q(z

where 7, are the zeros of P(z) and k), are theirs multiplicities, p = 1, ..., po, k1+
o+ kpy = Bm, k1 < ... < kpy. In this case we have r, # 0, p = 1,...,po.
First we consider this situation. But if Ag = 0, then P(z) = 2!Pi(z), [ € N
where P;(0) # 0. This will be considered separately.

Case Ag # 0. To realize F~'Q((iw)'/%), we have to find

(F~H((iw) % + 7)7F)(t), Rer #0 (4.7)
and
(iw) /% ((iw)?/% + (Im r)?)7*(t), Rer =0, Im 1 # 0. (4.8)
By Theorem 3.1 we have to separate three cases:
Rer, >0, Rer, <0 and Rer, =0. In cases Re r, > 0 and Re r, <0,

(4.7) is realized by Theorem 3.1, i.e., by (3.1) and by (3.2), respectively. We
have for r, > 0

(@)l )™ = FDi A

ke =1 qodr

/ Fy oy (47 H()e ™ f s B ) i), (49)
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and for r, < 0:

_1)kp 7
7|1 T
y H(—T)eTP'T||F|(]%)qOTd)(M), (4.10)

It remains the case Re r = 0. If Re r = 0 and I'm r # 0, we can take gg > 2
(otherwise equation (4.1) reduces to ordinary differential equation). We can
apply (3.1) to (4.8) to obtain

(1)1 /9 ()29 + (I )™ =

)27 rB-1 qodT
I'(p) 2r

= FloaDi %% g0 (T )2, 0)] (i) (4.11)

— FlD Vo / Fy gy (t/70/2) H (7)e=(Tm 7o 1(iw)

Case Ag = 0. Then P(z) = 2'Py(2), | € N and P;(0) # 0. Hence,
1 1

QE) =5 = 7By
and
i)Y — ()"0 1 — (jw) "0 i)/ )
Q((iw) ) = (iw) Pl((iw)l/qo) (iw) Q1 ((iw) ) (4.12)

4.3. Existence and the analytical form of the solutions to (4.1)

Supposing that Y () in (4.1) has all the left fractional derivatives o, D}, i =
1,...,m, (Definition 2.1) and that they belong to &’. We find its possible
analytical form given by (4.5). Selecting an f in (4.1) we have to prove that
Y given by (4.5) has all presumed properties.

If we find f ”sufficiently good” such that Y given by (4.5) is a numerical
function which has all classical fractional derivatives _oo Dy, i = 1,...,m,
then this function Y is a classical solution. This follows from Definition 2.1.

As an application of the proposed solving method we prove the following

theorem.

Theorem 4.1.Let ,OODtl_l/qof = F, where F belongs to the class p.
The equation (4.1) has a generalized solution Y belonging to the class p, as
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F does. The solution Y is given by (4.5) which can be realized by (4.9),
(4.10), (4.11) and (4.12) in case Ay # 0 and for Ag = 0 we have to use
(4.13) in addition.

P roof From (4.3) it follows that
(FY)(iw) = Q((iw) /%) (F f) (iw).
If Ap # 0, the zeros 1, of P(z) are different from zero. Hence

Q((iw) ) (F f)(iw) = f: kz My,
((iw)l/90 +1p)

p=1i=1

(Ff)(iw),

where 7, # 0.
If 7, > 0, then by (4.9) and by using notation in (3.3) we have:

M(]:f)(iw) =
(i) 70 (F by 51140 (1 ) (i) (F ) (i0)
= (Fori1/q0(rps ) (i) (F oo D' 1% f) (i)
(FW1,i,1 /g0 (Tps +)) (i) (FF) (iw)

= ]:(T/Jl,z',l/qo (rp, ) * F)(iw).

The function vy ; 1,4, is a continuous and bounded function on [0, c00) and
the function F' belongs to the class p. Then

Y = wl,i,l/qo (rpa ) x F

belongs also to the class p.
If we use (4.10) and notation (3.3) we obtain for 7, < 0:

o Ty ) =
(1) V0 (F iy 1 1 ) 0) (F ) 1)
= (Fbninsaolrp i) (F oD ) i)
(F2,i,1/q0 (Tpy ) * F) (iw).

So we have the same situation as for r, > 0.
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Finally if Re r, =0, Im r # 0, by (4.11) is

iw) 90 ((iw)?/90 + (Im 1,)?) " (F f)(iw) =

i)Y (F_ oo Dy 7210y 5 5100 (I ), 1)) (i0) (F f) (iw)
F1.5.27q0 (I 17p)%, 1)) (1) (F oo DI f) (i)

Fbr .2/a (Im 1), ) # F)(iw).

Hence, in case Rer, =0 Im r, # 0, we have

o~ o~ o~ o~

Y = (V1,527 (Im 7)%, )« F) € p.
If Ay = 0, then by (4.3) FY is

1 1
(iw)l/a0 Py ((iw)l/90)

(FY)(iw) = (Ff)(iw).

We have seen that
Q((iw) ™) (Ff)iw) = FU, U € p.
Now we can write the solution Y to (4.1) as
Y = oI € p. (4.13)
This completes the proof.

Remark.

1) Since ,othl_l/qu(t —a)(t — a)/2=1 = 0, and since H(t — a)(t —
a)t/®=1 ¢ p for any a > —oo, we have the same solution Y to (4.1)
even though we add to f the function CH(t — a)(t — a)'/%~! where
C is a constant.

2) With the exposed method we can obtain the classical solutions too.
We have only to suppose that f has ”enough good” properties. So, if in
Theorem 4.2 we have for F' additional property: F' € AC*+1([a,b])
for every b < oo, F(k)(a) =0, £k =0,...,ky,, then the solution to
equation (4.1), with Ag # 0, is given as in 4.2. Let us remark that
AC™(Ja,b]) is the space of absolute continuous functions. To prove
this assertion it is enough to show that there exists

—o Dy (T/fj,i,l/qo (1p, ) x F)(1)
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2]
3]

[4]

B. Stankovié

for j=1,2, i =1,...,m and for all zeros r, of P(z).

We know (cf. [4], p.39) that _D{G, a > 0, exists on (a,b) if G €
AC"™([a,b]). Then by [2], p.119 and properties of F', the derivative of
the convolution is

d d
E = (&)km (%Z)j,z',l/qo (rp, ) *x F) = ?/)j,i,l/qo (1p, ) * (%)kmF
t
= [ @il )« FE D) 7).
0

This proves that E € AC|[a,b] and that

<¢j77"71/q0 (rp, ) * F) € Ackm+1’ Jj=1,2.
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