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A b s t r a c t. Let Wp,q be the Fourier modulation space FMp,q and let
∗σ be the twisted convolution. If a ∈ D′ such that (a ∗σ ϕ,ϕ) ≥ 0 for every
ϕ ∈ C∞

0 , and χ ∈ S such that χ(0) 6= 0, then we prove that χa ∈ Wp,∞

iff a ∈ Wp,∞. We also present some extensions to the case when weighted
Fourier modulation spaces are used.
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0. Introduction

The aim of the paper is to discuss positivity in the twisted convolution
algebra (the ∗σ-algebra) in background of Fourier modulation spaces. At
the same time we give a new proof of Bochner-Schwartz theorem in the case
of twisted convolutions. (See also Proposition 2.8 in [To3].)

1This paper was presented at the Conference GENERALIZED FUNCTIONS 2004,
Topics in PDE, Harmonic Analysis and Mathematical Physics, Novi Sad, September 22–
28, 2004
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A motivation for studying positivity and algebraic properties in the ∗σ-
algebra is the close relation for such properties between the ∗σ-algebra, op-
erator theory and pseudo-differential calculus. Such questions were briefly
investigated in [To1], [To2] and [To3]. In the present paper we continue the
analysis in [To3] in terms of Fourier modulation spaces. The modulation
spaces were introduced in time-frequency analysis by Feichtinger in [Fe].
Later on they have been used in certain problems in pseudo-differential cal-
culus as well. (See [G], [L], [Ta], [Te] and [To5] and the references therein.) A
reason for this is that informations concerning regularity as well as growing
and decay properties can be easily obtained when using such spaces.

In order to be more specific, we give some necessary definitions. Let
W be a symplectic vector space of dimension 2n < ∞ with the symplectic
form σ. (The reader who is not familar with symplectic vector spaces may
consider W as R2n and σ(X,Y ) = 〈y, ξ〉 − 〈x, η〉 when X = (x, ξ) ∈ R2n

and Y = (y, η) ∈ R2n.)
Then the twisted convolution ∗σ is defined by the formula

(a ∗σ b)(X) ≡ (2/π)n/2
∫

a(X − Y )b(Y )e2iσ(X,Y ) dY , (0.1)

when a, b ∈ L1(W ). Here and in what follows we use the standard notation
for the usual functions and distribution spaces, see e. g., [H]. The definition
of ∗σ extends in different ways. It extends for example to a continuous and
bilinear mapping from D′(W )× C∞

0 (W ) to D′(W ).
We are concerned with the set S′+(W ) of positive elements in the ∗σ-

algebra, i. e., the set of all a ∈ D′(W ) such that (a ∗σ ϕ,ϕ) ≥ 0 for every
ϕ ∈ C∞

0 (W ). Here (a, ϕ) ≡ 〈a, ϕ〉, where 〈 · , · 〉 denotes the duality between
elements in appropriate function and distribution spaces, and their duals.
(A motivation for using S′+ instead of D′

+ is given by Corollary 2.4 below.)
It might seem hard to find common structures for positivity results in

the ∗σ-algebra, but there are indeed such ones. In fact, in many situations
the following principle holds. (See [To3].)

Assume that a ∈ S′+. If a satisfies a certain regularity or boundedness
property at the origin, then a and its Fourier transform â satisfy the same
regularity or boundedness property everywhere.

In the present paper we prove that this principle holds when certain
types of Fourier modulation spaces are involved.
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1. Preliminaries

In this section we make some necessary preparations. First we discuss
some algebraic and continuous properties for the twisted convolution. From
the definitions it follows that any Lp-estimate which are valid when usual
convolutions are involved, also holds if these convolutions are replaced by
twisted convolutions. For example, Young’s inequality holds for twisted
convolution. Moreover, many algebraic properties which are true for the
usual convolution also hold for the twisted convolution. For example, if
a, b, c ∈ S(W ), then

a ∗σ (b ∗σ c) = (a ∗σ b) ∗σ c, (a ∗σ b, c) = (a, c ∗σ b̃),

where b̃(X) = b(−X).
In contrast to the usual convolution there is a canonical one to one cor-

respondence between the twisted convolution algebra and operator algebras
on L2(V ), leading to that further properties are available for the twisted
convolution algebra. For example, if p ∈ [1, 2], then any Lp(W ) is an alge-
bra under twisted convolution. (See Corollary 1.4.3 in [To1] or Proposition
1.4 in [To2].)

Proposition 1.1 below is a restatement of certain results in [To2] and
[To3]. (See also [To1].) The proof is therefore omitted. Here Fσa denotes
the symplectic Fourier transform which is defined by the formula

(Fσa)(X) = π−n
∫

a(Y )e2iσ(X,Y ) dY, a ∈ L1(W ).

Then Fσ is a homeomorphism on S(W ) which in a usual way extends to a
homeomorphism on S′(W ), and to a unitary operator on L2(W ).

Proposition 1.1. The following are true:

1. the map (ϕ, a, ψ) 7→ ϕ∗σ a∗σ ψ is sequentially continuous from S(W )×
S′(W ) × S(W ) to S(W ), and from C∞

0 (W ) × D′(W ) × C∞
0 (W ) to

C∞(W );

2. if a ∈ S′(W ) and b ∈ S(W ), then Fσ(a ∗σ b) = (Fσa) ∗σ b;

3. if p ∈ [1, 2], then ∗σ on S(W ) extends uniquely to a continuous multi-
plication on Lp(W ).
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Remark 1.2. As remarked in the introduction, there are close rela-
tions between positivity in pseudo-differential calculus and positivity in the
twisted convolution algebra. In fact, let a ∈ S(R2n). Then the Weyl oper-
ator for a is defined by the formula

aw(x,D)f(x) = (2π)−n
∫∫

a((x + y)/2, ξ)f(y)ei〈x−y,ξ〉 dydξ,

where f ∈ S(Rn). Then aw(x,D) is continuous on S, and the definition of
aw(x,D) extends to any a ∈ S′(R2n) at which aw(x,D) is continuous from
S to S′.

If a ∈ S′(R2n), then aw(x,D) is positive semi-definite as an operator on
S, if and only if Fσa ∈ S′+. (See [To1]–[To3].)

Next we discuss modulation spaces and start to consider appropriate
conditions for the involved weight functions. Let ω and v be positive and
measureable functions on the vector space V of finite dimension. Then ω
is called v-moderate if there is a constant C > 0 such that ω(x + y) ≤
Cω(x)v(y) for every x, y ∈ V . We say that ω is a moderate function if
ω(x + y) ≤ Cω(x)ω(y). The set of all positive functions ω on V such that
ω is v-moderate for some polynomial v on V is denoted by P (V ). Also let
P0(V ) be the set of all ω0 ∈ P (V ) such that for every multi-index α, there is
a constant Cα such that |∂αω0| ≤ Cαω0. If ω ∈ P (V ) and ϕ ∈ C∞

0 \0 is non-
negative, then it follows that ω0 = ω∗ϕ ∈ P0(V ) and that C−1ω ≤ ω0 ≤ Cω
for some constant C > 0. (See [To5] or [To6].)

Next we give examples on weight functions which are of particular inter-
est. For any s, t ∈ R and x ∈ Rn, let τs(x) = 〈x〉s, where 〈x〉 = (1+ |x|2)1/2.
Also let τs,t = τt ⊗ τs. Then

τs(x, y) = (1 + |x|2 + |y|2)s/2 and τs,t(x, y) = (1 + |x|2)t/2(1 + |y|2)s/2.

It follows that τs ∈ P0, and that τs is τ|s|-moderate.
Assume that χ ∈ S(W )\0, p, q ∈ [1,∞], ω ∈ P (W ×W ) and a ∈ S′(W ),

and let (τXχ)(Y ) = χ(Y −X). Then we set

‖a‖Mp,q
(ω)

≡
( ∫ ( ∫

|Fσ(a τXχ)(Y )ω(X,Y )|p dX
)q/p

dY
)1/q

,

‖a‖Wp,q
(ω)
| ≡

( ∫ ( ∫
|Fσ(a τXχ)(Y )ω(X,Y )|p dY

)q/p
dX

)1/q (1.1)

(with obvious interpretation when p = ∞ and/or q = ∞). Note here
that ‖a‖Wp,q

(ω)
and ‖a‖Mp,q

(ω)
may attain the value +∞.
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Definition 1.3. Assume that χ ∈ S(W ) \ 0, p, q ∈ [1,∞], and ω ∈
P (W ×W ). Then the modulation space Mp,q

(ω)(W ) consists of all a ∈ S′(W )
such that ‖a‖Mp,q

(ω)
< ∞. In the same way, Wp,q

(ω)(W ) consists of all a ∈ S′(W )

such that ‖a‖
W
√,q
(ω)

< ∞.

If ω = 1, then the notation Wp,q is used instead of Wp,q
(ω). Moreover,

if p = q, then the notations Wp
(ω) and Wp are used instead of Wp,p

(ω) and
Wp,p, respectively. If in addition W = R2n, then we set Wp,q

s = Wp,q
(ω) when

ω(X, Y ) = τs(X, Y ), and Wp,q
s,t = Wp,q

(ω) when ω(X,Y ) = τs,t(X, Y ). Such
spaces are common in many situations. (See [G] and the references therein.)

If ω(X, Y ) is a weight function on W ×W which is constant with respect
to X or Y , then we set ω(X, Y ) = ω(Y ) and ω(X,Y ) = ω(X), respectively.
In this situation, ω is sometimes considered as a function on W instead of
a function on W ×W .

The convention using parenthesis, when weight functions are involved
in the definition of function spaces, are also used in other situations. For
example, if ω ∈ P (W ), then Lp

(ω)(W ) consists of all measurable functions a

such that a ω ∈ Lp(W ).
The space Wp,q

(ω) is a Fourier modulation space. In fact, by Parseval’s
formula it follows that

Fσ(â τY (Fσχ̌))(X) = e2iσ(X,Y )Fσ(a τXχ)(Y ), (1.2)

where χ̌(X) = χ(X). This in turn implies that

Wp,q
(ω) = FσMp,q

(ω0) when ω0(Y, X) = ω(X, Y ). (1.3)

Here it is essential that the definitions of Mp,q
(ω) and Wp,q

(ω) are independent of
the choice of χ ∈ S \ 0. This is a consequence of the following proposition,
where some important properties for modulation spaces are recalled. Here
and in what follows, p′ denotes the conjugate exponent for p, i. e., 1/p +
1/p′ = 1.

Proposition 1.4. Assume that ω, ω1, ω2 ∈ P (W×W ) and p, q ∈ [1,∞].
Then the following are true:

1. Mp,q
(ω)(W ) and Wp,q

(ω)(W ) are Banach spaces which are independent of
the choices of χ ∈ S(W ) \ 0 in (1.1). Moreover, different choices of χ
give rise to equivalent norms;
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2. if p1, p2, q1, q2 ∈ [1,∞] such that p1 ≤ p2, q1 ≤ q2 and ω2 ≤ Cω1 for
some constant C, then

S(W ) ↪→Wp1,q1

(ω1) (W ) ↪→Wp2,q2

(ω2) (W ) ↪→ S′(W ) .

Moreover, W1,p ⊆ C(W ) ∩ L∞;

3. assume that 1 ≤ q1 ≤ min(p, p′) and max(p, p′) ≤ q2 ≤ ∞, and that in
addition ω(X,Y ) = ω(Y ). Then

Wp,q1

(ω) ↪→ Fσ(Lp
(ω)) ↪→Wp,q2

(ω) and Wp,q
(ω) ∩ E′ = Fσ(Lp

(ω)) ∩ E′ ;

4. let ω0(X,Y ) = ω(Y, X), and assume in addition that q ≤ p. Then
FσWp,q

(ω) ↪→Wq,p
(ω0). In particular, Fσ is a homeomorphism on Wp.

P r o o f. The assertions (1), (2) and (4) follow from [G] and (1.3)
(see also [Fe], or [To5] and the references therein). The assertion (3) is an
immediate consequence of Proposition 4.3 and Theorem 5.5 in [To6], and
(1.3). 2

Remark 1.5. Assume that χ ∈ C∞
0 and that ω ∈ P (W ×W ), and let

W̃ p,q
(ω) be the set of all a ∈ D′(W ) such that ‖a‖Wp,q

(ω)
< ∞. Then it follows

that W̃p,q
(ω) ⊆ S′. Consequently, W̃p,q

(ω) = Wp,q
(ω) in view of Proposition 1.4.

We finish the section with the following proposition which concerns mul-
tiplications and differentiations of elements in Fourier modulation spaces.
We refer to [To6] for the proof. Here and in what follows, if ω ∈ P0(W ),
then ω(D) is the linear and continuous operator on S′(W ) which means a
multiplication by ω on the symplectic Fourier transform side.

Proposition 1.6. Assume that p, q ∈ [1,∞], ω ∈ P (W × W ), ω0 ∈
P0(W ), and set

ω1(X,Y ) = ω(X,Y )ω0(X) and ω2(X,Y ) = ω(X, Y )ω0(Y ).

Then a 7→ aω0 is a homeomorphism from Wp,q
(ω1) to Wp,q

(ω), and a 7→ ω0(D)a
is a homemorphism from Wp,q

(ω2) to Wp,q
(ω).
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2. Positive elements in the ∗σ-algebra

In this section we prove that if ω ∈ P is appropriate, a ∈ S′+ and
χa ∈ Wp,∞

(ω) for some χ ∈ C∞
0 such that χ(0) 6= 0, then a ∈ Wp,∞

(ω) . We use
these results to prove that S′+ ⊆ S′.

In the following proposition we recall some facts for elements in C+(W ) ≡
S′+(W )∩C(W ), the set of positive elements in ∗σ-algebra which at the same
time are continuous functions. The proof is omitted since the result is a
consequence of Proposition 1.10, Theorem 3.3 and Corollary 3.7 in [To3].

Proposition 2.1. Assume that a ∈ S′+(W ). Then the following are
true:

1. if ϕ ∈ C∞
0 (W ), then ϕ̃ ∗σ a ∗σ ϕ ∈ C+ ∩C∞. Moreover, if in addition∫

ϕdX = (π/2)n/2 and ϕε = ε−2nϕ( · /ε), then ϕ̃ε ∗σ a ∗σ ϕε → a in
D′ as ε → 0;

2. if a is a continuous function near the origin, then a ∈ C+;

3. if a ∈ C+, then a ∈ L2 vanishes at infinity, and |a(X)| ≤ a(0);

4. a ∈ C+ if and only if a = ψ̃ ∗σ ψ for some ψ ∈ L2;

5. if b ∈ C∞
0 ∩ C+, then (a, b) ≥ 0.

As a consequence of Proposition 1.1 (4) and Proposition 2.1, it follows
that if a ∈ C+, then (ϕ,ψ)a ≡ (a ∗σ ϕ,ψ) is a semi-scalar product on L2.
Hence Cauchy-Schwartz inequality holds, i. e.,

|(ϕ,ψ)a|2 ≤ (ϕ,ϕ)a(ψ,ψ)a.

The investigations in Section 4 in [To3] as well as in the present section
depend on the following result. (Cf. Proposition 4.6 in [To3].) Here a
slightly different proof is given.

Proposition 2.2. Assume that a ∈ S′+(W ) and that χ ∈ C+(W ) ∩
C∞

0 (W ). Then Fσ(aχ) is a non-negative function. If u = (Fσ(a χ))1/2 and
X, Y ∈ W , then

|Fσ(a τY χ)(X)| ≤ u(X + Y )u(X − Y ) (2.1)
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P r o o f. By Proposition 2.1 and a simple argument of approximation,
it suffices to prove the result in the case a ∈ C+ ∩ C∞.

By straight-forward computations it follows that χ ∈ C+, and that S′+
is invariant under multiplication by exponentials. Hence Proposition 2.1 (5)
gives that Fσ(aχ)(X) = (e2iσ(X, · )a, χ) is non-negative for every X ∈ W .
This proves the first part of the proposition.

Next we prove (2.1). By Proposition 2.1, there is a function ψ ∈ L2

such that χ = ψ̃ ∗σ ψ. Then χY = ψ̃Y ∗σ φY , where ψY = ψ( · + Y ) and
φY = e−2iσ(Y, · )ψ. From the fact that e2iσ(X, · )a ∈ S′+ for every X ∈ W , an
application of Cauchy-Schwartz inequality gives

|Fσ(a τY χ)(X)|2 = |(e2iσ(X, · )a, ψ̃Y ∗σ φY )|2
≤ (e2iσ(X, · )a, ψ̃Y ∗σ ψY )(e2iσ(X, · )a, φ̃Y ∗σ φY ).

(2.2)

By simple calculations it follows that

ψ̃Y ∗σ ψY = e2iσ(Y, · )χ, and φ̃Y ∗σ φY = e−2iσ(Y, · )χ.

This implies that

(e2iσ(X, · )a, ψ̃Y ∗σ ψY ) = (e2iσ(X−Y, · )a, χ) = Fσ(aχ)(X − Y ),

and similarly (e2iσ(X, · )a, φ̃Y ∗σ φY ) = Fσ(aχ)(X + Y ). This proves (2.2),
and the result follows. The proof is complete. 2

The following result is now an immediate consequence of Proposition
1.4 (3), Proposition 2.2 and Hölder’s inequality.

Theorem 2.3. Assume that ω0 ∈ P (W × W ) such that ω0(X,Y ) =
ω0(Y ), and set

ω1(X,Y ) = (ω0(X − Y )ω0(X + Y ))1/2.

Also assume that a, χ ∈ S′+(W ) such that χ ∈ C∞
0 \ 0 and a χ ∈ Wp,∞

(ω0) for
some p ∈ [1,∞]. Then a ∈ Wp,∞

(ω1).

As a consequence of Theorem 2.3 we obtain Bochner-Schwartz theorem
in the case when the usual convolutions are replaced by twisted convolutions.

Corollary 2.4. The set S′+(W ) is contained in S′(W ).
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P r o o f. Assume that a, χ ∈ S′+ such that χ ∈ C∞
0 \ 0. Then aχ ∈ E′.

Hence Fσ(aχ) ∈ Lp
(ω0) for some ω0 ∈ P which in turn implies that a ∈ Wp,∞

(ω)

for some ω ∈ P by Proposition 1.4 (3) and Theorem 2.3. Since Wp,∞
(ω) ⊂ S′,

the result follows. 2

By Corollary 2.4, it follows that Proposition 2.2 also holds under the
weaker assumption for χ that χ ∈ S′+∩S. Moreover, by (1.2) it follows that
(2.1) is equivalent to

|Fσ(â τY (Fσχ̌))(X)| ≤ u(X + Y )u(Y −X). (2.1)′

Theorem 2.3 may now be improved in the following way.

Theorem 2.3′ Assume that ω0 and ω1 are the same as in Theorem 2.3,
and let ω2(X, Y ) = ω1(Y, X). Also assume that a, χ ∈ S′+(W ) such that
χ ∈ S and χ(0) 6= 0 and aχ ∈ Wp,∞

(ω0) for some p ∈ [1,∞]. Then a ∈ Wp,∞
(ω1)

and Fσa ∈ Wp,∞
(ω2).

P r o o f. Let Ω be an open neighbourhood of the origin such that
χ(X) 6= 0 as X ∈ Ω, and let χ0 = ψ̃ ∗σ ψ, where ψ ∈ C∞

0 (W ) \ 0. Then
0 6= χ0 ∈ C+ ∩ C∞

0 , and the support of χ0 is contained in Ω, provided ψ is
chosen with sufficiently small support. This gives

aχ0 = (χ0/χ)(aχ) ∈ S · Wp,∞
(ω0) ⊆ Wp,∞

(ω0). (2.3)

Here the last step is a consequence of Theorem 5.5 in [To6], and the fact
that multiplications are replaced by convolutions on the Fourier transform.
Hence Theorem 2.3 and (2.1)′ show that a ∈ Wp,∞

(ω1) and Fσa ∈ Wp,∞
(ω2). The

proof is complete. 2

Theorem 2.5. Assume that v0 ∈ P (W × W ) such that v0(X, Y ) =
v0(Y ) is an even and moderate function, v(X,Y ) = v0(X)v0(Y ), p ∈ [1,∞],
a ∈ S′+(W ), and χ ∈ S(W ) such that χ(0) 6= 0. Then the following condi-
tions are equivalent:

1. Fσ(aχ) ∈ Lp
(1/v0)(W );

2. aχ ∈ Wp,∞
(1/v0)(W );

3. aχ ∈ Wp,∞
(1/v)(W );

4. a ∈ Wp,∞
(1/v)(W );
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5. a, Fσa ∈ Wp,∞
(1/v)(W ).

Before the proof we observe that if v0 is even and moderate, then

(v0(X − Y )v0(X + Y ))1/2 ≤ Cv0(X)v0(Y ), (2.4)

for some constant C.
P r o o f. Let χ0 be the same as in the proof of Theorem 2.3′. Then

Fσ(aχ0) ∈ Lp
(1/v0) (cf. (2.3)). This in turn implies that aχ0 ∈ Wp,∞

(1/v0) by
Proposition 1.4 (3). Hence Theorem 2.3′ and (2.4) show that (5) holds. By
similar arguments it follows that (2) implies (5).

The implication (5) ⇒ (4) is obvious, and the implications (4) ⇒ (2) and
(4) ⇒ (1) follow immediately from Theorem 5.5 in [To6] and the inequality

‖Fσ(aχ)‖Lp
(1/v0)

≤ C‖a‖Wp,∞
(1/v)

,

respectively.
When proving the equivalence (2) ⇔ (3) we may assume that v0 ∈ P0.

Then the assertion follows immediately from Proposition 1.6 and the fact
that the map ϕ 7→ v0 ϕ is a homeomorphism on S. The proof is complete.
2

Corollary 2.6 Assume that s ∈ R, p ∈ [1,∞], a ∈ S′+(R2n), and
χ ∈ S(R2n) such that χ(0) 6= 0. Then the following are true:

1. if s ≤ 0, then aχ ∈ Wp,∞
s,0 if and only if a ∈ Wp,∞

s,s ;

2. if s ≥ 0 and aχ ∈ Wp,∞
s,0 , then a ∈ Wp,∞

s1/4,s1/4.

P r o o f. The assertion (1) follows by letting v0 = τs in Theorem 2.5. The
assertion (2) follows from Theorem 2.3′ and the fact that for some constant
C we have 〈X〉〈Y 〉 ≤ C〈X − Y 〉2〈X + Y 〉2. The proof is complete. 2

Remark 2.7 Assume that a ∈ S′+, χ ∈ S such that χ(0) 6= 0, and that
Fσ(aχ) ∈ L1. Then Theorem 2.5 shows that a ∈ W1,∞. This is also a
consequence of Theorem 1.5 in [To4].

In fact, from the assumptions it follows that aχ is a continuous function
near the origin. Hence Proposition 2.1 shows that a belongs to the set of
all symbols such that their corresponding Weyl operators are trace-class
operators on L2. The result now follows since the latter set is contained in
W1,∞ in view of Theorem 1.5 in [To4].
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Finally we have the following result, parallel to Theorem 2.3′.

Proposition 2.8 Assume that p, q ∈ [1,∞] and p0 ∈ [2−1,∞] satisfy
p ≤ q and 1/p + 1/q = 1/p0. Assume also that v0, χ and a are the same as
in Theorem 2.5, and set v(X, Y ) = (v0(X − Y )v0(X + Y ))1/2. If Fσ(aχ) ∈
Lp0

(1/v0)(W ), then a, Fσa ∈ Wp,q
(1/v)(W ).

P r o o f. It is no restriction to assume that χ ∈ C+ ∩ C∞
0 . We use the

same notations as in Proposition 2.2. Let h = (u/v
1/2
0 )p and r = q/p ≥ 1.

Then for some constant C, Young’s inequality gives

‖a‖Wp,q
(1/v)

=
( ∫ ( ∫

|Fσ(a τXχ)(Y )/v(X, Y )|p dY
)q/p

dX
)1/q

≤ C(‖h ∗ h‖Lr)1/p ≤ C ′(‖h‖L2p0/p)2/p = ‖Fσ(aχ)‖L
p0
(1/v0)

.

The result is now a consequence of Proposition 1.4. 2

Corollary 2.9 Let v0, v, a and χ be the same as in Proposition 2.8,
and assume that Fσ(aχ) ∈ L

1/2
(1/v0) Then a, Fσa ∈ W1

(1/v).
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drejević Endowment, Beograd, 2003.



86 J. Toft

[To1] J. T o f t, Continuity and Positivity Problems in Pseudo-Differential Calculus,
Thesis, Department of Mathematics, University of Lund, Lund, 1996.

[To2] J. T o f t, Continuity properties for non-commutative convolution algebras with
applications in pseudo-differential calculus, Bull. Sci. Math. (2) 126 (2002), 115–
142.

[To3] J. T o f t, Positivity properties for non-commutative convolution algebras with ap-
plications in pseudo-differential calculus, Bull. Sci. Math. (2) 127 (2003), 101–132.

[To4] J. T o f t, Continuity properties for modulation spaces with applications to pseudo-
differential calculus, I, J. Funct. Anal. (2) 207 (2004), 399–429.

[To5] J. T o f t, Continuity properties for modulation spaces with applications to pseudo-
differential calculus, II, Ann. Global Anal. Geom. 26 (2004), 73–106.

[To6] J. T o f t, Convolution and embeddings for weighted modulation spaces in: P. Bog-
giatto, R. Ashino, M. W. Wong (eds) Advances in Pseudo-Differential Operators,
Operator Theory: Advances and Applications 155, Birkhäuser Verlag, Basel 2004,
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