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Approximate analytical solutions of MHD flow of a viscous

fluid on a nonlinear porous shrinking sheet

Vishwanath B. Awati and N. M. Bujurke

Abstract. The paper presents the semi-numerical solution for the magneto-
hydrodynamic (MHD) flow due to nonlinear porous shrinking sheet caused by
boundary layer of an incompressible viscous flow. The governing partial differ-
ential equations of momentum equations are reduced into ordinary differential

equation by using a classical similarity transformation along with appropriate
boundary conditions. Both nonlinearity and infinite interval demand novel
mathematical tools for their analysis. We use fast converging Dirichlet series
and Method of stretching of variables for the solution of these nonlinear dif-
ferential equations. These methods have the advantages over pure numerical
methods for obtaining the derived quantities accurately for various values of
the parameters involved at a stretch and also they are valid in much larger
parameter domain as compared with HAM, HPM, ADM and the classical
numerical schemes.

1. Introduction

The boundary layer flow induced by stretching surface moving with a certain
velocities in an otherwise quiescent fluid medium often occurs in several engineering
processes. Such flows have many important applications in industries, for example
in the extrusion of a polymer sheet from a die or in the drawing of plastic films.
During the manufacture of these sheets, the melt issues from a slit and is subse-
quently stretched to achieve the desired thickness. The mechanical properties of
the final product strictly depend on the stretching and cooling rates in the process.
The phenomena of velocities on the boundary towards a fixed point are known as
shrinking phenomena, which often occur in the situations such as rising shrinking

2010 Mathematics Subject Classification. 76W; 76S; 65H; 65L.
Key words and phrases. Magnetohydrodynamics (MHD); Boundary layer flow; Shrinking

sheet; Dirichlet series; Powells method; Method of stretching variables.

145



146 V. B. AWATI

balloon. Only limited attention has been focussed on the study of shrinking phe-
nomena [1-9]. In certain situations, the shrinking sheet solutions do not exist, since
the velocity cannot be confined in a boundary layer. These solutions may exist if
either the magnetic field or the stagnation flow is taken into account. Crane [10]
found a closed form solution for steady two-dimensional stretching where the veloc-
ity on the boundary is away and proportional to the distance from the fixed point.
The more basic stretching solutions differ from Cranes are as follows. Gupta and
Gupta [11] added suction or injection on the surface. Brady and Acrivos [12] con-
sidered the flow inside a stretching channel or tube and the flow outside a stretching
tube by Wang [13]. The three-dimensional and axisymmetric stretching surface was
studied by Wang [14]. The unsteady stretching film was studied by Wang [15] and
Usha and Sridharan [16].

From continuity of Cranes stretching sheet solution would induce a far field
suction towards the sheet, while the shrinking sheet would cause a velocity away
from the sheet. Thus from the physical grounds vorticity of the shrinking sheet
is not confined within the boundary layer and the flow unlikely to exist unless
adequate suction on the boundary is imposed. The purpose of this paper is to
study the properties of the flow due to a shrinking sheet with suction. Recently,
Ali et al. [17] discussed boundary layer flow and heat transfer due to permeable
shrinking sheet with prescribed surface heat flux by Keller-box method. Noor et al
[18] examined the simple non-perturbative solution for MHD viscous flow due to a
shrinking sheet by series solution using Adomain decomposition method (ADM).
Raftari and Yildirim [19], examined the MHD viscous flow due to a shrinking sheet
by employing the homotopy perturbation method (HPM) and Pade approximants.
Bhattacharyya [20] analysed the effects of heat (source/sink) on the steady two
dimensional MHD boundary layer flow and heat transfer over a shrinking sheet
with wall mass suction using finite difference method.

The present paper is to discuss the semi-numerical solution of two-dimensional
MHD flow of a viscous fluid on a nonlinear porous shrinking sheet. The solution of
the resulting third order nonlinear boundary value problem with an infinite interval
is obtained using Dirichlet series method and method of stretching of variables. We
seek solution of the general equation of the type

(1.1) f ′′′ +Aff ′′ +Bf ′2 + Cf ′ = 0

The boundary conditions for the problem under consideration are

(1.2) f(0) = α1 = fw, f ′(0) = β1, f ′(∞) = 0

where A, B and C are constants and prime denotes derivative with respect to the
independent variable η. This equation admits a Dirichlet series solution; necessary
conditions for the existence and uniqueness of these solutions may also be found in
[21, 22]. For a specific type of boundary conditions i.e. f ′(∞) = 0, the Dirichlet
series solution is particularly useful for obtaining the derived quantities exactly. A
general discussion of the convergence of the Dirichlet series may also be found in
Riesz [23]. The accuracy as well as uniqueness of the solution can be confirmed
using other powerful semi-numerical schemes. Sachdev et al. [24] have analysed
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various problems from fluid dynamics of stretching sheet using this approach and
found more accurate solution compared with earlier numerical findings. Recently,
Vishwanath et al. [25, 26] and Ramesh et al. [27] have analysed the problems from
MHD boundary layer flow with nonlinear stretching sheet using the above methods
and found more accurate results compared with the classical numerical methods. In
this article, we also present Dirichlet series solution and an approximate analytical
method called method of stretching of variables. This method is quite easy to use
especially for nonlinear ordinary differential equations and requires less computer
time compared with pure numerical methods and easy to solve compared with other
approximate methods (for example, Homotopy analysis method (HAM)).

2. Mathematical Formulation of the problem

Consider the MHD flow of an incompressible viscous fluid over a nonlinear
porous shrinking sheet at y = 0. The fluid is electrically conducting under the
influence of an applied magnetic filed B(x) normal to the porous and shrinking
sheet. By neglecting induced magnetic field, the resulting steady two-dimensional
boundary layer equations are of the form (see Nadeem and Hussain [28])

(2.1)
∂u

∂x
+

∂v

∂y
= 0

(2.2) u
∂u
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∂y2
−

σB0
2

ρ
u

where u and v are the velocity components in the x and y directions, ν is the
kinematic viscosity, ρ is the fluid density and σ is the electrical conductivity of
the fluid. To obtain similarity solutions, we assume that the external electrical
and polarization effects are negligible in Eq. (2.2) and the magnetic field B(x) is
considered in the form (see Chaim [29])

(2.3) B(x) = B0x
n−1
2

The relevant boundary conditions for the present flow are

(2.4) u(x, y) = −cxn, v(x, y) = −V0x
n−1
2 , u(x, y) → 0 as y → 0

where V0 is the porosity of the plate. Eqs. (2.1) to (2.3) along with the boundary
conditions (2.4) admit similarity solution. We use following similarity variables and
non-dimensional variables
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and substituting them into Eqs. (2.1)-(2.4) to obtain the following nonlinear ordi-
nary differential equation

(2.7) f ′′′ + ff ′′ − βf ′2 −M2f ′ = 0, ′ =
d

dη
,

and the boundary conditions are

(2.8) f = fw, f ′ = −1, at η = 0

(2.9) f ′ → 0 η → ∞

where fw = V0
√

cν(n+1)
2

is the wall mass transfer parameter, M = 2σB0
2

ρc(1+n) is the

magnetic parameter and β = 2n
n+1 is the non-dimensional parameter.

3. Dirichlet Series Solution

We use Dirichlet series which is an elegant semi-numerical scheme to solve
the problem exactly. We seek Dirichlet series solution of Eq. (1.1) satisfying last
boundary condition f ′(∞) = 0 automatically in the form (Kravchenko & Yablonskii
[21 ,22])

(3.1) f = γ1 +
6γ

A

∞
∑

i=1

bia
ie−iγη

where γ and a are parameters which are to be determined. Substituting Eq.(3.1)
into Eq.(1.1), we get
(3.2)
∞
∑

i=1

{−γi3+Aγγ1i
2−Ci}bia

ie−iγη+
6γ

A

∞
∑

i=2

i−1
∑

k=1

{Ak2+Bk(i−k)}bkbi−ka
ie−iγη = 0

(3.3) For i = 1, we have γ1 =
γ + C

A

Substituting Eq. (3.3) into Eq. (3.2) the recurrence relation for obtaining coeffi-
cients is given by

(3.4) bi =
6γ2

Ai(i − 1)(γ2i − C)

i−1
∑

k=1

{Ak2 +Bk(i− k)}bkbi−k

For i = 2, 3, 4, . . .. If the Eq. (3.1) converges absolutely when γ > 0 for some
η0, this series converges absolutely and uniformly in the half plane Reη > Reη0
and represents an analytic 2πi

γ
periodic function f = f(η0) such that f ′(∞) = 0

(Kravchenko & Yablonskii [21]).
The Eq. (3.1) contains two free parameters namely a and γ. These unknown

parameters are determined from the remaining boundary conditions of Eq. (1.2)
at η = 0.

(3.5) f(0) =
γ2 + C

Aγ
+

6γ

A

∞
∑

i=1

bia
i = α1
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and

(3.6) f ′(0) =
6γ2

A

∞
∑

i=1

(−i)bia
i = β1

The solution of the above transcendental Eq. (3.5) and Eq. (3.6) yield constants
a and γ. The solution of the above transcendental equations is equivalent to the
unconstrained minimization of the functional

(3.7)

[
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Aγ
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6γ2
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We use Powells method of conjugate directions (Press et al. [29]) which is one of
the most efficient techniques for solving unconstrained optimization problems. This
helps in finding the unknown parameters a and γ uniquely for different values of
the parameters A, B, C, α1 and β1. Alternatively, Newtons method is also used to
determine the unknown parameters a and γ accurately.
The shear stress at the surface of the problem is given by

(3.8) f ′′(0) =
6γ2

A

∞
∑

i=1

bia
i(iγ)2

The velocity profiles of the problem is given by

(3.9) f ′′(0) =
6γ2

A

∞
∑

i=1

−ibia
ieiγη

4. Method of Stretching of Variables

Many nonlinear ODE arising in MHD problems are not amenable for obtain-
ing analytical solutions. In such situations, attempts have been made to develop
approximate methods for the solution of these problems. The numerical approach
is always based on the idea of stretching of variables of the flow problems. Method
of stretching of variables is used here for the solution of such problems. In this
method, we have to choose suitable derivative function H ′ such that the derivative
boundary conditions are satisfied automatically and integration of H ′ will satisfy
the remaining boundary condition. Substitution of this resulting function into the
given equation gives the residual of the form R(ζ, α) which is called defect function.
Using Least squares method, the residual of the defect function can be minimized
(for details see (Ariel, [30]).
Using the transformation f = fw + F into Eq. (1.1), we get

(4.1) F ′′′ +A(fw + F )F ′′ +BF ′2 + CF ′ = 0, ′ =
d

dη

and the boundary conditions (1.2) become

(4.2) F (0) = 0, F ′(0) = −1, F ′(∞) = 0

We introduce two variables ζ and G in the form

(4.3) G(ζ) = αFη and ζ = αη
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where α > 0, is an amplification factor. In view of Eq. (4.3), the system (4.1-4.2)
are transformed to the form

(4.4) α2G′′′ +A(fwα+G)G′′ +BG′2 + CG′ = 0, ′ =
d

dζ

and the boundary conditions in Eq. (4.2) become

(4.5) G(0) = 0, G′(0) = −1, G′(∞) = 0

We choose a trail velocity profile

(4.6) G′ = − exp(−ζ)

which satisfies the derivative conditions in Eq. (4.5). Integrating Eq. (4.6) with
respect to ζ from 0 to ζ using conditions (4.5), we get

(4.7) G = exp(−ζ)− 1

Substituting Eq. (4.7) into Eq. (4.4), we get the residual of defect function

(4.8) R(ζ, α) = (−α2 +Afwα−A− C) exp(−ζ) + (A+B) exp(−2ζ)

By using the least squares method as discussed in Ariel [30], the Eq. (4.8) can be
minimized for which

(4.9)
∂

∂α

∫

∞

0

R2(ζ, α)dζ = 0

Substituting (4.8) into Eq. (4.9) and solving cubic equation in α for a positive root,
we get

(4.10) α =
1

6
(3Afw ±

√

3(−4A+ 8B − 12C + 3A2f2
w))

Once the amplification factor is calculated, then using Eq. (4.1), original function
f can be written as

(4.11) f = fw +
1

α
(exp(−αη)− 1)

with α defined in Eq. (4.10). Thus Eq. (4.11) gives the solution of Eq. (1.1) for
all A, B & C.

5. Results and Discussion

In the present paper we discuss the semi-numerical solution of two-dimensional
electrically conducting viscous fluid past a porous nonlinear porous shrinking sheet.
The governing equations are simplified by suitable similarity transformation and
the reduced third order nonlinear boundary value problems with infinite domain
are solved semi-numerically using an elegant powerful technique which are Dirich-
let series method and an approximate analytical method- method of stretching of
variables. We have given exact analytical solution of the nonlinear boundary value
problem in more general form. In this method it is important that the edge bound-
ary layer η → ∞ automatically satisfied. Numerical computations are performed
for various values of the physical parameters involved in the equation viz. the
magnetic parameter M , non-dimensional parameter β and the wall mass transfer
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parameter s = fw. The present solution is also validated by comparing it with the
previously published work of Nadeem and Hussain [28] (see Tables 1-3). Table 4
presents shear stress at the wall i.e f ′′(0) for different parameters viz. M,β and
s = fw is obtained by using Dirichlet series and method of stretching of variables
and the results are compared.

The graphs for the function f ′(η) i.e. velocity profiles which corresponds to ve-
locity component u and v are drawn against η for different values of the parameters
s = fw at M = 4, β = 1 and M = 1, β = 1 are shown in Fig.1 and 2 respectively.
It is observed that in Fig. 1 when s = fw increases, the velocity profiles are far
away from the wall for mass injection, and the boundary layer thickness is more
and more thicker. From Fig. 2 it is evident that the boundary layer is near the wall
for large values of s = fw. It is concluded that the results obtained are comparable
with those in [4] by taking β = 1. The velocity profiles f ′(η) against η for different
values of M with s = fw = 0.1 and β = 0.1 are shown in Fig.3. It is evident that
in Fig.3 when M increases, the velocity profile is more and more far away from the
wall, and the boundary layer thickness is more and more thicker.

The above computations work is very well by using Dirichlet series and method
of stretching of variables. It is also susceptible to the computers memory limita-
tions and takes very less computer memory. In this work we utilize Mathematica
and FORTRAN compiler running on a personal computer with Pentium processor.

6. Conclusions

In this article, we describe the analysis of boundary value problem for third
order nonlinear ordinary differential equation over an infinite interval arising in
MHD boundary layer flow of viscous fluid of a nonlinear porous shrinking sheet. The
semi-numerical schemes described here offer advantages over solutions obtained by
HAM and numerical methods etc. The convergence of the Dirichlet series method
is given. The results are presented in Tables and graphically, the effects of the
emerging parameters are discussed semi-numerically.
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C = −M Dirichlet Series Method HAM[28] Method of stretching
of variable

a γ f ′′(0)
-2.0 0.054731 1.643822 1.849758 1.61804 1.86015
-2.1 0.052450 1.685285 1.883383 1.66190 1.89642
-2.2 0.050357 1.725497 1.916484 1.70416 1.93178
-2.3 0.048301 1.764556 1.942798 1.74499 1.96629
-2.4 0.046382 1.803412 1.990647 1.78452 2.00000
-2.5 0.044769 1.840313 2.021417 1.82288 2.03297
-2.6 0.043268 1.876307 2.051775 1.86015 2.06525
-2.7 0.041867 1.911455 2.081734 1.89642 2.09687
-2.8 0.040386 1.946396 2.118864 1.93178 2.12788
-2.9 0.039178 1.979943 2.147477 1.96629 2.15831
-3.0 0.038042 2.012796 2.175738 2.00000 2.18819

Table 1. Comparison of the values of f ′′(0) for different values
of M with A = 1, B = −β = 0 and α1 = fw = 1.0 obtained
by Dirichlet series method, Method of stretching of variables and
other applied methods

α1 = fw Dirichlet Series Method HAM[28] Method of stretching
of variable

a γ f ′′(0)
0.0 0.124039 1.047661 1.281245 1.27094 1.26491
0.1 0.113082 1.098286 1.338243 1.31874 1.31590
0.2 0.105488 1.147827 1.375143 1.36855 1.36886
0.3 0.096194 1.203188 1.436081 1.42041 1.42377
0.4 0.089326 1.258175 1.481007 1.47430 1.48062
0.5 0.081631 1.322876 1.571061 1.53024 1.53938
0.6 0.075527 1.378300 1.598066 1.58819 1.60000
0.7 0.069887 1.440873 1.653000 1.64812 1.66244
0.8 0.064606 1.505872 1.711642 1.71001 1.72665
0.9 0.059143 1.574649 1.786470 1.77379 1.79257
1.0 0.054731 1.643822 1.849758 1.83942 1.86015

Table 2. Comparison of the values of f ′′(0) for different values
of α1 = fw with A = 1, B = −β = −1, and C = −M = −2.0
obtained by Dirichlet series method, Method of stretching of vari-
ables and other applied methods
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B = −β Dirichlet Series Method HAM[28] Method of stretching
of variable

a γ f ′′(0)
0.0 0.053918 1.646281 1.873659 1.86201 1.88444
0.1 0.054731 1.643822 1.849758 1.83942 1.86015
0.2 0.055574 1.641291 1.825494 1.81648 1.83542
0.3 0.056449 1.638687 1.800918 1.79318 1.81022
0.4 0.057358 1.636006 1.775968 1.76949 1.78452
0.5 0.058303 1.633244 1.750655 1.74539 1.75831
0.6 0.059282 1.630411 1.725166 1.72087 1.73153
0.7 0.060308 1.627467 1.699012 1.69591 1.70416
0.8 0.061377 1.624427 1.672453 1.67046 1.67615
0.9 0.062494 1.621285 1.645467 1.64452 1.64746
1.0 0.063661 1.618034 1.618034 1.61804 1.61803

Table 3. Comparison of the values of f ′′(0) for different values of
B = −β with A = 1, C = −M = −2.0 and α1 = fw = 1.0 obtained
by Dirichlet series method, Method of stretching of variables and
other applied methods

B = −β C = −M α1 = fw Dirichlet Series Method Method of stretching
of variable

a γ f ′′(0)
-0.1 -2.1 0.1 0.106838 1.140902 1.365373 1.354798

-2.3 0.094124 1.225686 1.442787 1.429310
-2.5 0.084191 1.305187 1.514538 1.500000
-2.7 0.077012 1.378848 1.569146 1.567399

-0.1 -1.0 0.1 0.323703 0.556776 0.833753 0.826209
0.3 0.271518 0.623609 0.987067 0.938987
0.5 0.218699 0.707107 1.125948 1.063940
0.7 0.228344 0.707106 1.230019 1.200000

-0.1 -1.0 1.0 0.105447 1.107895 1.413125 1.421950
-0.3 0.114006 1.090687 1.335266 1.34656
-0.5 0.147065 1.000000 1.223760 1.26376
-0.7 0.137965 1.046524 1.157616 1.17082

Table 4. Comparison of the values of f ′′(0) for different values
of α1 = fw B = −β, and C = −M = with A = 1, obtained
by Dirichlet series method, Method of stretching of variables and
other applied methods
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