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(Presented at the 1st Meeting, held on February 27, 2009)

A b s t r a c t. A large class of patterns, consisted of lines being situated
in the plane, is classified into equivalence classes, each of which is a con-
veyor of meaning of a shape. Invariants of this classification are developed
and, in particular, for a more regular subclass of these patterns, invariant
matrices are defined being unique arithmetic codes of these shapes. Then, an
algorithm is established as the way of transformation of so called associated
matrices, formed as a result of local inspection of patterns, into invariant
ones which express the global properties of these patterns. Using the language
of psychology, we could say that this investigation is the study of percepts
and the establishment of their meaning.

AMS Mathematics Subject Classification (2000): 68T10
Key Words: Semi-topological classification of patterns, Associated and

invariant matrices, Transformation of associated matrices into invariant ones



18 M. M. Mrajanović

1. Introduction

In a number of papers (first of all in M. Marjanović, R. Tomović, S.
Stanković, A Topological Approach to Recognition of Line Figures, Bull.
T.CVII, No 19, de l’Académie Serbe des Sciences et des Arts, pp. 43–64,
1994), a large class of line patterns in the plane have been defined and their
semi-topological classification established. In this paper we redefine this
class of objects and the way of their classification, avoiding all topological
terms. In fact, following this approach, we consider patterns to be families
of arcs rather than their union as it was the case in our previous papers and
when such unions were called forms (or figures). These families of the arcs
are of the two kinds—some are graphs of continuous function in the plane
supplied with a coordinate system (called stretching), the others are vertical
intervals in that plane. Their classification is semi-topological in the sense
that the size of these arcs and the shape of stretching ones may vary but
their type and orientation stay preserved.

Recognition of patterns is based on their invariant properties of which,
particularly discriminating, are invariant matrices defined in Section 4 of
this paper and which are considered here for the first time.

To grasp the intuitive idea of this morphology, the way how a look is
cast at an object of observation has to be fixed. In this paper, the post of
observation could be imagined to be the point in the plane down, at infinity
and a look is cast along the directions going straight upwards. Then, a
pattern is seen to be split into layers overlying one above the other. This
also explains the essential role of the coordinate system that we suppose to
be fixed throughout all our considerations.

2. Definition of line patterns and their decomposition into layers

Let E2 be the Euclidean plane supplied with a fixed rectangular coordi-
nate system Σ. Then, to each point of E2 a unique pair of real numbers is
assigned, being its coordinates with respect to Σ.

Let [a, b] be a closed interval belonging to x-axis of Σ. If f is a continuous
function defined on [a, b], then its graph will be called a stretching arc in
E2. The left and right end points of this arc are the points (a, f(a)) and
(b, f(b)), respectively. The point (x, f(x)) for x ∈ (a, b) is the interior point
of this arc and the set {(x, f(x)) | x ∈ (a, b)} is its interior.

For a point a belonging to x-axis of Σ and a closed interval [c, d] belonging
to y-axis of Σ, the set {a} × [c, d] will be called a vertical arc in E2. The
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points (a, c) and (a, d) are the lower and upper end points of this arc, the
point (a, y) for y ∈ (c, d) its interior point and the set {(a, y) | y ∈ (c, d)} is
its interior.

Let Φ be a finite family of stretching and vertical arcs in E2 satisfying
the following conditions: (i) Two stretching arcs can intersect only at their
end points, (ii) Each vertical arc intersects at least one stretching arc. This
intersection is one of the end points of the stretching arc, (iii) No two vertical
arcs intersect.

Then, the family Φ is called a line pattern. Let us notice that the con-
dition (ii) excludes the existence of isolated vertical arcs.

For a stretching arc α ∈ Φ, its left (right) end point will be denoted by
end−(α), (end+(α)). A vertical arc ω ∈ Φ which intersects α at end−(α)
(end+(α)) will be called left (right) end component of α and denoted by
C−(α) (C+(α)). For the sake of simplicity, when α is a stretching arc in
E2, we also denote by α the corresponding continuous function and for
x ∈ dom (α), α(x) denotes the value of this function at the point x.

For two stretching arcs α and β in E2 for which dom (α)∩ dom (β) 6= ∅,
we say that α is lower than β if there exist a point x ∈ dom (α)∩dom (β) such
that α(x) < β(x). In this case, α(x) ≤ β(x) for each x ∈ dom (α)∩dom (β),
with equality being possible only at the abscissas of end points of these arcs.
Two pairs of such arcs are illustrated in Fig. 1.

Fig. 1

(When no coordinate system is indicated, we suppose that the lower and
left edges of the page are x-axis and y-axis respectively).

The relationship “to be lower than” defines a relation on the set of all
stretching arcs in E2. We will somewhat modify it when it is considered
to be applied to the set of stretching arcs of a line pattern Φ. Namely, the
components of stretching arcs will be viewed as they were “big” end points.
Thereby, we modify the above relation in the way that two stretching arcs
α and β having the same component, being right for one of them and left
for the other one, are not considered to be related even if α(x) > β(x) or
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α(x) < β(x) at the point x ∈ dom (α) ∩ dom (β). For example, the pairs of
arcs illustrated in Fig. 2 are not related in Φ.

Fig. 2

As being defined on the set of stretching arcs in Φ, this relation extends to
a unique order relation “<” on this set. Namely, if α and β are stretching
arcs in Φ, then we write α < β if there exists a sequence of stretching arcs
in Φ: α0 = α, α1, . . . , αk = β, (k ≥ 1) such that αi is lower than αi+1 in Φ,
(i = 0, . . . , k − 1). We will call the order relation “<” the vertical ordering
of stretching arcs in Φ. In Fig. 3 a line pattern is given

Fig. 3

where: α < γ, β < δ, δ < η, β < η. Minimal elements of this ordered set
are: α and β.

A line pattern is simple if it contains no two stretching arcs which are
related. For instance the following pattern

Fig. 4

is simple. The set of all stretching arcs of a simple pattern Φ can be ordered
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in the sequence α1, α2, . . . , αn according to the rule that the right end
point of dom (αi) is equal or less than the left end point of dom (αi+1),
(i = 1, . . . , n− 1). The number n is called the length of Φ.

We will call an end point of a stretching arc in Φ a node, when it does
note belong to a vertical arc. For example in the case of the following pattern

Fig. 5

the points A, B and C are its nodes.
Let Φ be a line pattern. As we have seen it, the set of all stretching arcs

in Φ is an ordered set and let Λ1 be those of these arcs which are minimal
with respect to this ordering, taken together with all their end components.
Then Λ1 is a simple line pattern which we call the first layer of Φ. By
removing from Φ all stretching arcs in Λ1 together with those of its vertical
arcs which are not components of some of remaining arcs, a subfamily Φ1

of Φ is obtained. The subfamily Φ1 is again a line pattern. Let Λ2 be
the first layer of Φ1, then Λ2 is also simple and we call it the second layer
of Φ. Again, by removing from Φ1 all stretching arcs in Λ2 together with
their end components not being end components of some of remaining arcs,
a subfamily Φ2 of Φ1 is obtained. The same procedure is applied until a
family Φm−1 is obtained and which is simple itself. Then, we call Φm−1, the
m-th layer of Φ and we write Λm = Φm−1. We call the sequence

Λ1, Λ2, . . . ,Λm

the decomposition of Φ into layers and the number m, the height of Φ.
For instance, in Fig. 6 the decomposition of a line pattern into layers is
illustrated and the height of the pattern is 3.

Let m be the height of a line pattern Φ and let n(i) be the length of
its layer Λi, i = 1, . . . , m. Then, there exists a biunivoque correspondence
between the set of all pairs (i, j), (i = 1, . . . , m), (j = 1, . . . , n(i)) and the
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Fig. 6

set of all stretching arcs in Φ. Let αij be such an arc corresponding to (i, j).
Let Φ and Φ′ be two line patterns having the same height m and let for each
i, (i = 1, . . . , m), the layers Λi and Λ′i have the same length n(i). Then,
to each stretching arc αij in Φ, the stretching arc α′ij in Φ′ is corresponded
and this correspondence is also biunivoque. We say that such two arcs are
analogous and that the two patterns Φ and Φ′ are similar. Two pairs of
similar patterns are given in Fig. 7:

Fig. 7

3. Classification of line patterns

In what follows we restrict the class of line patterns to those of them
which have no vertical arc. Classification in general case is somewhat more
complicated and we omit it here.

Let α and β be two arcs of a pattern Φ. If α and β intersect at the point
A, then A is the end of each of these arcs, being of one of the following
types: left of α and left of β – (l, l), left of α and right of β – (l, r), right of
α and left of β – (r, l), right of α and right of β – (r, r). Thus, for a pair of
intersecting arcs, one of these four possibilities determines the type of their
intersection. Let now Φ and Φ′ be two similar line patterns and let α, β
and α′, β′ be pairs of analogous arcs in Φ and Φ′, respectively. Then Φ is
semi-topologically equivalent to Φ′ if the following condition is satisfied: For
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any two arcs α and β in Φ, α and β intersect at the point A if and only if
α′ and β′ intersect at the point A′ and these intersections are of the same
type.

Examples of pairs of similar patterns which are not equivalent are illus-
trated in Fig. 7: end−(α11) 6= end−(α21) and end−(α′11) = end−(α′21) in
the first case, end+(α11) = end+(α21) and end+(α′11) 6= end+(α′21) in the
second.

Let us notice that when two patterns are equivalent then there exists
a biunivoque correspondence between their sets of nodes. Moreover, the
numbers of stretching arcs related to analogous nodes are equal. Namely,
let the point A be a node in Φ and let Ψ− = {α | end−(α) = A}, Ψ+ = {α |
end+(α) = A}. It may happen that one of these two sets is empty. Let us
suppose that Ψ− 6= ∅ and let α0 ∈ Ψ−. Then, the point A′ = end−(α′0) is a
node in Φ′ and the sets Ψ− and Ψ′− = {α′ | end−(α′) = A′} as well as the
sets Ψ+ and Ψ′

+ = {α′ | end+(α′) = A′} have the same number of elements.
Now we consider the way how a matrix with entries 1’s and 0’s is attached

to a pattern Φ as a procedure of its arithmetic codification. Let Φ be a line
pattern and let m be its height and Λ1, . . . , Λm its decomposition into layers.
By projecting orthogonally onto x-axis all nodes of Φ, an increasing sequence
of points a1, a2, . . . , as is obtained. The matrix MΦ that is attached to Φ
will be of the type (2s− 1)×m and to each layer Λi, i-th row of MΦ will be
attached. For i = 1, . . . , m and k = 1, . . . , s, let ξ be (i, 2k−1)-entry of MΦ.

If Λi has a node projecting onto ak, then ξ is 1 if that node does not
belong to any Λj , j < i and is 0 if it belongs to some Λj , j < i.

If an interior point of a stretching arc of Λi projects on ak, then ξ is 1,
and ξ is 0 when no point of |Λi| projects onto ak, (|Λi| is the union of all
arcs of Λi).

For i = 1, . . . , m and k = 1, . . . , s− 1, let η be (i, 2k)-entry of MΦ. The
open interval (ak, ak+1) is either contained into the projection of |Λi|, when
η = 1, or is disjoint with that projection, when η = 0. We call MΦ the
matrix associated with the pattern Φ and the entries of MΦ belonging to
even columns will be called “running”.

For example, the matrix associated with the pattern in Fig. 8:
will be




1 1 1 1 1 1 0
0 0 0 1 0 0 0
0 0 1 1 1 1 1



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Fig. 8

The three patterns in Fig. 9:

Fig. 9

are equivalent but the matrices associated with them are different:




0 0 0 0 1 1 0
0 1 1 1 1 1 1
1 1 1 0 0 0 0


 ,




1 1 0
0 1 1
1 1 1


 ,




1 1 1 1 0 0 0
0 0 0 1 1 0 0
0 0 1 1 1 1 1


 .

For the second pattern in Fig. 9, we could say that it is well-balanced
while the first and the third are unbalanced. This possible disorder of parts
(arcs) affects the form of the associated matrices.

4. Invariant matrices

For a more efficient study, we have to confine our considerations to a still
smaller class of patterns, requiring properties which make their structure
more regular. Loosely speaking, now we aim to define a subclass of line
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patterns whose layers, when properly extended, would stretch over the same
domain.

Let Φ be a pattern and Λ1, . . . , Λm its decomposition into layers. A
layer Λi is called connected if each two of its successive arcs have a common
end. In other words, the set |Λi| is connected and it represents a stretching
arc itself. Our first restricting condition will be

(a) All layers of Φ are connected.
As a consequence of this condition, it follows that the domain of Φ (i.e.

the projection of |Φ| onto x-axis, where |Φ| is the union of all arcs in Φ) is a
connected set (i.e. an interval). Indeed, when S = dom (Φ) is disconnected
and S = [a, b]∪(S\[a, b]) is a disconnection, let Φ1 be all arcs in Φ projecting
onto [a, b] and Φ2 those of them projecting onto S \ [a, b]. The first layer
Λ′1 of Φ1 and the first layer Λ′′1 of Φ2 make together the first layer Λ1 of Φ.
Being |Λ1| = |Λ′1| ∪ |Λ′′1| a disconnection, the pattern Φ does not satisfy (a).

Let Λ be a layer of Φ and α be its first (last) stretching arc. The point
End−(Λ) = end−(α) (End+(Λ) = end+(α)) will be called left (right) end
point of Λ and the set

Int(Λ) = |Λ| \ {End−(Λ), End+(Λ)}

will be called the interior of Λ. Our second restricting condition will be:
(b) For each i and each j, (i 6= j) End−(Λi) and End+(Λi) do not

belong to Int(Λj).
Our third restricting condition will be:
(c) For each i, j, k in {1, 2, . . . , m} such that i < j < k if a node A

belongs to Λi and Λk, then it also belongs to Λj .
As an immediate consequence of (c), it follows that when Λi(1), . . . , Λi(k),

i(1) < · · · < i(k) are all layers to which a node A belongs, then i(1), . . . , i(k)
are successive integers. A line pattern Φ (without vertical arcs) satisfying
the conditions (a), (b) and (c) will be called even.

Let us notice that the conditions (a), (b) and (c) express invariant prop-
erties of patterns, what means that as soon as a pattern Φ satisfies one of
these conditions each equivalent to it pattern Φ′ does as well. To be an even
pattern is also an invariant property.

For the class of even patterns, together with the concept of height, an
invariant meaning of the length can also be given. To do it we need to fix a
number of related technical details.

A sequence α1, α2, . . . , αs of stretching arcs of a pattern Φ, which
satisfies the condition end+(α1) = end−(α2), . . . , end+(αs−1) = end−(αs)
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will be called a stretching chain ending at end+(αs). The number s will be
called the length of that chain. If A is a node of Φ, then the maximal length
of all chains ending at A will be called the order of the node A and will be
denoted by ord(A). Now, the length of a pattern Φ is the number

length(Φ) = max{ ord(A) | A is a node of Φ }.

Remarks: (a) The number of stretching arcs of a layer Λ of Φ is less
or equal to length(Φ). (b) When the nodes of a layer Λ of Φ are arranged
according to the increasing order of their projections to dom (Φ), then their
orders form an increasing sequence. (c) The concepts ord(A) and length(Φ)
are invariant, what means that for each two equivalent patterns Φ and Φ′:
ord(A) = ord(A′) and length(Φ) = length(Φ′), (where A and A′ are analo-
gous nodes).

For the pattern Φ in Fig. 10, length(Φ) = 4 and the lengths of all layers
are equal to 3, while the numbers assigned to the nodes are their orders.

Fig. 10

This example also shows that the orders of nodes of a layer need not be
successive integers. Now we describe the way how a matrix is assigned to
each equivalence class of even patterns.

Let Φ be an even pattern of height m and length t. Let us define a
matrix of the type m× (2t + 1) by corresponding to each layer Λi of Φ, the
row of the following form

ai
1 1 ai

3 1 . . . 1 ai
2t+1 ,

where ai’s are defined as it follows:

ai
1 =

{
1, when the node End−(Λi) does not belong to Λi−1

0, when the node End−(Λi) belongs to Λi−1,
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ai
2t+1 =

{
1, when the node End+(Λi) does not belong to Λi−1

0, when the node End+(Λi) belongs to Λi−1.

Let now 0 < j < t. When Λi has a node A of order j, then

ai
2j+1 =

{
1, when A does not belong to Λi−1

0, when A belongs to Λi−1,

and when Λi does not have a node of order j, then

ai
2j+1 = 1.

It is worth noticing that this definition is given in invariant terms and that
two equivalent patterns Φ and Φ′ will have the same invariant matrix as-
signed. Since this assignment is unique for all patterns belonging to the
same equivalence class [Φ], we call this matrix the invariant matrix of Φ
and we denote it by M[Φ]:

M[Φ] =




am
1 1 . . . 1 am

2j+1 1 . . . 1 am
2t+1

· · · · · · · · · · · · · · · · · · · · · · · · · · ·
a1

1 1 . . . 1 a1
2j+1 1 . . . 1 a1

2t+1


 .

For example, the invariant matrix assigned to the pattern in Fig. 10 will be



0 1 1 1 0 1 0 1 0
0 1 1 1 0 1 1 1 0
0 1 0 1 0 1 1 1 0
1 1 1 1 1 1 1 1 1




As we have seen it, the associated matrices of the three equivalent patterns
in Fig. 9 are different. Their height is 3 and length 1 and their invariant
matrix is




1 1 0
0 1 1
1 1 1




The second of those patterns is “good” (well balanced) and its associated
matrix coincides with the invariant one. Let us note that a pattern Φ is
“poor” when unbalanced with stretching arcs unnecessarily uneven in size
and shape. A “good” pattern Φ′ is equivalent to Φ, balanced and even in
size and shape at least to the degree its structure permits such regularity.
The “best” is the arithmetical code of Φ in the form of its invariant matrix.
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5. Invariant matrices are unique arithmetic codifications of equivalent
patterns

Let us notice that both invariant matrices of the patterns in Fig. 11

Fig. 11

coincide with
[

0 1 1 1 1
1 1 1 1 1

]

Both patterns Φ1 and Φ2 have a node where only two arcs intersect at right
end point of one of them and left end point of the other. When only two arcs
α and β intersect in a node of a pattern being right end point of one of them
and left end point of the other, then such a node will be called superfluous.
By replacing α and β with their union α ∪ β, which is again a stretching
arc, this superfluous node is removed. A pattern having no superfluous node
will be called canonical. By removing successfully all superfluous nodes of
a pattern, a canonical pattern is obtained. Proceeding further, we assume
that all patterns under consideration are canonical.

(Let us notice that a pattern may be canonical but when its layers are
removed, the remaining subpatterns need not be. This is the reason why
this assumption refers to a pattern as a whole, not to its subpatterns).

Now we are going to state some characteristic properties of invariant
matrices. Let Φ be a pattern of length t and α1, α2, . . . , αt the maximal
chain in Φ. Then, the order of the node end+(αk) = A, (0 < k < t) is k.
Indeed, when there would exist a chain of length m, (m > k) ending at A,
then that chain together with the arcs αk+1, . . . , αt would be a chain in Φ
of length larger than t, what contradicts our assumption. Hence, for each
k ∈ {1, . . . , t− 1} there exists a node of Φ of order k. If A is a node of order
k, (0 < k < t) then A is left and right end point of at least two pairs of arcs
in Φ. Hence, a subcolumn of the (2k + 1)-column of the invariant matrix
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which is corresponded to A has one of the following forms

0
0 0
1, 1, . . .

dependently on the number of pairs of arcs which intersect at A. Such
subcolumns will be called nodal. In view of this all, we state:

(a) Each (2k + 1)-column, (0 < k < t) of the invariant matrix M[Φ]

contains at least one nodal subcolumn.
(b) As for the first and last columns of an invariant matrix, they uniquely

split into nodal subcolumns of the form

0
0 0

1, 1, 1, . . .

and its last row consists of 1’s.
When A is a node of order k, (0 < k ≤ t), then there exists a chain of

arcs in Φ having the length k and ending at A. In view of this remark, we
state

(c) For each nodal subcolumn of the (2k + 1)-column, (0 < k ≤ t), there
exists a sequence of elements of M[Φ]

a1 1 a3, a′3 1 a5, . . . , a′2k+1 1 a2k+1

where a and a′, with the same subscripts, belong to the same nodal subcol-
umn.

From (c), it follows that there exists no array of an invariant matrix of
the form

1 1 1 0
· · · · · · · · · · · ·
1 1 1 0
1 1 1 1

where last column of the array is a nodal subcolumn and where no of 1’s
from the first three columns belongs to a nodal subcolumn of M[Φ].

As an example, now we consider the Pythagorean pentagram Π, repre-
sented in Fig. 12.
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Fig. 12

Its associated matrix is

MΠ =




0 1 1 1 1 1 0 1 1 1 0 1 1 1 1 1 0
1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1
0 0 0 1 1 1 1 1 0 1 1 1 1 1 0 0 0
0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0




The length of the pattern Π is 5 and its invariant matrix is

M[Π] =




0 1 1 1 0 1 0 1 1 1 0
1 1 0 1 1 1 1 1 0 1 1
0 1 1 1 0 1 1 1 1 1 0
1 1 1 1 1 1 1 1 1 1 1




Up to the equivalence, the invariant matrix determines a pattern Π′,
with respect to which it will also be its associated matrix. Indeed, let us
start with a blue print which consists of six vertical (dotted) lines and one
horizontal line being x-axis (Fig. 13). According to the last row of M[Π], the
first layer Λ1 of Π′ is constructed to be a segment stretching from the first
vertical line to the last and its nodal points are marked on vertical lines.
Then, two circular arcs are constructed to correspond to the sequences of
entries of the third row: 0 1 1 1 0 and 0 1 1 1 1 1 0 and nodal points are marked
on each of them, (Fig. 13). Thus, the layer Λ2 is constructed. Similarly Λ3

and Λ4 are constructed, (Fig. 13).
The variant of Pythagorean pentagram represented in Fig. 13 is well-balanced
and hence, a “good” one as far as the way of looking from a post at the point
in infinity is concerned. Its associated matrix coincides with the invariant
one, what we take as a criterion for a pattern to be well-balanced. It is
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Fig. 13

interesting to notice that the star-shaped variant of the pentagram shown
in Fig. 14,

Fig. 14

(though more symmetric than that in Fig. 13), is not again well-balanced.
Its associated matrix is the following one




0 1 1 1 0 1 1 1 0 1 1 1 0
1 1 0 1 1 1 1 1 1 1 0 1 1
0 1 1 1 1 1 0 1 1 1 1 1 0
1 1 1 1 1 1 1 1 1 1 1 1 1




and evidently different from its invariant matrix.
The usual regular variant of the Pythagorean pentagram (Fig. 12) is
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even less balanced than the star-shaped pattern in Fig. 14. The regularity
of that variant of pentagram is related to the way how evenly its vertices are
situated along the circumscribed circle, what has no significance in the case
of semi-topological classification. And, let us also add that when we speak
of variants of the Pythagorean pentagram, we mean that such patterns are
semi-topologically equivalent.

From the fact that invariant matrices are defined in invariant terms, it
follows that two equivalent patterns have the same invariant matrix, but the
converse of this implication is also true.

Let us notice that sequences of successive entries ak
s 1 ak

s+1 . . . ak
r of rows

of an invariant matrix M[Φ], where ak
s and ak

r are the only terms belonging
to nodal subcolumns, determine all arcs of Φ. For two such sequences, two
corresponding arcs intersect when these sequences have terms at their ends
belonging to the same nodal subcolumns. Thereby, an invariant matrix
reveals the whole structure of a pattern, determining its arcs and the way of
their intersection. Thus, we end this section with the following statement:

Two canonic patterns are semi-topologically equivalent if and only if their
invariant matrices are equal.

6. Transforming an associated matrix into the invariant one

The associated matrix of a pattern Φ is formed by casting a look at
it along vertical lines. The sight of Φ changes only passing through those
lines containing nodes, that is in a finite number of cases. Thus, this matrix
is formed according to the way a pattern stands, without using any of its
global properties. But, as we have seen it, two equivalent patterns may have
quite different associated matrices, thereby they are not a very efficient tool
for discrimination of patterns. Let us also remark that, when all 1’s in each
column of an associated matrix are summed up, a sequence of numbers is
obtained, called crossing numbers. In a time, more than twenty years ago,
these numbers were used in pattern recognition but abandoned latter be-
cause of their inefficiency. Although the associated matrices are a refinement
of crossing numbers, being not invariant, they cannot be efficiently used for
recognition, either. This is the reason why we turn our attention to the way
how an associated matrix is transformed into the invariant one.

Proceeding further we maintain the assumption that the patterns under
consideration are even and canonical. First we prove the following
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Proposition 1. Let A be a left (right) node of a pattern Φ and let Λi,
. . . , Λi+k−1 be all layers which contain A. Let [0, a] be the domain of Φ
and let prEnd−(Λi) = ts > 0, (prEnd+(Λi) = ts < a). Then, there exists
a pattern Φ′ equivalent to Φ and having all layers not included in Λi, . . . ,
Λi+k−1 identical with the corresponding ones of Φ and prEnd−(Λ′i) = 0,
(prEnd+(Λ′i) = a).

P r o o f. We will prove this proposition when prEnd−(Λi) = ts > 0
and the case prEnd+(Λi) = ts < a is proved analogously. Let δ > 0 be
such a number that [ts, ts + δ] contains no projection of nodes of Φ apart
from ts. Let c and d be lower and upper bounds of the set {y | (x, y) ∈ |Φ|}
respectively and let m be the height of Φ. Let y = α(x) be the function
whose graph is |Λi−1|, (i > 1) and y = β(x) the function whose graph is
|Λi+k|, (i + k ≤ m) and both of them possibly extended on [0, ts + δ] so
that the relation α(x) < β(x) is preserved for each x ∈ [0, ts + δ]. (This is
feasible, according to the properties (a), (b) and (c) in Section 4). For i = 1
let α(x) = c and for n + k = m + 1, let β(x) = d. Let η = [α(0) + β(0)]/2
and A′ = (0, η).

Fig. 15

Let us remove ([0, ts + δ] × R) ∩ (|Λi| ∪ · · · ∪ |Λi+k−1|). Then the parts of
arcs meeting at A, which are in [ts + δ, a]×R, can be continuously extended
through the strip between y = α(x) and y = β(x) so that they do not
intersect and that they meet at A′. In that way the pattern Φ′ is obtained
which is equivalent to Φ.

Two matrices MΦ and MΦ′ have all their entries equal which are out of
the following arrays
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0 . . . 0 0 −(i + k − 1)-th row− 0 . . . 1 1
. . . . . .

0 . . . 0 0 0 . . . 1 1
0 . . . 0 1 −i-th row− 1 . . . 1 1

Let us add that an end nodal column may also be: 1, thereby the arrays of
the form

0 . . . 0 1 −i-th row− 1 . . . 1 1

are also included. 2

Based on Proposition 1, we define elementary transformations of the first
type, being the replacements of one array by another one as it is indicated
just below




. . .
0 . . . 0 0

. . . . . .
0 . . . 0 0
0 . . . 0 1

. . .




e1−→




. . .
0 . . . 1 1

. . . . . .
0 . . . 1 1
1 . . . 1 1

. . .







. . .
0 0 . . . 0

. . . . . .
0 0 . . . 0
1 0 . . . 0

. . .




e1−→




. . .
1 1 . . . 0

. . . . . .
1 1 . . . 0
1 1 . . . 1

. . .




All other entries out of the indicated arrays are equal, (and the case of sub-
columns of the form:1, is considered to be also included). A transformation
of this type will be called pulling of the end nodal subcolumns to the end
position.

The next proposition will be the basis for definition of elementary trans-
formations of the second type.

Proposition 2. Let [0, a] be the domain of a pattern Φ and let all its left
end nodes project onto 0 and right ones onto a. Let (tj) be the increasing
sequence of projections of its other nodes and tj−1, tj two of its terms. Let
A be a node of Φ projecting onto tj and Λi, . . . , Λi+k−1 all layers of Φ
containing A. If none of the layers Λi, . . . , Λi+k−1 has a node projecting
onto tj−1, then there exists a pattern Φ′ equivalent to Φ and having all layers
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not included in Λi, . . . , Λi+k−1 identical with the corresponding ones of Φ
and a node A′ projecting onto tj−1.

P r o o f. Let y = α(x) and y = β(x) be the functions as they have
been defined in the proof of the previous proposition. Let δ > 0 be such a
number that the interval [tj−1− δ, tj + δ] contains no other point apart from
tj−1, tj . Let η = [α(tj−1) + β(tj−1)]/2 and let A′ = (tj−1, η).

Fig. 16

Removing the set ([tj−1 − δ, tj + δ] × R) ∩ (|Λi| ∪ · · · ∪ |Λi+k−1|), the parts
of arcs of layers Λi, . . . , Λi+k−1 in [tj + δ, a]× R, having A as their left end
point, can be extended through the strip between y = α(x) and y = β(x) so
that they do not intersect and meet at the point A′. Similarly the parts of
arcs of Λi, . . . , Λi+k−1 in [0, tj−1− δ]×R, having A as their right end point,
can be extended through the same strip to meet at the point A′, without
intersecting each other. As a result of this construction, a pattern Φ′ is
obtained being equivalent to Φ. 2

On the basis of Proposition 2, we define elementary transformations of
the second type to be the replacing of an array by another one as it is
indicated just below




. . .
1 1 0

. . . . . . . . .
1 1 0
1 1 1

. . .




e2−→




. . .
0 1 1

. . . . . . . . .
0 1 1
1 1 1

. . .




We call this type of transformations pulling of a nodal subcolumn to the left.
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When all possible transformations of the first type are performed, a
matrix is obtained having 1’s in each of its even columns. Continuing with
transformations of the second type, when they all are performed a matrix is
obtained having possibly arrays consisted of three successive columns of 1’s.
Such arrays are superfluous and their replacing by single columns of 1’s will
be called contraction, what is the elementary operation of the third type.




1 1 1
. . . . . . . . .

1 1 1
1 1 1




e3−→




1
. . . . . . . . .

1
1




Starting with the associated matrix MΦ of a pattern Φ, by pulling the
end subcolumns to the end position, then by pulling nodal subcolumns to
the left and finally, by performing all possible contractions, a matrix M ′

Φ is
obtained which will be called the transformed matrix of Φ. The matrix MΦ

has as its stable, invariant arrays the nodal subcolumns which, under these
transformations, change their position but not their form and meaning of be-
ing recordings of nodes. The transformed matrix is just a nice arrangement
of nodal subcolumns.

Now the content of this section culminates with the following

Theorem 3. Let Φ be an even pattern and let M ′
Φ be its transformed

matrix. Then, the matrix M ′
Φ coincides with the invariant matrix M[Φ] of Φ.

P r o o f. As a result of performed elementary transformations, the
matrix M ′

Φ has a nodal subcolumn in each of its columns of odd order. Let
1 < j < length(Φ) and let

Nj =
0

. . .
1

be a nodal subcolumn of (2j + 1)-column of M ′
Φ which corresponds to the

node A. (A possible nodal subcolumn:1 is necessarily in one of the end
columns of M ′

Φ). Since Nj cannot be pulled to the left, there exists a nodal
subcolumn Nj−1 in (2j − 1)-column of M ′

Φ and thereby, M ′
Φ has an array:

aj−1 1 aj corresponding to a stretching arc and where aj−1 ∈ Nj−1, aj ∈ Nj .
Continuing in this way, a sequence

a1 1 a3 . . . aj−1 1 aj
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is obtained showing that Φ has a chain ending at A and that the order of
A is j. Comparing the procedures how rows of M ′

Φ and M[Φ] are formed,
we see that the corresponding rows of the two matrices are, entry by entry,
equal. Hence, M ′

Φ = M[Φ]. 2

As an example, let us consider the numeral “8” as it is represented in
Fig. 17.

Fig. 17

Its associated matrix is




0 0 0 1 1 1 1 1 0
0 0 1 1 0 1 1 1 1
0 1 1 1 1 1 0 0 0
1 1 1 1 1 1 1 0 0


 .

After performing two elementary operations of the first type, it becomes




0 1 1 1 1 1 1 1 0
1 1 1 1 0 1 1 1 1
0 1 1 1 1 1 1 1 0
1 1 1 1 1 1 1 1 1


 .

Now, performing one elementary operation of the second type, we get the
matrix
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


0 1 1 1 1 1 1 1 0
1 1 0 1 1 1 1 1 1
0 1 1 1 1 1 1 1 0
1 1 1 1 1 1 1 1 1




which, after two contractions, becomes



0 1 1 1 0
1 1 0 1 1
0 1 1 1 0
1 1 1 1 1


 .

On one hand, the last of the above matrices is the invariant matrix of the
pattern represented in Fig. 17 and on the other, the associated matrix of
the regular numeral “8”.

As our next example, we consider an unbalanced copy of the Solomon’s
seal, represented in Fig. 18.

Fig. 18

The associated matrix of this pattern is




0 1 1 1 1 1 0 1 1 1 0 1 1 1 1 1 0 0 0
1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 0 0
0 0 0 1 1 1 1 1 0 1 1 1 0 1 1 1 1 1 0
0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1


 .

Performing two operations of the first type the matrix becomes
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


0 1 1 1 1 1 0 1 1 1 0 1 1 1 1 1 1 1 0
0 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1
0 1 1 1 1 1 1 1 0 1 1 1 0 1 1 1 1 1 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1


 .

After the performance of all elementary operations of the second type, then
the following matrix is obtained




0 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 0
1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1
0 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1


 .

Simplifying this matrix by performing four contractions, the transformed
matrix of the pattern in Fig. 18 is obtained




0 1 1 1 0 1 0 1 1 1 0
1 1 0 1 1 1 1 1 0 1 1
0 1 1 1 0 1 0 1 1 1 0
1 1 1 1 1 1 1 1 1 1 1


 ,

which is also the invariant matrix of this pattern. On the other hand,
this matrix is also the associated matrix of the well-balanced form of the
Solomon’s seal (Fig. 19).

As our third example of transforming a associated matrix, let us take
the matrix MΠ which corresponds to the regular Pythagorean pentagram Π
(Fig. 12). Performing the transformations of the first type, we obtain the
matrix




0 1 1 1 1 1 0 1 1 1 0 1 1 1 1 1 0
1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1
0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1




and then, all transformations of the second type, the matrix



0 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 0
1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1
0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1



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Fig. 19

After three contractions, we get the transformed matrix of Π



0 1 1 1 0 1 0 1 1 1 0
1 1 0 1 1 1 1 1 0 1 1
0 1 1 1 0 1 1 1 1 1 0
1 1 1 1 1 1 1 1 1 1 1




which coincides with the matrix M[Π].

7. Additional comments

As it has been already said, classification of line patterns is restricted
here to those of them having no vertical arcs. The rationale behind it is the
possibility to obtain unique arithmetic codifications in the form of invariant
matrices for a subclass of patterns. A definition of equivalent patterns in
general case is somewhat more complicated, but since it would be of no
effect in the frame of this paper, it was omitted.

The purpose of the consideration of equivalent line patterns is the pos-
sibility to establish for them a logically well founded concept of shape and
to study its invariant properties. Being ideal representations of shapes, line
patterns are well suitable for theoretical considerations as well as they are
useful signposts showing how a more realistic recognition process should
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be directed. Particularly delicate is the recognition of vertical arcs as ex-
tremely unstable elements of a shape. To be more specific, let us suppose
that a shape has been perceived as consisting of arcs. Then a number as
a threshold should be fixed so that each arc having its projection on x-axis
less than that number should be taken to be vertical. Such a situation is
illustrated in Fig. 20, by two “poor” forms of line patterns.

Fig. 20

Then, following this way of perception, these two “poor” forms are recog-
nized as it is represented in Fig. 21.

Fig. 21

A dilemma also exists: What is more efficient, to consider patterns hav-
ing vertical arcs or first to “detect” vertical arcs and then, to consider quo-
tient patterns obtained by collapsing such arcs to a point. For example, the
quotient patterns of those in Fig. 21, are illustrated in Fig. 22.

Fig. 22
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The second possibility expressed in the above dilemma was also a reason
why we have paid more attention to the family of patterns without vertical
arcs. But a more decisive factor to resolve this dilemma could only be found
in the further study of pattern recognition.

And again, when all 1’s in each column of an invariant matrix are
summed up, an invariant sequence of crossing numbers is obtained. For
example, in the case of patterns in Fig. 23

Fig. 23

two sequences coincide with 34342 and still the two patterns are not equiv-
alent. Of course, the invariant matrices of these patterns differ.

Finally, let us remark that the “view” of a pattern depends on the way
how a coordinate system is fixed. Rotating the system another “view” of the
same pattern is obtained, whereby new characteristics of that shape follow
depending on the angle of rotation.
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