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1. Introduction and Preliminaries

Convoluted C-semigroups and cosine functions ([6]-[8], [14], [16]-[17], [25])
allow one to consider in a unified treatment the notion of fractionally in-
tegrated C-semigroups and cosine functions ([1]-[3], [20], [22], [39], [41]).
We refer the reader to [1]-[2], [5], [9]-[11], [16]-[17], [25], [36] and [42] for
examples of differential operators generating various types of convoluted C-
semigroups and cosine functions. In the present paper, we study additive

1This research was supported by grant 144016 of Ministry of Science and Technological
Development, Republic of Serbia.
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perturbation theorems for such classes of operator semigroups and cosine
functions and continue the researches raised in [12], [16], [20], [28]-[29], [31],
[35] and [39]-[40] (cf. also [4], [9]-[10], [21], [26], [32]-[34], [37]-[38], and
[23]-[24], for similar results).

Throughout this paper E denotes a non-trivial complex Banach space, L(E)
denotes the space of bounded linear operators from E into E, A denotes
a closed linear operator acting on E and [D(A)] denotes the Banach space
D(A) equipped with the norm ||x||[D(A)] := ||x||+||Ax||, x ∈ D(A). By R(A)
is denoted the range of operator A. Henceforward L(E) ∋ C is an injective
operator, τ ∈ (0,∞], K is a complex-valued locally integrable function in
[0, τ) and K is not identical to zero. Given t ∈ R, set ⌊t⌋ := sup{k ∈

Z : k ≤ t} and ⌈t⌉ := inf{k ∈ Z : k ≥ t}. Set Θ(t) :=
t∫
0
K(s)ds and

Θ−1(t) :=
t∫
0
Θ(s)ds, t ∈ [0, τ); then Θ is an absolutely continuous function

in [0, τ) and Θ′(t) = K(t) for a.e. t ∈ [0, τ). Let us recall that a function
K ∈ L1

loc([0, τ)) is called a kernel if for every ϕ ∈ C([0, τ)), the assumption
t∫
0
K(t − s)ϕ(s)ds = 0, t ∈ [0, τ), implies ϕ ≡ 0; thanks to the famous

Titchmarsh’s theorem, the condition 0 ∈ suppK implies that K is a kernel.

We mainly use the following condition:

(P1) K is Laplace transformable, i.e., it is locally integrable on [0,∞) and
there exists β ∈ R so that

K̃(λ) = L(K)(λ) := lim
b→∞

b∫
0
e−λtK(t)dt :=

∞∫
0
e−λtK(t)dt exists for all

λ ∈ C with Reλ > β. Put abs(K) :=inf{Reλ : K̃(λ) exists}.

In Theorem 2.9, we use the following condition:

(P2) K̃(λ) ̸= 0 for all λ ∈ C with Reλ > abs(K).

Definition 1.1. ([14], [16]-[17]) Let A be a closed operator and let 0 <
τ ≤ ∞. If there exists a strongly continuous operator family (SK(t))t∈[0,τ)
(SK(t) ∈ L(E), t ∈ [0, τ)) such that:

(i) SK(t)A ⊆ ASK(t), t ∈ [0, τ),

(ii) SK(t)C = CSK(t), t ∈ [0, τ) and
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(iii) for all x ∈ E and t ∈ [0, τ):
t∫
0
SK(s)xds ∈ D(A) and

A

t∫
0

SK(s)xds = SK(t)x−Θ(t)Cx,

then it is said thatA is a subgenerator of a (local)K-convoluted C-semigroup
(SK(t))t∈[0,τ). If τ = ∞, then we say that (SK(t))t≥0 is an exponentially
bounded K-convoluted C-semigroup with a subgenerator A if, additionally,
there exist M ≥ 1 and ω ∈ R such that ||SK(t)|| ≤ Meωt, t ≥ 0.

Definition 1.2. ([14], [16]-[17]) Let A be a closed operator and let 0 < τ ≤
∞. If there exists a strongly continuous operator family (CK(t))t∈[0,τ) such
that:

(i) CK(t)A ⊆ ACK(t), t ∈ [0, τ),

(ii) CK(t)C = CCK(t), t ∈ [0, τ) and

(iii) for all x ∈ E and t ∈ [0, τ):
t∫
0
(t− s)CK(s)xds ∈ D(A) and

A

t∫
0

(t− s)CK(s)xds = CK(t)x−Θ(t)Cx,

then it is said that A is a subgenerator of a (local) K-convoluted C-cosine
function (CK(t))t∈[0,τ). If τ = ∞, then we say that (CK(t))t≥0 is an exponen-
tially bounded K-convoluted C-cosine function with a subgenerator A if, ad-
ditionally, there exist M ≥ 1 and ω ∈ R such that ||CK(t)|| ≤ Meωt, t ≥ 0.

Plugging K(t) = tα−1

Γ(α) in Definition 1.1 and Definition 1.2, where α > 0

and Γ(·) denotes the Gamma function, we obtain the well-known classes
of α-times integrated C-semigroups and cosine functions; a (local) 0-times
integrated C-semigroup, resp. C-cosine function, is defined to be a (local) C-
semigroup, resp. C-cosine function. The integral generator of (SK(t))t∈[0,τ),
resp. (CK(t))t∈[0,τ), is defined by

{
(x, y) ∈ E ×E : SK(t)x−Θ(t)Cx =

t∫
0

SK(s)yds, t ∈ [0, τ)
}
, resp.,
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{
(x, y) ∈ E × E : CK(t)x−Θ(t)Cx =

t∫
0

(t− s)CK(s)yds, t ∈ [0, τ)
}
,

and it is a closed linear operator which is an extension of any subgenerator
of (SK(t))t∈[0,τ), resp. (CK(t))t∈[0,τ). Suppose that A is a subgenerator of
(SK(t))t∈[0,τ), resp. (CK(t))t∈[0,τ). By [18, Proposition 1.1], we know that

the integral generator Â of (SK(t))t∈[0,τ), resp. (CK(t))t∈[0,τ), satisfies Â =

C−1ÂC = C−1AC.

Lemma 1.3. ([17]) Let A be a closed operator and let 0 < τ ≤ ∞. Then
the following assertions are equivalent:

(i) A is a subgenerator of a K-convoluted C-cosine function (CK(t))t∈[0,τ)
in E.

(ii) The operator A ≡
( 0 I

A 0

)
is a subgenerator of a Θ-convoluted C-

semigroup (SΘ(t))t∈[0,τ) in E × E, where C ≡
( C 0

0 C

)
.

In this case:

SΘ(t) =


t∫
0
CK(s)ds

t∫
0
(t− s)CK(s)ds

CK(t)−Θ(t)C
t∫
0
CK(s)ds

 , 0 ≤ t < τ,

and the integral generators of (CK(t))t∈[0,τ) and (SΘ(t))t∈[0,τ), denoted re-

spectively by B and B, satisfy B =
( 0 I

B 0

)
.

Definition 1.4. Let 0 < α ≤ π
2 and let (SK(t))t≥0 be a K-convoluted

C-semigroup. Then we say that (SK(t))t≥0 is an analytic K-convoluted C-
semigroup of angle α, if there exists an analytic function SK : Σα → L(E)
which satisfies

(i) SK(t) = SK(t), t > 0 and

(ii) lim
z→0, z∈Σγ

SK(z)x = 0 for all γ ∈ (0, α) and x ∈ E.

It is said that (SK(t))t≥0 is an exponentially bounded, analyticK-convoluted
C-semigroup of angle α, if for every γ ∈ (0, α), there exist Mγ ≥ 0 and
ωγ ≥ 0 such that ||SK(z)|| ≤ Mγe

ωγRez, z ∈ Σγ .
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Since there is no risk for confusion, we shall also write SK for SK .

2. Perturbations

The following rescaling result for subgenerators of (local) convoluted C-
semigroups extends [16, Proposition 3.2].

Theorem 2.1. Suppose z ∈ C, K and F satisfy (P1), there exists a ≥ 0
such that

K̃(λ)− K̃(λ+ z)

K̃(λ+ z)
=

∞∫
0

e−λtF (t)dt, Reλ > a, K̃(λ+ z) ̸= 0, (1)

and A is a subgenerator (the integral generator) of a (local) K-convoluted
C-semigroup (SK(t))t∈[0,τ). Then A− z is a subgenerator (the integral gen-
erator) of a (local) K-convoluted C-semigroup (SK,z(t))t∈[0,τ), where

SK,z(t)x := e−tzSK(t)x+

t∫
0

F (t− s)e−zsSK(s)xds, x ∈ E, t ∈ [0, τ). (2)

Furthermore, in the case τ = ∞, (SK,z(t))t≥0 is exponentially bounded pro-
vided that F and (SK(t))t≥0 are exponentially bounded.

P r o o f. It is clear that (SK,z(t))t∈[0,τ) is a strongly continuous operator
family that commutes with C and A − z. Let x ∈ E be fixed. Then we
obtain

(A− z)
t∫
0
SK,z(s)xds = (A− z)

t∫
0
[e−zsSK(s)x+

s∫
0
F (s− r)e−zrSK(r)xdr]ds

= (A− z)[e−zt
t∫
0
SK(s)xds+ z

t∫
0
e−sz

s∫
0
SK(r)xdrds]

+(A− z)
t∫
0

s∫
0
F (s− r)e−zrSK(r)xdrds

= e−zt[SK(t)x−Θ(t)Cx]− ze−zt
t∫
0
SK(s)xds+ z

t∫
0
e−sz[SK(s)x−Θ(s)Cx]ds

−z2
t∫
0
e−sz

s∫
0
SK(r)xdrds+ (A− z)

t∫
0
F (t− s)

s∫
0
e−zrSK(r)xdrds

= e−zt[SK(t)x−Θ(t)Cx]− ze−zt
t∫
0
SK(s)xds



30 M. Kostić

+z
t∫
0
e−sz[SK(s)x−Θ(s)Cx]ds− z2

t∫
0
e−sz

s∫
0
SK(r)xdrds

+
t∫
0
F (t− s)(A− z)[e−zs

s∫
0
SK(r)xdr + z

s∫
0
e−zr

r∫
0
SK(v)xdvdr]ds

= SK,z(t)x− f1(t)− f2(t)Cx, x ∈ E, where:

f1(t) = ze−zt
t∫
0
SK(s)xds− z

t∫
0
e−szSK(s)xds+ z2

t∫
0
e−sz

s∫
0
SK(r)xdrds

+z
t∫
0
e−zsF (t− s)

s∫
0
SK(r)xdrds− z

t∫
0
F (t− s)

s∫
0
e−zr[SK(r)x−Θ(r)Cx]drds

+z2
t∫
0
F (t− s)

s∫
0
e−zr

r∫
0
SK(v)xdvdrds, t ∈ [0, τ) and

f2(t) = Θ(t)e−zt + z
t∫
0
e−zsΘ(s)ds

+
t∫
0
F (t− s)e−zsΘ(s)ds−

t∫
0
F (t− s)

s∫
0
e−zrΘ(r)drds, t ∈ [0, τ).

Fix a number t ∈ (0, τ) and define afterwards a function S̃K : [0,∞) → L(E)
by setting:

S̃K(s) =:

{
SK(s), s ∈ [0, t],

SK(t), s > t.

Clearly, (S̃K(t))t≥0 is a strongly continuous operator family and there exist
M > 0 and ω ∈ R such that ||S̃K(t)|| ≤ Meωt, t ≥ 0. Define f̃1 : [0,∞) →
L(E) by replacing SK in the representation formula for f1 with S̃K . Then
f̃1 extends continuously the function f1 to the whole non-negative real axis,
and moreover, f̃1 is Laplace transformable. Using the elementary opera-
tional properties of Laplace transform and (1), one obtains L(f1(t))(λ) =
L(f2(t))(λ) = 0 for all sufficiently large real numbers λ. An application of the
uniqueness theorem for the Laplace transform gives that A− z is a subgen-
erator of a (local) K-convoluted C-semigroup (SK,z(t))t∈[0,τ). Suppose now
that A is the integral generator of (SK(t))t≥0. Then one has C−1AC = A
and this implies that C−1(A − z)C = A − z is the integral generator of
(SK,z(t))t∈[0,τ). Finally, the exponential boundedness of (SK,z(t))t≥0 simply



Perturbation theorems for convoluted C-semigroups and cosine functions 31

follows from (2) and the exponential boundedness of F and (SK(t))t≥0.

Suppose K = L−1(pm(λ)
pk(λ)

), where L−1 denotes the inverse Laplace transform,
pk and pm are polynomials of degree k and m, respectively, and k > m. Then
the condition (1) holds for a suitable exponentially bounded function F. Sup-

pose now α > 0 andK(t) = tα−1

Γ(α) , t > 0. Then there exists a sufficiently large

positive real number a such that K̃(λ)−K̃(λ+z)

K̃(λ+z)
= (1+ z

λ)
α − 1 =

∞∑
n=1

(α
n

)
zn

λn =

L(
∞∑
n=1

(α
n

)
zntn−1

(n−1)! )(λ), λ > a, where 1α = 1. Since sup
n∈N

|
(α
n

)
| =: L0 < ∞, we

obtain |
∞∑
n=1

(α
n

)
zntn−1

(n−1)! | ≤ L0|z|e|z|t, t ≥ 0. With Theorem 2.1 and this ob-

servation in view, one obtains the following extension of [20, Proposition
2.4(b)] and [28, Proposition 3.3]; for the global case, see [21].

Corollary 2.2. Suppose z ∈ C, α > 0 and A is a subgenerator, resp. the
integral generator, of a (local, global exponentially bounded) α-times inte-
grated C-semigroup (Sα(t))t∈[0,τ). Then A − z is a subgenerator, resp. the
integral generator, of a (local, global exponentially bounded) α-times inte-
grated C-semigroup (Sα,z(t))t∈[0,τ), which is given by:

Sα,z(t)x = e−ztSα(t)x+

t∫
0

∞∑
n=1

(
α

n

)
zntn−1

(n− 1)!
e−zsSα(s)xds, t ∈ [0, τ), x ∈ E.

The following perturbation theorem generalizes [16, Theorem 4.1].

Theorem 2.3. Suppose B ∈ L(E), K is a kernel and satisfies (P1), A is a
subgenerator (the integral generator) of a (local) K-convoluted C-semigroup
(SK(t))t∈[0,τ), BA ⊆ AB, BC = CB and there exists a > 0 such that the
following conditions hold:

(i) For every n ∈ N, there is a function Kn satisfying (P1) and

K̃n(λ) = K̃(λ)
dn

dλn

( 1

K̃

)
(λ), λ > a, K̃(λ) ̸= 0.

Put Θn(t) :=
t∫
0
|Kn(s)|ds, t ≥ 0, n ∈ N.

(ii)
∞∑
n=1

Θn(t) < ∞, t ≥ 0.
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Then A+B is a subgenerator (the integral generator) of a (local) K-convoluted
C-semigroup (SB

K(t))t∈[0,τ), which satisfies for every x ∈ E and t ∈ [0, τ) :

SB
K(t)x = etBSK(t)x+

∞∑
i=1

i∑
n=1

Bi

i!
(−1)n

(
i

n

) t∫
0

Kn(t−s)si−nSK(s)xds. (3)

Furthermore, the following holds:

(a) ||SB
K(t)− etBSK(t)|| ≤ e||B|| max

s∈[0,t]
||SK(s)||

∞∑
n=1

Θn(t)e
t||B||, t ∈ [0, τ).

(b) Suppose τ = ∞, (SK(t))t∈[0,τ) is exponentially bounded and there exist
constants M > 0 and ω ≥ 0 such that

∞∑
n=1

Θn(t) ≤ Meωt, t ≥ 0. (4)

Then (SB
K(t))t∈[0,τ) is also exponentially bounded.

P r o o f. First of all, notice that the commutation of B with C and A implies

that the function u1, resp. u2, given by u1(t) :=
t∫
0
SK(s)Bxds, t ∈ [0, τ),

resp. u2(t) :=
t∫
0
BSK(s)xds, t ∈ [0, τ), is a solution of the initial value

problem 
u ∈ C([0, τ) : [D(A)]) ∩ C1([0, τ) : E),

u′(t) = Au(t) + Θ(t)CBx, t ∈ [0, τ),

u(0) = 0.

Since K is a kernel, we have the uniqueness of solutions of the preceding
problem ([14], [17]) and this implies BSK(t)x = SK(t)Bx, t ∈ [0, τ), x ∈ E.
Then we obtain:

||SB
K(t) −etBSK(t)|| ≤ maxs∈[0,t] ||SK(s)||

∞∑
n=1

Θn(t)
∞∑
i=1

i∑
n=1

||B||i
i!

( i
n

)
ti−n

= maxs∈[0,t] ||SK(s)||
∞∑
n=1

Θn(t)
∑
i≥1

∥B∥i
i! ti

i∑
n=1

( i
n

)
t−n

≤ maxs∈[0,t] ||SK(s)||
∞∑
n=1

Θn(t)
||B||i
i! ti (t+1)i

ti

= e||B||maxs∈[0,t] ||SK(s)||
∞∑
n=1

Θn(t)e
t||B||, t ∈ (0, τ).
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Hence, the assertion (a) holds. The previous computation also shows that
(SB

K(t))t∈[0,τ) is a strongly continuous operator family that commutes with
A+B and C. Let x ∈ E be fixed. Then the dominated convergence theorem,
the closedness of A and integration by parts, as well as the argumentation
used in the estimation of term ||SB

K(t)− etBSK(t)||, imply:

(A+B)
t∫
0
SB
K(s)xds = (A+B)

t∫
0
esBSK(s)xds

+
∞∑
i=1

i∑
n=1

Bi

i! (−1)n
( i
n

)
(A+B)

t∫
0

s∫
0
Kn(s− r)ri−nSK(r)xdrds

= etB[SK(t)x−Θ(t)Cx] +B
t∫
0
esBΘ(s)Cxds

+
∞∑
i=1

i∑
n=1

Bi

i! (−1)n
( i
n

)
(A+B)

t∫
0
Kn(t− s)

s∫
0
ri−nSK(r)xdrds

= etB
[
SK(t)x−Θ(t)Cx

]
+B

t∫
0
esBΘ(s)Cxds

+
∞∑
i=1

i∑
n=1

Bi

i! (−1)n
( i
n

)
(A+B)×

×
t∫
0
Kn(t− s)

[
si−n

s∫
0
SK(r)xdr − (i− n)

s∫
0
ri−n−1

r∫
0
SK(v)xdvdr

]
ds

= etB[SK(t)x−Θ(t)Cx] +B
t∫
0
esBΘ(s)Cxds

+
∞∑
i=1

i∑
n=1

Bi+1

i! (−1)n
( i
n

) t∫
0
Kn(t− s)×

×
[
si−n

s∫
0
SK(r)xdr − (i− n)

s∫
0
ri−n−1

r∫
0
SK(v)xdvdr

]
ds

+
∞∑
i=1

i∑
n=1

Bi

i! (−1)n
( i
n

) t∫
0
Kn(t− s)si−n[SK(s)x−Θ(s)Cx]ds

+
∞∑
i=1

i∑
n=1

Bi

i! (−1)n
( i
n

)
(n− i)

t∫
0
Kn(t− s)

s∫
0
ri−n−1[SK(r)x−Θ(r)Cxdr]ds

= SB
K(t)x− f1(t)− f2(t)Cx, t ∈ [0, τ), where:

f1(t) =
∞∑
i=1

i∑
n=1

Bi+1

i! (−1)n
( i
n

) t∫
0
Kn(t− s)×

×[si−n
s∫
0
SK(r)xdr − (i− n)

s∫
0
ri−n−1

r∫
0
SK(v)xdvdr]ds
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+
∞∑
i=1

i∑
n=1

Bi

i! (−1)n
( i
n

)
(n− i)

t∫
0
Kn(t− s)

s∫
0
ri−n−1SK(r)xdrds, t ∈ [0, τ)

and

f2(t) = etBΘ(t)−B
t∫
0
esBΘ(s)ds+

∞∑
i=1

i∑
n=1

Bi

i! (−1)n
( i
n

) t∫
0
Kn(t− s)si−nΘ(s)ds

+
∞∑
i=1

i∑
n=1

Bi

i! (−1)n
( i
n

)
(n− i)

t∫
0
Kn(t− s)

s∫
0
ri−n−1Θ(r)drds, t ∈ [0, τ).

Then the partial integration implies:

f1(t) =
∞∑
i=1

i∑
n=1

Bi+1

i! (−1)n
( i
n

) t∫
0
Kn(t− s)

s∫
0
ri−n

r∫
0
SK(r)xdrds

+
∞∑
i=1

i∑
n=1

Bi

i! (−1)n
( i
n

)
(n− i)

t∫
0
Kn(t− s)

s∫
0
ri−n−1

r∫
0
SK(r)xdrds, t ∈ [0, τ).

The coefficient of Bi, i ≥ 2 in the expression of f1(t) equals

i−1∑
n=1

(−1)n
(n− i

i!

(
i

n

)
+

1

(i− 1)!

(
i− 1

n

))

·
t∫

0

Kn(t− s)

s∫
0

ri−n−1

r∫
0

SK(r)xdrds = 0,

because n−i
i!

( i
n

)
+ 1

(i−1)!

(i−1
n

)
= 0. Thereby, f1(t) = 0, t ∈ [0, τ). On the

other hand, the usual series arguments imply that the coefficient of Bi in
the expression of f2(t) equals Θ(t), t ≥ 0 if i = 0, and

f2,i(t) :=
ti

i!Θ(t)−
t∫
0

si−1

(i−1)!Θ(s)ds

+
i∑

n=1

1
i!(−1)n

( i
n

) t∫
0
Kn(t− s)si−nΘ(s)ds

+
i∑

n=1

1
i!(−1)n

( i
n

)
(n− i)

t∫
0
Kn(t− s)

s∫
0
ri−n−1Θ(r)drds, t ≥ 0,

if i ≥ 1. Proceeding as before, one obtains, as a consequence of the condition
(iii), that the function t 7→ f2,i(t), t ≥ 0 satisfies (P1) and that there exists
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a′′ > 0 such that

L(f2,i(t))(λ) = 1
i!(−1)i

(
K̃(·)
·

)(i)
(λ)− 1

λ
1

(i−1)!(−1)i−1
(
K̃(·)
·

)(i−1)
(λ)

+
i∑

n=1

1
i!(−1)i

( i
n

)
K̃(λ)

(
1

K̃(·)

)(n)
(λ) 1λK̃

(i−n)(λ)

= 1
i!(−1)i

(
K̃(·)
·

)(i)
(λ)− 1

λ
1

(i−1)!(−1)i−1
(
K̃(·)
·

)(i−1)
(λ)

+ K̃(λ)
λ

(−1)i

i!

(
− 1

K̃(λ)

)
K̃(i)(λ)

= 1
i!(−1)i

(
K̃(·)
·

)(i)
(λ)− 1

λ
1

(i−1)!(−1)i−1
(
K̃(·)
·

)(i−1)
(λ)

+ (−1)i+1

i!
K̃(i)(λ)

λ = 0,

for all λ > a′′ with K̃(λ) ̸= 0. This enables one to deduce that f2(t) =
Θ(t), t ∈ [0, τ) and that (SB

K(t))t∈[0,τ) is a (local)K-convoluted C-semigroup
with a subgenerator A + B. The proof of (b) follows from a simple com-
putation; furthermore, the supposition that A is the integral generator of
(SK(t))t∈[0,τ) implies that C−1AC = A and that C−1(A+B)C = A+B is

the integral generator of (SB
K(t))t∈[0,τ). This completes the proof of theorem.

Remark 2.4.

(i) The assumption (i) of Theorem 2.3 is satisfied for the function K =
L−1( a

pk(λ)
), where pk is a polynomial of degree k ∈ N and a ∈ C\{0}.

Then n0 = k and Kn ≡ 0, n ≥ k+1. In this case, we have the existence
of positive real numbers M and ω such that (4) holds.

(ii) ([16]) Let n > 1 and let P be an analytic function in the right half
plane {λ ∈ C : Reλ > λ0} for some λ0 ≥ 1. Suppose that P (λ) ̸=
0, Reλ > λ0, and that there exist C > 0 and r ∈ (0, 1] with:

|P (λ)| ≥ C|λ|n, Reλ > λ0,

| d
i

dλi
P (λ)| ≤ C|λ|−ir|P (λ)|, Reλ > λ0, i ∈ N,

P (j)

P
∈ LT (C), j ≤ 1/r, j ∈ N,

where LT (C) denotes the set of all Laplace transforms of exponentially
bounded functions. Then the condition (i) of Theorem 2.3 holds for
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the function K = L−1(1/P ) and there exist M > 0 and ω ≥ 0 such
that (4) holds.

(iii) The conditions (ii) and (iii) quoted in the formulation of Theorem 2.3
can be replaced with:

(ii)’ there exist M1 ≥ 1 and ω1 ≥ 0 such that

∞∑
i=1

i∑
n=1

||B||i

i!

(
i

n

) t∫
0

|Kn(t− s)|si−n ds ≤ M1e
ω1t, t ≥ 0

and

(iii)’ to every i ∈ N, there exists ai > 0 such that the function

t 7→ max
s∈[0,t]

|Θ(s)|e−ait
i∑

n=1

(2t+2)i

i! Θn(t), t ≥ 0 belongs to the space

L1([0,∞) : R).

Notice only that one can prove that f1 ≡ 0 by direct computation of
coefficient of Bi, i ∈ N and that the condition (iii)’ is necessary in
our striving to show that, for every i ∈ N, the function t 7→ f2,i(t),
t ≥ 0 satisfies (P1); it is also clear that (iii)’ holds provided that Θ is
exponentially bounded and that, for every n ∈ N, Θn is exponentially
bounded. Let us prove now that (ii)’ and (iii)’ hold for the function
K = L−1(e−λσ

), where σ ∈ (0, 1). First of all, we know that K is
an exponentially bounded, continuous kernel. Let f(λ) = eλ

σ
, λ ∈

C\ (−∞, 0]. Then the mapping λ 7→ f(λ), λ ∈ C\ (−∞, 0] is analytic,
f ′(λ) = σλσ−1f(λ) and

f (n)(λ) =
n−1∑
i=0

(
n− 1

i

)(
·σ−1

)(n−i−1)
(λ)f (i)(λ), λ ∈ C \ (−∞, 0]. (5)

Using (5), one concludes inductively that, for every n ∈ N, there exist
real numbers pi,n(σ), 1 ≤ i ≤ n such that, for every t ≥ 0 :

K̃n(λ) =
n∑

i=1

pi,n(σ)λ
iσ−n, Reλ > 0 and Θn(t) ≤

n∑
i=1

|pi,n(σ)tn−iσ|
Γ(n+ 1− iσ)

.

Put p0,n(σ) := 0, n ∈ N. By the foregoing, we have

(
e·

σ
)(n)

(λ) = eλ
σ

n∑
i=1

pi,n(σ)λ
iσ−n
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and

(
e·

σ
)(n+1)

(λ) = eλ
σ
n+1∑
i=1

(
pi,n(σ)(iσ − n) + σpi−1,n(σ)

)
λiσ−(n+1),

for all n ∈ N and λ ∈ C with Reλ > 0. Hence, p1,n(σ) = σ(σ − 1) · · ·
(σ − (n− 1)), n ∈ N \ {1}, pn,n(σ) = σn, n ∈ N and

pi,n+1(σ) = pi,n(σ)(iσ − n) + σpi−1,n(σ), n ∈ N, 2 ≤ i ≤ n. (6)

Clearly, Lσ := sup
n∈N0

|
(σ
n

)
| < ∞. Applying (6) we infer that for every

n ≥ 2 :

n+1∑
i=1

i!|pi,n+1(σ)|

≤
∣∣∣σ(σ − 1) · · · (σ − n)

∣∣∣+ n∑
i=2

[
σi!|pi−1,n(σ)|+ n

(
σ + 1

)
i!|pi,n(σ)|

]
+ (n+ 1)!

≤ Lσ

(
σ + n

)
n! + nσ

n−1∑
i=1

i!|pi,n(σ)|+ n
(
σ + 1

) n∑
i=2

i!|pi,n(σ)|+ (n+ 1)!.

The preceding inequality implies that, for every ζ ≥ 2+4σ+2Lσ, the
following holds:

n∑
i=1

i!|pi,n(σ)| ≤ ζnn! for all n ∈ N. (7)

Denote by ζσ the minimum of all numbers satisfying (7). Then a
simple computation shows that, for every x ∈ E :

∞∑
i=1

i∑
n=1

||B||i

i!

(
i

n

) t∫
0

||Kn(t− s)si−nSK(s)x|| ds

≤ max
s∈[0,t]

||SK(s)x||
∞∑
i=1

||B||iζiσ
i!

i∑
n=1

n∑
l=1

ti+1−lσi!

Γ(i+ 2− lσ)l!
, t ≥ 0. (8)

On the other hand, it is easily verified that:

i∑
n=1

n∑
l=1

i!

Γ(i+ 2− lσ)l!
≤ i2(2−σ)i, i ∈ N. (9)
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Combining (8)-(9), it follows that, for every t ∈ [0,min(1, τ)),∥∥∥SB
K(t)− etBSK(t)

∥∥∥ ≤ t||B||ζσ22−σe||B||ζσ22−σ
max
s∈[0,t]

||SK(s)||

and, in case τ > 1,∥∥∥SB
K(t)−etBSK(t)

∥∥∥ ≤ t2||B||ζσ22−σe||B||ζσ22−σt max
s∈[0,t]

||SK(s)||, t ∈ [1, τ),

proving the condition (ii)’; furthermore, in case that τ = ∞ and that
(SK(t))t≥0 is exponentially bounded, then (SB

K(t))t≥0 is also exponen-
tially bounded. It is clear that (iii)’ holds and that the above con-
clusions remain true in case K = L−1(e−aλσ

), where σ ∈ (0, 1) and
a > 0.

(iv) Suppose α > 0, K(t) = tα−1

Γ(α) , t > 0, L0 := sup
n∈N

|
(α
n

)
| and A is a subgen-

erator of a (local, global exponentially bounded) α-times integrated C-

semigroup (Sα(t))t∈[0,τ). Then Kn(t) =
α(α−1)···(α−n+1)

(n−1)! tn−1, L0 < ∞,

Θn(t) = |
(α
n

)
|tn, t ≥ 0, n ∈ N and this implies that the condition

(iii) of Theorem 2.3 does not hold if α /∈ N. Nevertheless, the series
appearing in (3) still converges, the estimate ||SB

K(t) − etBSK(t)|| ≤
L0 max

s∈[0,t]
||SK(s)||e2t||B||, t ∈ [0, τ) follows analogically and the proof of

Theorem 2.3 can be repeated verbatim. Having in mind these obser-
vations, we obtain the next important generalization of [16, Corollary
4.5] and [35, Theorem 2.3] (cf. also [21, Theorem 3.5]):

Theorem 2.5. Suppose α > 0, A is a subgenerator, resp. the integral
generator, of a (local, global exponentially bounded) α-times integrated C-
semigroup (Sα(t))t∈[0,τ), B ∈ L(E), BA ⊆ AB and BC = CB. Then A+B is
a subgenerator, resp. the integral generator, of a (local, global exponentially
bounded) α-times integrated C-semigroup (SB

α (t))t∈[0,τ), which satisfies, for
every x ∈ E and t ∈ [0, τ),

SB
α (t)x = etBSα(t)x+

∞∑
i=1

i∑
n=1

Bi

i!
(−1)nn

(
i

n

)(
α

n

) t∫
0

(t− s)n−1si−nSα(s)xds.
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Notice ([36]) that the previous formula can be rewritten in the following
form:

SB
α (t)x = etBSα(t)x+

∞∑
i=1

(
α

i

)
(−B)i

t∫
0

(t− s)i−1

(i− 1)!
eBsS(s)xds, x ∈ E, t ∈ [0, τ).

(10)

The following perturbation theorem for generators of exponentially bounded,
analytic integrated C-semigroups is applicable on a class of (differential)
operators analyzed by R. deLaubenfels in [10, Section XXI, Section XXIV].

Theorem 2.6. Suppose r > 0, α ∈ (0, π2 ], A is a subgenerator, resp. the
integral generator, of an exponentially bounded, analytic r-times integrated
C-semigroup (Sr(t))t≥0 of angle α, B ∈ L(E), BA ⊆ AB and BC = CB.
Then A+ B is a subgenerator, resp. the integral generator, of an exponen-
tially bounded, analytic r-times integrated C-semigroup (SB

r (t))t≥0 of angle
α, where

SB
r (z)x := ezBSr(z)x+

∞∑
i=1

(
α

i

)
(−B)i

z∫
0

(z − s)i−1

(i− 1)!
eBsSr(s)xds, x ∈ E, z ∈ Σα.

(11)

P r o o f. Clearly, L0 = sup
n∈N

|
(r
n

)
| < ∞. Notice that, for every z ∈ Σα,

the series appearing in (11) is absolutely convergent and that, for every
γ ∈ (−α, α) such that |γ| > arg(z), we have the following:

||SB
r (z)− ezBSr(z)|| ≤

∑
i≥1

L0||B||i
Rez∫
0

|z|i−1

(i−1)!e
||B|||z|Mγe

ωγRezds

≤ RezMγL0||B||e(2||B||+ωγ)Rez. (12)

This implies that (Sr(z))z∈Σα is a strongly continuous operator family sat-
isfying the conditions (i) and (ii) stated in the formulation of Definition 1.4.
It remains to be shown that the mapping

z 7→
∞∑
i=1

(
α

i

)
(−B)i

z∫
0

(z − s)i−1

(i− 1)!
eBsSr(s)ds, z ∈ Σα (13)
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is analytic. By standard arguments, the mapping f0(z) =
z∫
0
e−BsSr(s)ds, z ∈

Σα is analytic and f ′
0(z) = e−BzSr(z), z ∈ Σα. This simply yields that, for

every i ∈ N, the mapping fi(t) =
z∫
0

(z−s)i−1

(i−1)! eBsSr(s)ds, z ∈ Σα is analytic

and that f ′
i(z) = fi−1(z), z ∈ Σα. Furthermore, the series in (11) is locally

uniformly convergent; this follows from the next obvious estimate:∥∥∥(αi)(−B)i
z∫
0

(z−s)i−1

(i−1)! eBsSr(s)ds
∥∥∥

≤ Mγ

(
sup
z∈K

|z|||B||
)i

e
(||B||+ω) sup

z∈K
|z|

(i−1)! ,

where K is an arbitrary compact subset of Σα and γ is chosen so that
K ⊆ Σγ . An application of the Weierstrass theorem completes the proof of
theorem.

The following theorem extends [30, Theorem 3.8] and [35, Theorem 2.4,
Theorem 2.5, Corollary 2.6] (cf. also [40, Theorem 2.3]). The proof is
omitted since it follows by the use of the argumentation given in [35], [29,
Section 10] and [40].

Theorem 2.7. Suppose n ∈ N, A is a subgenerator, resp. the integral
generator, of a (local, global exponentially bounded) n-times integrated C-
semigroup (S(t))t∈[0,τ), B ∈ L(E), R(B) ⊆ C(D(An)) and BCx = CBx, x ∈
D(A). Then A+B is a subgenerator, resp. the integral generator, of a (local,
global exponentially bounded) n-times integrated C-semigroup (SB(t))t∈[0,τ)
which satisfies the following integral equation:

SB(t)x = S(t)x+

t∫
0

dn

dtn
S(t− s)C−1BSB(s)xds, t ∈ [0, τ), x ∈ E.

With Theorem 2.7 in view, one can prove the following extension of [29,
Theorem 10.1] that is comparable with [35, Theorem 4.6] and [39, Theorem
3.1]; notice only that the assertions related to the study of unbounded per-
turbations of generators of integrated C-semigroups (cf. [35, Theorem 3.1,
Theorem 3.2] and [23, Theorem 3.1]) and cosine functions can be proved
similarly. It seems possible to prove the assertions of Theorem 2.7 and Theo-
rem 2.8 in the case of (local) fractionally integrated C-semigroups and cosine
functions.
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Theorem 2.8. Suppose n ∈ N, A is a subgenerator, resp. the inte-
gral generator, of a (local, global exponentially bounded) n-times integrated

C-cosine function (C(t))t∈[0,τ), B ∈ L(E), R(B) ⊆ C(D(A⌊n+1
2

⌋)) and
BCx = CBx, x ∈ D(A). Then A + B is a subgenerator, resp. the inte-
gral generator, of a (local, global exponentially bounded) n-times integrated
C-cosine function (CB(t))t∈[0,τ).

The following theorem mimics an interesting perturbation result of C. Kaiser
and L. Weis ([12]-[13]) which can be additionally refined if the Fourier type
of the space E ([1], [12]) is also taken into consideration.

Theorem 2.9. Suppose K satisfies (P1), (P2) and there exists β ∈ (abs(K),∞)
such that for every ε > 0 there exists Cε > 0 with

1

|K̃(λ)|
≤ Cεe

ε|λ|, λ ∈ C, Reλ > β. (14)

(i) Suppose A generates an exponentially bounded K-convoluted semigroup
(SK(t))t≥0 such that ||SK(t)|| ≤ M1e

ωt, t ≥ 0 for some M1 > 0 and
ω ≥ 0. Let B be a linear operator such that D(A) ⊆ D(B) and that
there exist M ∈ (0, 1) and λ0 ∈ (max(β, ω),∞) satisfying ||BR(λ :
A)|| ≤ M, λ ∈ C,Reλ = λ0. Then, for every α > 1, the operator A+B

generates an exponentially bounded, (K ∗0 tα−1

Γ(α) )-convoluted semigroup.

(ii) Suppose A generates an exponentially bounded K-convoluted semigroup
(SK(t))t≥0 such that ||SK(t)|| ≤ M1e

ωt, t ≥ 0 for some M1 > 0 and
ω ≥ 0. Let B be a densely defined linear operator such that there
exist M ∈ (0, 1) and λ0 ∈ (max(β, ω),∞) satisfying ||R(λ : A)Bx|| ≤
M ||x||, x ∈ D(B), λ ∈ C,Reλ = λ0. Then there exists a closed
extension D of the operator A + B such that, for every α > 1, the
operator D generates an exponentially bounded, (K ∗0 tα−1

Γ(α) )-convoluted
semigroup. Furthermore, if A and A∗ are densely defined, then D is
the part of the operator (A∗ +B∗)∗ in E.

(iii) Suppose A generates an exponentially bounded K-convoluted cosine
function (CK(t))t≥0 such that ||CK(t)|| ≤ M1e

ωt, t ≥ 0 for some
M1 > 0 and ω ≥ 0. Let B be a linear operator such that D(A) ⊆
D(B) and that there exist M > 0 and λ0 ∈ (max(β, ω),∞) satisfying
||BR(λ2 : A)|| ≤ M

|λ| , λ ∈ C,Reλ = λ0. Then, for every α > 1,

the operator A + B generates an exponentially bounded, (K ∗0 tα−1

Γ(α) )-
convoluted cosine function.
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(iv) Suppose A generates an exponentially bounded K-convoluted cosine
function (CK(t))t≥0 such that ||CK(t)|| ≤ M1e

ωt, t ≥ 0 for some
M1 > 0 and ω ≥ 0. Let B be a densely defined linear operator such
that there exist M > 0 and λ0 ∈ (max(β, ω),∞) satisfying ||R(λ2 :
A)Bx|| ≤ M

|λ| ||x||, x ∈ D(B), λ ∈ C,Reλ = λ0. Then there exists a
closed extension D of the operator A+B such that, for every α > 1, the
operator D generates an exponentially bounded, (K ∗0 tα−1

Γ(α) )-convoluted
cosine function. Furthermore, if A and A∗ are densely defined, then
D is the part of the operator (A∗ +B∗)∗ in E.

P r o o f. We will prove only (iii) and (iv). By [17, Theorem 3.1], we
have that {λ2 : λ ∈ C, Reλ > max(β, ω)} ⊆ ρ(A) and that ||R(λ2 : A)|| ≤

M1

|λ||K̃(λ)|(Reλ−ω)
, λ ∈ C, Reλ > max(β, ω). Suppose z ∈ C and Rez > λ0.

Put λ = λ0 + iImz and notice that

||BR(z2 : A)|| =
∥∥∥BR(λ2 : A)

(
I + (λ2 − z2)R(z2 : A)

)∥∥∥
≤
∥∥∥BR(λ2 : A)

∥∥∥(1 + |λ− z||λ+ z|||R(z2 : A)||
)

≤ M
|λ|

(
1 + |λ− z||λ+ z| M1

|z||K̃(z)|(Rez−ω)

)
≤ M

|λ|

(
1 + |λ+ z| M1

|z||K̃(z)|

)
≤ M

(
1
|λ| + (1 + |z|

|λ|)
M1

|z||K̃(z)|

)
≤ M

(
1
λ0

+ M1

|z||K̃(z)| +
M1

λ0|K̃(z)|

)
. (15)

Consider now the function h : {z ∈ C : Rez ≥ 0} → L(E) defined by
h(z) := zBR((z + λ0)

2 : A), z ∈ C, Rez ≥ 0. Then ||h(it)|| ≤ M, t ∈ R
and, owing to (14) and (15), we have that, for every ε > 0, there exists Cε > 0
such that ||h(z)|| ≤ Cεe

ε|z| for all z ∈ C with Rez ≥ 0. An application of
the Phragmén-Lindelöf type theorems (cf. for instance [1, Theorem 3.9.8,
p. 179]) gives that ||h(z)|| ≤ M for all z ∈ C with Rez ≥ 0. This, in turn,
implies that there exists a > λ0 such that ||BR(λ2 : A)|| < 1

2 , λ
2 ∈ ρ(A+B)

and that, for every λ ∈ C with Reλ > a :∥∥∥λR(λ2 : A+B)
∥∥∥ = ∥∥∥λR(λ2 : A)(I −BR(λ2 : A))−1

∥∥∥ ≤ 1

|K̃(λ)|
.

The proof of (iii) follows by making use of [17, Theorem 3.1] and [36,
Theorem 1.12] while the proof of (iv) is a consequence of [12, Lemma 3.2]
and a similar reasoning.
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By the proof of Theorem 2.9, we immediately obtain the following corollary.

Corollary 2.10.

(i) Suppose A generates a cosine function (C(t))t≥0 satifying ||C(t)|| ≤
Meωt, t ≥ 0 for appropriate M > 0 and ω ≥ 0. If B is a linear
operator such that D(A) ⊆ D(B) and that there exist M ′ > 0 and
λ0 ∈ (ω,∞) satisfying ||BR(λ2 : A)|| ≤ M

|λ| , λ ∈ C,Reλ = λ0, then,
for every α > 1, the operator A+B generates an exponentially bounded,
α-times integrated cosine function.

(ii) Suppose A generates a cosine function (C(t))t≥0 satifying ||C(t)|| ≤
Meωt, t ≥ 0 for appropriate M > 0 and ω ≥ 0. Let B be a densely
defined linear operator such that there exist M ′ > 0 and λ0 ∈ (ω,∞)
satisfying ||R(λ2 : A)Bx|| ≤ M

|λ| ||x||, x ∈ D(B), λ ∈ C,Reλ = λ0.
Then there exists a closed extension D of the operator A+B such that,
for every α > 1, the operator D generates an exponentially bounded, α-
times integrated cosine function. Furthermore, if A and A∗ are densely
defined, then D is the part of the operator (A∗ +B∗)∗ in E.

We close the paper with the following illustrative example.

Example 2.11.

(i) ([22]) Let E := C0(R)⊕C0(R)⊕C0(R), C(f, g, h) := (f, g, sin(·)h(·)),
f, g, h ∈ C0(R) and A(f, g, h) := (f ′ + g′, g′, (χ[0,∞) − χ(−∞,0])h),
(f, g, h) ∈ D(A) = {(f, g, h) ∈ E : f ′ ∈ C0(R), g′ ∈ C0(R), h(0) =
0}. Arguing as in [22, Example 8.1, Example 8.2], one gets that
A is the integral generator of an exponentially bounded once inte-
grated C-semigroup and that A is not a subgenerator of any local
C-semigroup. Suppose now mi ∈ C1(R), i = 1, 2, the mappings
t 7→ |t|mi(t), t ∈ R and t 7→ |t|m′

i(t), t ∈ R are bounded for i = 1, 2;
C(R) ∋ m3 is bounded and satisfies m3(0) = 0. Put B(f, g, h) :=

(m1(·)
·∫
0
f(s)ds,m2(·)

·∫
0
g(s)ds, sin(·)m3(·)h(·)), f, g, h ∈ C0(R). Then

one can simply verify B ∈ L(E), R(B) ⊆ C(D(A)) and BC(f, g, h) =
CB(f, g, h), (f, g, h) ∈ E. By Theorem 2.7, one obtains that A + B
is the integral generator of an exponentially bounded once integrated
C-semigroup.

(ii) Let E := L1(R) and let D := d/dx with maximal distributional do-
main. Then it is well known (cf. also [12, Corollary 3.4, Example
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7.1]) that E has the Fourier type 1, and in particular, that E is not a
B−convex Banach space. Furthermore, A := D2 = d2/dx2 generates
a bounded cosine function (C(t))t≥0 given by(

C(t)f
)
(x) :=

1

2

(
f(x+ t) + f(x− t)

)
, t ≥ 0, x ∈ R, f ∈ L1(R),

and Sobolev imbedding theorem implies D(A) = W 1,2(R) ⊆ C(R) ∩
L∞(R). Suppose g ∈ L1(R) \ L∞(R) and define a linear operator B :
L1(R)∩L∞(R) → L1(R) by Bf(x) := f(x)g(x), f ∈ L1(R)∩L∞(R).
In general, B cannot be extended to a bounded linear operator from
L1(R) into L1(R) and R(B) * D(A). Clearly,

||B(2λR(λ2 : A)f)|| =
∞∫

−∞
|g(x)||

∞∫
0
e−λt(f(x+ t) + f(x− t))dt|dx

≤
∞∫

−∞
|g(x)|

∞∫
0
(|f(x+ t)|+ |f(x− t)|)dtdx

≤ 2||g||||f ||, λ ∈ C, Reλ > 0, f ∈ L1(R),

and this implies that all assumptions quoted in the formulation of
Corollary 2.10(i) holds with λ0 = 1. Hence, A+B generates an expo-
nentially bounded α-times integrated cosine function for every α > 1;
let us also point out that it is not clear whether there exists β ∈ [0, 1)
such that A+B generates a (local) β-times integrated cosine function
although one can simply prove that there exist a > 0 and M > 0 such
that ||λR(λ2 : A+B)|| ≤ M

Reλ , λ ∈ C, Reλ > a.

(iii) Suppose A generates a (local) α-times integrated cosine function for
some α > 0, B ∈ L(E) and BA ⊆ AB. Then the proof of [15, Theorem
4.3] and the analysis given in [17, Example 7.3] imply that, for every
s ∈ (1, 2),±iA generate globalK1/s-semigroups and that±iA generate

local K1/2-semigroups, where Kσ(t) = L−1(e−λσ
)(t), t ≥ 0, σ ∈ (0, 1).

By Theorem 2.3 and Remark 2.4(iii), we have that ±i(A+B) generate
globalK1/s-semigroups for every s ∈ (1, 2) and that±i(A+B) generate
localK1/2-semigroups. Therefore, a large class of differential operators
(cf. [2], [11] and [42]) generating integrated cosine functions can be
used to provide applications of Theorem 2.3.

(iv) ([19], [16]) Let s > 1,

E :=

{
f ∈ C∞[0, 1] | ∥f∥ := sup

p≥0

∥f (p)∥∞
p!s

< ∞
}
,



Perturbation theorems for convoluted C-semigroups and cosine functions 45

and
A := −d/dx, D(A) := {f ∈ E : f ′ ∈ E, f(0) = 0}.

It is well known that there exist positive real numbers m and M such

that {λ ∈ C : Reλ ≥ 0} ⊆ ρ(A) and ∥R(λ : A)∥ ≤ Mem|λ|
1
s , Reλ ≥ 0

([19]). Since |e−ξλ
1
s | ≤ e−ξ|λ|

1
s cos( π

2s
), ξ > 0, λ ∈ C, Reλ > 0, we

have that A generates a global exponentially boundedKa, 1
s
-convoluted

semigroup for every a > m
cos( π

2s
) , where Ka, 1

s
(t) = L−1(e−aλ

1
s )(t), t ≥

0. Let n ∈ N and let Bf(x) :=
n∑

i=1

x∫
0

(x−s)n−1

(n−1)! f(s)ds, x ∈ [0, 1], f ∈

E. Then it is checked at once that B ∈ L(E) and that BA ⊆ AB.
Owing to Theorem 2.3 and Remark 2.4(iii), we easily infer that A+B
generates a global exponentially bounded Ka, 1

s
-convoluted semigroup.
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