Vol. 2(2012), 195-204

Former BULLETIN OF SOCIETY OF MATHEMATICIANS BANJA LUKA ISSN 0354-5792 (o), ISSN 1986-521X (p)

APPROXIMATING COMMON FIXED POINTS OF FINITE FAMILY OF ASYMPTOTICALLY NONEXPANSIVE NON-SELF MAPPINGS

A. S. Saluja, R. A. Rashwan, and Pankaj Kumar Jhade

ABSTRACT. The aim of this paper is to study the strong convergence of an implicit iteration process to a common fixed point for a finite family of asymptotically nonexpansive nonself mappings in a uniformly convex Banach spaces.

1. Introduction and Preliminaries

Let K be a nonempty closed convex subset of a Banach space E. A self mapping $T: K \to K$ is called asymptotically nonexpansive if there exists a sequence $\{u_n\} \subset [0,\infty)$; $u_n \to 0$ as $n \to \infty$ such that for all $x,y \in K$, the following inequality holds:

$$(1.1) ||T^n x - T^n y|| \le (1 + u_n)||x - y|| \forall n \ge 1$$

T is called uniformly L-Lipschitzian if there exists a constant L > 0 such that for all $x, y \in K$,

$$(1.2) ||T^n x - T^n y|| \leqslant L||x - y|| \forall n \geqslant 1$$

The class of asymptotically nonexpansive maps was introduced by Goebel and Kirk ([9]), as an important generalization of the class of nonexpansive maps, who proved that if K is a nonempty closed convex subset of a real uniformly convex Banach space and T is an asymptotically nonexpansive self mapping of K, then T has a fixed point. Iterative techniques for approximating fixed points of nonexpansive mappings and asymptotically nonexpansive mappings have been studied by various authors (See [19, 2, 3, 4, 17, 13, 5, 18, 1]) using the Mann iteration method (See e.g. [15]) or the Ishikawa iteration method (See e.g. [15]).

In 1978, Bose ([15]) proved that if K is a bounded closed convex nonempty subset of a uniformly convex Banach space E satisfying Opial's ([22]) condition and $T: K \to \mathbb{R}$

²⁰¹⁰ Mathematics Subject Classification. Primary 47H10; Secondary 54H25.

Key words and phrases. Asymptotically nonexpansive nonself mappings, common fixed points, multistep iterative sequence with errors for non-self mappings.

K is an asymptotically nonexpansive mapping, then the sequence $\{T^nx\}$ converges weakly to a fixed point of T provided T is asymptotically regular at $x \in K$, i.e. $\lim_{n\to\infty} \|T^nx - T^{n+1}x\| = 0$. Passty ([5]) and also Xu ([7]) proved that the requirement that T satisfies Opial's condition can be replaced by the condition that E has a Frechet differentiable norm. Furthermore, Tan and Xu ([10, 11]) later proved that the asymptotic regularity of T can be weakend to the weakly asymptotic regularity of T at x i.e. $\omega - \lim_{n\to\infty} (T^nx - T^{n+1}x) = 0$.

In all the above results, the operator T remains a self mapping of a nonempty closed convex subset K of a uniformly convex Banach space E. If, however, the domain of T, D(T) is a proper subset of E, and T maps D(T) into E, then the iteration process of Mann and Ishikawa studied by these authors.

The purpose of this paper is to construct a multistep iterative scheme with errors for approximating common fixed point of a finite family of asymptotically nonexpansive nonself mappings and to prove strong convergence theorems for such maps.

Let K be a nonempty closed convex subset of a real uniformly convex Banach space E. Then for arbitrary $x_1 \in K$, we define the sequence $\{x_n\}$ iteratively as follows:

$$\begin{cases}
 x_n^1 = P(\alpha_n^1 x_n + \beta_n^1 T_1^n x_n + \gamma_n^1 u_n^1) \\
 x_n^2 = P(\alpha_n^2 x_n + \beta_n^2 T_2^n x_n^1 + \gamma_n^2 u_n^2) \\
 \cdots = \cdots \qquad \cdots \qquad \cdots \qquad \cdots \\
 \cdots = \cdots \qquad \cdots \qquad \cdots \qquad \cdots \\
 x_{n+1} = x_n^{(N)} = P(\alpha_n^N x_n + \beta_n^N T_N^n x_n^{N-1} + \gamma_n^N u_n^N) \qquad \forall n \geqslant 1
\end{cases}$$

where $\{\alpha_n^1\}, \{\alpha_n^2\}, \cdots, \{\alpha_n^N\}, \{\beta_n^1\}, \{\beta_n^2\}, \cdots, \{\beta_n^N\}, \{\gamma_n^1\}, \{\gamma_n^2\}, \cdots, \{\gamma_n^N\}$ are sequences in [0,1] with $\alpha_n^i + \beta_n^i + \gamma_n^i = 1$ for all $i=1,2,3,\cdots N$ and $\{u_n^1\}, \{u_n^2\}, \cdots, \{u_n^N\}$ are bounded sequences in K.

DEFINITION 1.1. Let E be a real Banach space. A subset K of E is said to be a retract of E if there exists a continuous map $P: E \to E$ such that Px = x for all $x \in K$. A map $P: E \to E$ is said to be a retraction if $P^2 = P$. It follows that if a map P is a retraction, then Py = y for all y in the range of P.

Recall that the following:

- (1) A mapping $T: K \to K$ with $F(T) \neq \phi$ is said to satisfy condition (A) [6] on K if there exists a non decreasing function $f: [0, \infty) \to [0, \infty)$ with f(0) = 0 and f(r) > 0 for all $r \in (0, \infty)$ such that for all $x \in K$, $||x Tx|| \geq f(d(x, F))$, where $d(x, F(T)) = \inf\{||x p|| : p \in F(T)\}$.
- (2) A family $\{T_1, T_2, \dots, T_n\}$ of N self-mappings on K with $F = \bigcap_{i=1}^N F(T_i) \neq \phi$ is said to satisfy condition (B) on K if there exists f and d as in (i) such that

$$\max_{1 \le i \le N} \{ \|x - T_i x\| \} \geqslant f(d(x, F)),$$

for all $x \in K$.

When $T_i = T$ for all $i = 1, 2, \dots N$, then condition (B) reduces to condition (A).

LEMMA 1.1. ([12]) Let $\{a_n\}$, $\{\beta_n\}$ and $\{r_n\}$ be non-negative sequences satisfying $a_{n+1} \leq (1+r_n)a_n + \beta_n$, $\forall n \in \mathbb{N}$. If $\sum_{n=1}^{\infty} r_n < \infty$, $\sum_{n=1}^{\infty} \beta_n < \infty$, then $\lim_{n \to \infty} a_n\}$ exist. Moreover, if $\liminf_{n \to \infty} a_n = 0$ then $\lim_{n \to \infty} a_n = 0$.

Let p > 1 and R > 1 be two fixed numbers and E be a Banach space. Then E is uniformly convex if and only if there exists a continuous, strictly increasing and convex function $g: [0, \infty) \to [0, \infty)$ with g(0) = 0 such that

$$\|\lambda x + (1 - \lambda)y\|^p \le \lambda \|x\|^p + (1 - \lambda)\|y\|^p - w_p(\lambda)g(\|x - y\|)$$

for all $x, y \in B_R(0) = \{x \in E : ||x|| \le R\}$, and $\lambda \in [0, 1]$, where $w_p(\lambda) = \lambda (1 - \lambda)^p + \lambda^p (1 - \lambda)$.

2. Main Results

Before proving our main result we shall prove the following crucial lemmas.

LEMMA 2.1. Let E be a real uniformly convex Banach space and K be a nonempty closed convex subset which is also a nonexpansive retract of E. Let $T_1, T_2, \dots, T_N : K \to K$ be N asymptotically nonexpansive nonself mappings with sequences $\{r_n^i\}$ such that $\sum_{n=1}^{\infty} r_n^i < \infty$, for all $1 \le i \le N$ and $F = \bigcap_{i=1}^N F(T_i) \ne \phi$. Let $\{\alpha_n^i\}$, $\{\beta_n^i\}$, $\{\gamma_n^i\}$ are sequences in [0,1] with $\alpha_n^i + \beta_n^i + \gamma_n^i = 1$ for all $i = 1, 2, 3, \dots, N$. From arbitrary $x_1 \in K$ define the sequence $\{x_n\}$ iteratively by (1.3), where $\{u_n^i\}$ are bounded sequences in K with $\sum_{n=1}^{\infty} u_n^i < \infty$ and $\sum_{n=1}^{\infty} \gamma_n^i < \infty$. Then

$$||x_{n+1} - x^*|| = ||x_n^N - x^*|| \le (1 + b_n^{N-1})||x_n - x^*|| + d_n^{N-1},$$

for all $n \ge 1$, $x^* \in F$ and for some sequence $\{d_n^i\}$ for all $i = 1, 2, 3, \dots N$ of numbers such that $\sum_{n=1}^{\infty} d_n^i < \infty$.

PROOF. Let $x^* \in F$, then from (1.3) we get

$$\begin{split} \|x_n^1 - x^*\| &= \|P(\alpha_n^1 x_n + \beta_n^1 T_1^n x_n + \gamma_n^1 u_n^1) - Px^*\| \\ &\leqslant \alpha_n^1 \|x_n - x^*\| + \beta_n^1 \|T_1^n x_n - x^*\| + \gamma_n^1 \|u_n^1 - x^*\| \\ &\leqslant \alpha_n^1 \|x_n - x^*\| + \beta_n^1 (1 + r_n^1) \|x_n - x^*\| + \gamma_n^1 \|u_n^1 - x^*\| \\ &\leqslant \alpha_n^1 (1 + r_n^1) \|x_n - x^*\| + \beta_n^1 (1 + r_n^1) \|x_n - x^*\| + \gamma_n^1 \|u_n^1 - x^*\| \\ &\leqslant (1 - \beta_n^1) (1 + r_n^1) \|x_n - x^*\| + \beta_n^1 (1 + r_n^1) \|x_n - x^*\| \\ &+ \gamma_n^1 \|u_n^1 - x^*\| \\ &\leqslant (1 + r_n^1) \|x_n - x^*\| + \gamma_n^1 \|u_n^1 - x^*\| \\ &\leqslant (1 + r_n^1) \|x_n - x^*\| + d_n^0 \end{split}$$

where $d_n^0 = \gamma_n^1 ||u_n^1 - x^*||$. Since $\sum_{n=1}^{\infty} \gamma_n^1 < \infty$, then $\sum_{n=1}^{\infty} d_n^0 < \infty$.

Next we note that,

$$\begin{split} \|x_n^2 - x^*\| &= \|P(\alpha_n^2 x_n + \beta_n^2 T_2^n x_n^1 + \gamma_n^2 u_n^2) - Px^*\| \\ &\leqslant \alpha_n^2 \|x_n - x^*\| + \beta_n^2 \|T_2^n x_n^1 - x^*\| + \gamma_n^2 \|u_n^2 - x^*\| \\ &\leqslant \alpha_n^2 \|x_n - x^*\| + \beta_n^2 (1 + r_n^2) \|x_n^1 - x^*\| + \gamma_n^2 \|u_n^2 - x^*\| \\ &\leqslant \alpha_n^2 \|x_n - x^*\| + \beta_n^2 (1 + r_n^2) [(1 + r_n^1) \|x_n - x^*\| + d_n^0] \\ &+ \gamma_n^2 \|u_n^2 - x^*\| \\ &\leqslant [\alpha_n^2 + \beta_n^2 (1 + r_n^2) (1 + r_n^1)] \|x_n - x^*\| + \beta_n^2 (1 + r_n^2) d_n^0 \\ &+ \gamma_n^2 \|u_n^2 - x^*\| \\ &\leqslant (\alpha_n^2 + \beta_n^2) (1 + r_n^2) (1 + r_n^1) \|x_n - x^*\| + \beta_n^2 (1 + r_n^2) d_n^0 \\ &+ \gamma_n^2 \|u_n^2 - x^*\| \\ &\leqslant (1 + r_n^1 + r_n^2 + r_n^1 r_n^2) \|x_n - x^*\| + \beta_n^2 (1 + r_n^2) d_n^0 + \gamma_n^2 \|u_n^2 - x^*\| \\ &\leqslant (1 + b_n^1) \|x_n - x^*\| + d_n^1 \end{split}$$

where, $d_n^1 = \beta_n^2 (1 + r_n^2) d_n^0 + \gamma_n^2 \| u_n^2 - x^* \|$ and $b_n^1 = (r_n^1 + r_n^2 + r_n^1 r_n^2)$ Since $\sum_{n=1}^{\infty} d_n^0 < \infty$, $\sum_{n=1}^{\infty} \gamma_n^2 < \infty$, $\sum_{n=1}^{\infty} r_n^i < \infty$, for i=1,2 and so $\sum_{n=1}^{\infty} d_n^1 < \infty$, and $\sum_{n=1}^{\infty} b_n^1 < \infty$.

$$||x_n^i - x^*|| \le (1 + b_n^{i-1})||x_n - x^*|| + d_n^{i-1} \quad \forall \ n \ge 1, \ \forall \ i = 1, 2, \dots N$$

Thus , $||x_{n+1}-x^*||=||x_n^N-x^*|| \le (1+b_n^{N-1})||x_n-x^*||+d_n^{N-1}$ for all $n\geqslant 1$. This completes the proof of the lemma.

REMARK 2.1. If we put P=I (Identity mapping) in Lemma (2.1), then it generalizes the corresponding lemma of Schu [8] for one mapping. Further, if $F=\bigcap_{i=1}^N F(T_i) \neq \phi$ and $\lim_{n\to\infty} \|x_n - T_i^n x_n\| = 0$ for all $i=1,2,\cdots N$, then we have $\lim_{n\to\infty} \|x_{n+1} - x_n\| = 0$.

LEMMA 2.2. Let E be a real uniformly convex Banach space and K be a nonempty closed convex subset which is also a nonexpansive retract of E. Let $T_1, T_2, \dots, T_N : K \to K$ be N uniformly continuous asymptotically nonexpansive nonself mappings with sequences $\{r_n^i\}$ such that $\sum_{n=1}^{\infty} r_n^i < \infty$, for all $1 \le i \le N$ and $F = \bigcap_{i=1}^N F(T_i) \ne \phi$. Let $\{x_n\}$ be a sequence defined by (1.3) with $\sum_{n=1}^{\infty} \gamma_n^i < \infty$ and $\{\beta_n^i\} \subseteq [\varepsilon, 1-\varepsilon]$ for all $i=1,2,\dots N$ & for some $\varepsilon \in (0,1)$. Then $\|x_n - T_i x_n\| = 0$, for all $i=1,2,\dots N$.

PROOF. Let $x^* \in F = \bigcap_{i=1}^N F(T_i)$. Then by Lemma (2.1) and Lemma (1.1) $\lim_{n\to\infty} \|x_n-x^*\|$ exists. Let $\lim_{n\to\infty} \|x_n-x^*\|=a$. If a=0, then by the continuity of each T_i the conclusion follows. Now suppose that a>0. First, we will show that $\lim_{n\to\infty} \|T_N^n x_n - x_n\| = 0$. Since $\{x_n\}$ and $\{u_n^i\}$ bounded for all $i=1,2,\cdots N$, there exist R>0 such that $x_n-x^*+\gamma_n^i(u_n^i-x_n)$, $T_i^n x_n^{i-1}-x^*+\gamma_n^i(u_n^i-x_n) \in B_R(0)$ for all $n\geqslant 1$ and for all $i=1,2,\cdots N$.

Now using lemma (1.3), we have

$$||x_{n+1} - x^*||^2 = ||x_n^N - x^*||^2$$

$$= ||P(\alpha_n^N x_n + \beta_n^N T_n^N x_n^{N-1} + \gamma_n^N u_n^N) - Px^*||^2$$

$$= ||\alpha_n^N x_n + \beta_n^N T_n^N x_n^{N-1} + \gamma_n^N u_n^N - x^*||^2$$

$$= ||\beta_n^N (T_n^N x_n^{N-1} - x^* + \gamma_n^N (u_n^N - x_n)) + (1 - \beta_n^N)(x_n - x^* + \gamma_n^N (u_n^N - x_n))||^2$$

$$\leq \beta_n^N ||T_n^N x_n^{N-1} - x^* + \gamma_n^N (u_n^N - x_n)||^2$$

$$+ (1 - \beta_n^N)||x_n - x^* + \gamma_n^N (u_n^N - x_n)||^2$$

$$- w_2(\beta_n^N)g(||T_n^N x_n^{N-1} - x_n||)$$

$$\leq \beta_n^N (||T_n^N x_n^{N-1} - x^*|| + \gamma_n^N ||u_n^N - x_n||)^2$$

$$+ (1 - \beta_n^N)(||x_n - x^*|| + \gamma_n^N ||u_n^N - x_n||)^2$$

$$- w_2(\beta_n^N)g(||T_n^N x_n^{N-1} - x_n||)$$

$$\leq \beta_n^N (||x_n - x^*|| + d_n^{N-2} + \gamma_n^N ||u_n^N - x_n||)^2$$

$$+ (1 - \beta_n^N)(||x_n - x^*|| + d_n^{N-2} + \gamma_n^N ||u_n^N - x_n||)^2$$

$$- w_2(\beta_n^N)g(||T_n^N x_n^{N-1} - x_n||)$$

$$\leq (||x_n - x^*|| + d_n^{N-2} + \gamma_n^N ||u_n^N - x_n||)^2$$

$$- w_2(\beta_n^N)g(||T_n^N x_n^{N-1} - x_n||)$$

$$\leq (||x_n - x^*|| + d_n^{N-2} + \gamma_n^N ||u_n^N - x_n||)^2$$

$$- w_2(\beta_n^N)g(||T_n^N x_n^{N-1} - x_n||)$$

$$\leq (||x_n - x^*|| + \lambda_n^{N-2})^2 - w_2(\beta_n^N)g(||T_n^N x_n^{N-1} - x_n||)$$
where $\lambda_n^{N-2} = d_n^{N-2} + \gamma_n^N ||u_n^N - x_n||$

Observe that $\varepsilon^3 \leq w_2(\beta_n^N)$. Now (2.1) implies that

$$\varepsilon^{3} g(\|T_{N}^{n} x_{n}^{N-1} - x_{n}\|) \leqslant \|x_{n} - x^{*}\|^{2} - \|x_{n+1} - x^{*}\|^{2} + \rho_{n}^{N-2}$$
where $\rho_{n}^{N-2} = 2\lambda_{n}^{N-2} + (\lambda_{n}^{N-2})^{2}$

Since $\sum_{n=1}^{\infty} d_n^{N-2} < \infty$ and $\sum_{n=1}^{\infty} \gamma_n^{N-2} < \infty$, we get $\sum_{n=1}^{\infty} \rho_n^{N-2} < \infty$, which implies that

$$\lim_{n \to \infty} g(\|T_N^n x_n^{N-1} - x_n\|) = 0$$

Since g is strictly increasing and continuous at 0, it follows that

$$\lim_{n \to \infty} ||T_N^n x_n^{N-1} - x_n|| = 0$$

Since for all N, T_N is asymptotically nonexpansive, note that

$$\begin{aligned} \|x_n - x^*\| &\leqslant \|x_n - T_N^n x_n^{N-1}\| + \|T_N^n x_n^{N-1} - x^*\| \\ &= \|x_n - T_N^n x_n^{N-1}\| + (1 + r_n^N)\|x_n^{N-1} - x^*\| \end{aligned}$$

for all $n \ge 1$

Thus

$$a = \lim_{n \to \infty} \|x_n - x^*\| \le \liminf \|x_n^{N-1} - x^*\| \le \limsup \|x_n^{N-1} - x^*\| \le a,$$

and therefore

$$\lim_{n \to \infty} ||x_n^{N-1} - x^*|| = a.$$

Using the same argument in the proof above, we have

$$||x_{n}^{N-1} - x^{*}||^{2} \leq \beta_{n}^{N-1} ||T_{N-1}^{n} x_{n}^{N-2} - x^{*} + \gamma_{n}^{N-1} (u_{n}^{N-1} - x_{n})||^{2}$$

$$+ (1 - \beta_{n}^{N-1}) ||x_{n} - x^{*} + \gamma_{n}^{N-1} (u_{n}^{N-1} - x_{n})||^{2}$$

$$- w_{2}(\beta_{n}^{N-1}) g(||T_{N-1}^{n} x_{n}^{N-2} - x_{n}||)$$

$$\leq \beta_{n}^{N-1} (||x_{n} - x^{*}|| + d_{n}^{N-3} + \gamma_{n}^{N-1} ||u_{n}^{N-1} - x_{n}||)^{2}$$

$$+ (1 - \beta_{n}^{N-1}) (||x_{n} - x^{*}|| + d_{n}^{N-3} + \gamma_{n}^{N-1} ||u_{n}^{N-1} - x_{n}||)^{2}$$

$$- w_{2}(\beta_{n}^{N-1}) g(||T_{N-1}^{n} x_{n}^{N-2} - x_{n}||)$$

$$\leq (||x_{n} - x^{*}|| + d_{n}^{N-3} + \gamma_{n}^{N-1} ||u_{n}^{N-1} - x_{n}||)^{2}$$

$$- w_{2}(\beta_{n}^{N-1}) g(||T_{N-1}^{n} x_{n}^{N-2} - x_{n}||)$$

$$\leq (||x_{n} - x^{*}|| + \lambda_{n}^{N-3})^{2} - w_{2}(\beta_{n}^{N-1}) g(||T_{N-1}^{n} x_{n}^{N-2} - x_{n}||)$$

$$\leq (||x_{n} - x^{*}|| + \lambda_{n}^{N-3})^{2} - w_{2}(\beta_{n}^{N-1}) g(||T_{N-1}^{n} x_{n}^{N-2} - x_{n}||)$$

$$\text{where } \lambda_{n}^{N-3} = d_{n}^{N-3} + \gamma_{n}^{N-1} ||u_{n}^{N-1} - x_{n}||$$

This implies that

$$\varepsilon^{3} g(\|T_{N-1}^{n} x_{n}^{N-2} - x_{n}\|) \leqslant \|x_{n} - x^{*}\|^{2} - \|x_{n+1} - x^{*}\|^{2} + \rho_{n}^{N-3},$$
where $\rho_{n}^{N-3} = 2\lambda_{n}^{N-3} + (\lambda_{n}^{N-3})^{2}$.

Therefore

$$\lim_{n \to \infty} ||T_{N-1}^n x_n^{N-2} - x_n|| = 0.$$

Thus we have

$$\begin{split} \|x_n - T_N^n x_n\| &\leqslant \|x_n - T_N^n x_n^{N-1}\| + \|T_N^n x_n^{N-1} - T_N^n x_n\| \\ &\leqslant \|x_n - T_N^n x_n^{N-1}\| + (1 + r_n^N) \|x_n^{N-1} - x_n\| \\ &\leqslant \|x_n - T_N^n x_n^{N-1}\| \\ &+ (1 + r_n^N) \|\alpha_n^{N-1} x_n + \beta_n^{N-1} T_{N-1}^n x_n^{N-2} + \gamma_n^{N-1} u_n^{N-1} - x_n\| \\ &\leqslant \|x_n - T_N^n x_n^{N-1}\| \\ &+ (1 + r_n^N) [\beta_n^{N-1} \|T_{N-1}^n x_n^{N-2} - x_n\| + \gamma_n^{N-1} \|u_n^{N-1} - x_n\|] \end{split}$$

Since $\lim_{n\to\infty} \|T_N^n x_n^{N-1} - x_n\| = 0$ and $\lim_{n\to\infty} \|T_{N-1}^n x_n^{N-2} - x_n\| = 0$, also $\sum_{n=1}^{\infty} \gamma_n^{N-1} < \infty$ and $\sum_{n=1}^{\infty} r_n^N < \infty$, it follows that $\lim_{n\to\infty} \|x_n - T_N^n x_n\| = 0$. Similarly

$$\lim_{n \to \infty} \|x_n - T_{N-2}^n x_n^{N-3}\| = \lim_{n \to \infty} \|x_n - T_{N-3}^n x_n^{N-4}\| = \cdots$$

.

$$\cdots\cdots = \lim_{n \to \infty} ||x_n - T_2^n x_n^1|| = 0$$

This implies that

$$\lim_{n \to \infty} \|x_n - T_{N-1}^n x_n\| = \lim_{n \to \infty} \|x_n - T_{N-2}^n x_n\| = \dots = \lim_{n \to \infty} \|x_n - T_3^n x_n\| = 0$$

It remains to show that

$$\lim_{n \to \infty} ||x_n - T_1^n x_n|| = 0, \qquad \lim_{n \to \infty} ||x_n - T_2^n x_n|| = 0$$

Note that

$$\begin{split} \|x_n^1 - x^*\|^2 &\leqslant \beta_n^1 (\|T_1^n x_n - x^*\| + \gamma_n^1 \|u_n^1 - x_n\|)^2 \\ &+ (1 - \beta_n^1) (\|x_n - x^*\| + \gamma_n^1 \|u_n^1 - x_n\|)^2 \\ &- w_2(\beta_n^1) g(\|T_1^n x_n - x_n\|) \\ &\leqslant \beta_n^1 (\|x_n - x^*\| + \gamma_n^1 \|u_n^1 - x_n\|)^2 \\ &+ (1 - \beta_n^1) (\|x_n - x^*\| + \gamma_n^1 \|u_n^1 - x_n\|)^2 \\ &- w_2(\beta_n^1) g(\|T_1^n x_n - x_n\|) \\ &\leqslant (\|x_n - x^*\| + \gamma_n^1 \|u_n^1 - x_n t\|)^2 - w_2(\beta_n^1) g(\|T_1^n x_n - x_n\|) \end{split}$$

Thus we have

$$\varepsilon^2 g(\|T_1^n x_n - x_n\|) \leqslant (\|x_n - x^*\| + \gamma_n^1 \|u_n^1 - x_n\|)^2 - \|x_n^1 - x^*\|^2$$

and therefore $\lim_{n\to\infty} ||x_n - T_1^n x_n|| = 0$. Since

$$\begin{aligned} \|x_n - T_2^n x_n\| &\leqslant \|x_n - T_2^n x_n^1\| + \|T_2^n x_n^1 - T_2^n x_n\| \\ &\leqslant \|x_n - T_2^n x_n^1\| + (1 + r_n^2) \|x_n^1 - x_n\| \\ &\leqslant \|x_n - T_2^n x_n^1\| + (1 + r_n^2) \|\alpha_n^1 x_n + \beta_n^1 T_1^n x_n + \gamma_n^1 u_n^1 - x_n\| \\ &\leqslant \|x_n - T_2^n x_n^1\| + (1 + r_n^2) [\beta_n^1\| T_1^n x_n - x_n\| + \gamma_n^1\|u_n^1 - x_n\|], \end{aligned}$$

Which implies that

$$\lim_{n \to \infty} \|x_n - T_2^n x_n\| = 0.$$

Therefore

$$\lim_{n \to \infty} ||x_n - T_i^n x_n|| = 0,$$

for all $i = 1, 2, \dots N$. On the other hand, by Remark (2.1), it is clear that

$$\lim_{n \to \infty} ||x_{n+1} - x_n|| = 0.$$

Therefore by Lemma (2.1), we conclude that $\lim_{n\to\infty} ||x_n - T_i x_n|| = 0$.

Theorem 2.1. Let E be a real uniformly convex Banach space and K be a nonempty closed convex subset which is also a nonexpansive retract of E. Let $T_1, T_2, \dots, T_N : K \to K$ be N uniformly continuous asymptotically nonexpansive nonself mappings with sequences $\{r_n^i\}$ such that $\sum_{n=1}^{\infty} r_n^i < \infty$, for all $1 \le i \le N$ and $F = \bigcap_{i=1}^N F(T_i) \ne \phi$. Suppose $\{T_1, T_2, \dots, T_N\}$ satisfies condition (B). Let $\{x_n\}$ be a sequence defined by (1.3) with $\sum_{n=1}^{\infty} \gamma_n^i < \infty$ and $\{\beta_n^i\} \subseteq [\varepsilon, 1-\varepsilon]$ for all $i=1,2,\dots N$ and for some $\varepsilon \in (0,1)$. Then $\{x_n\}$ converges strongly to a common fixed point of the mappings $\{T_1,T_2,\dots,T_N\}$.

PROOF. From Lemma (2.1) and (1.1), we see that $\lim_{n\to\infty} \|x_n - x^*\|$ exist for all $x^* \in F = \bigcap_{i=1}^N F(T_i)$. Let $\lim_{n\to\infty} \|x_n - x^*\| = a$ for all $a \ge 0$. Without loss of generality, if a = 0, then there is nothing to prove. So that we assume that a > 0, as proved in Lemma (2.1), we have

$$||x_{n+1} - x^*|| = ||x_n^N - x^*|| \le (1 + b_n^{N-1})||x_n - x^*|| + d_n^{N-1},$$

for all $n \ge 1$,

where $\{d_n^i\}_{n=1}^{\infty}$, for all $i=1,2,\cdots N$, is non-negative real sequences such that $\sum_{n=1}^{\infty} d_n^i < \infty$ for all $i=1,2,\cdots N$.

This gives that

$$d(x_{n+1}, F) \leq (1 + b_n^{N-1})d(x_n, F) + d_n^{N-1}$$
 for all

 $n \in N$.

Applying Lemma (1.1) to the above inequality, we obtained that $\lim_{n\to\infty} d(x_n, F)$ exist.

Also by Lemma (2.2) $\lim_{n\to\infty} ||x_n - T_i^n x_n|| = 0$ for all $i = 1, 2, \dots N$. Since $\{T_1, T_2, \dots, T_N\}$ satisfies condition (B), we conclude that $\lim_{n\to\infty} d(x_n, F) = 0$. Next we show that $\{x_n\}$ is a Cauchy sequence.

Since $\lim_{n\to\infty} d(x_n, F) = 0$, then given any $\varepsilon > 0$ there exist a natural number n_0 such that $d(x_n, F) < \frac{\varepsilon}{3}$ for all $n \ge n_0$.

So we can find $p^* \in F$ such that $||x_{n_0} - p^*|| < \frac{\varepsilon}{2}$

For all $n \ge n_0$ and $m \ge 1$, we have

$$||x_{n+m} - x_n|| \le ||x_{n+m} - p^*|| + ||p^* - x_n||$$

 $\le ||x_{n_0} - p^*|| + ||x_{n_0} - p^*||$
 $< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$

This shows that $\{x_n\}$ is a Cauchy sequence and so is convergent, since E is complete. Let $\lim x_n = q^*$. Then $q^* \in K$.

It remains to show that $q^* \in F$. Let $\varepsilon_1 > 0$ be given, then there exists a natural number n_1 such that $||x_n - x^*|| < \frac{\varepsilon_1}{4}$ for all $n \ge n_1$. Since $\lim_{n \to \infty} d(x_n, F) = 0$, there exists a natural number $n_2 \ge n_1$ such that , for all $n \ge n_2$, we have $d(x_n, F) < \frac{\varepsilon_1}{5}$ and in particular, we have $d(x_n, F) < \frac{\varepsilon_1}{5}$.

Therefore, there exists $w^* \in K$ such that $||x_{n_2} - w^*|| < \frac{\varepsilon_1}{4}$

For any $i \in I$ and $n \ge n_2$, we have

$$||T_{i}q^{*} - q^{*}|| \leq ||T_{i}q^{*} - w^{*}|| + ||w^{*} - q^{*}||$$

$$\leq 2||q^{*} - w^{*}||$$

$$\leq 2(||q^{*} - x_{n_{2}}|| + ||x_{n_{2}} - w^{*}||)$$

$$< 2(\frac{\varepsilon_{1}}{4} + \frac{\varepsilon_{1}}{4}) < \varepsilon_{1}$$

This implies that $T_iq^* = q^*$. Hence $q^* \in F(T_i)$ for all $i \in I$ and so $q^* \in F = \bigcap_{i=1}^N F(T_i)$. Thus $\{x_n\}$ converges strongly to a common fixed point of the mappings $\{T_1, T_2, \dots, T_N\}$.

Remark 2.2. Theorem (2.1) extend the corresponding result of Su and Qin [21] to the case of multistep iterative sequences with errors for a finite family of asymptotically nonexpansive nonself mappings.

Remark 2.3. Our result also extend the corresponding result of Shahzad [14] to the case of multistep iterative sequences with errors for a finite family of more general class of nonexpansive mappings.

References

- B. E. Rhoades, Fixed point iteration for certain nonlinear mappings, J. Math. Anal. Appl. 183 (1994), 118-120.
- [2] C. E. Chidume, On the approximation of fixed points of nonexpansive mappings, Houston J. Math. 7 (1981),345-355.
- [3] C. E. Chidume, Nonexpansive mappings, generalizations and iterative algorithms, in: Agarwal R.P., O'Reagan D. (ed.) Nonlinear Analysis and Application. To V. Lakshmikantam on his 80th Birthday 'Research Monograph', Dordrecht: Kluwer Academic Publishers, str. 383-430.
- [4] C. E. Chidume, N. Shahzad and H. Zegeye, Strong convergence theorems for nonexpansive mappings in arbitrary Banach spaces, Nonlinear Anal. Submitted.
- [5] G. B. Passty, Construction of fixed points for asymptotically nonexpansive mappings, Proc. Amer. Math. Soc. 84 (1982), 212-216.
- [6] H. F. Senter and W. G. Dotson, Approximating fixed points of nonexpansive mappings, Proc. Amer. Math. Soc. 44 (1974), 375-380.
- [7] H. K. Xu, Existence and convergence for fixed points of mappings of asymptotically nonexpansive type, Nonlinear Analysis, 16 (1991), 1139-1146.
- [8] J. Schu, Weak and strong convergence theorems to fixed points of asymptotically nonexpansive mappings, Bull. Austral. Math. Soc. 43 (1991), 153-159.
- [9] K. Goebel and W. A. Kirk, A fixed point theorem for asymptotically mappings, Proc. Amer. Math. Soc. 35 (1972), 171-174.
- [10] K. K. Tan and H. K. Xu, A nonlinear ergodic theorem for asymptotically nonexpansive mappings, Bull. Austral. Math. Soc., 45(1992), 25-36.
- [11] K. K. Tan and H. K. Xu, The nonlinear ergodic theorem for asymptotically nonexpansive mappings in Banach spaces, Proc. Amer. Math. Soc. 114(1992), 399-404.
- [12] K. K Tan and H. K. Xu, Approximating fixed points of nonexpansive mappings by Ishikawa iteration process, J. Math. Anal. Appl. 178(1993), 301-308.
- [13] M. O. Osilike and S. C. Aniagbosor, Weak and strong convergence theorems for fixed points of asymptotically nonexpansive mappings, Math. Comput. Modelling 32(2000), 1181-1191.

- [14] N. Shahzad, Approximating fixed points of non-self nonexpansive mappings in Banach spaces, Nonlinear Analysis 61 (2005), no. 6, 1031-1039.
- [15] S. C. Bose, Weak convergence to a fixed point of an asymptotically nonexpansive mappings, Proc. Amer. Math. Soc.68(1978), 305-308.
- [16] S. Ishikawa, Fixed points by a new iteration method, Proc. Amer. Math. Soc. 44(1974), 147-150.
- [17] S. Ishikawa, Fixed points and iteration of a nonexpansive mapping in a Banach space, Proc. Amer. Math. Soc. 59(1976), 65-71.
- [18] S. Reich, Weak convergence theorems for nonexpansive mappings in Banach spaces, J. Math. Anal. Appl.67(1979), 274-276.
- [19] S.S. Chang, Y.J. Cho and H. Zhou, Demi-closed principle and weak convergence problems for asymptotically nonexpansive mappings, J. Korean Math. Soc. 38(2001), 1245-1260.
- [20] W.R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc. 4(1953), 506-510.
- [21] Yongfu Su and Xiaolong Qin, Approximating fixed points of non-self asymptotically non-expansive mappings in Banach spaces, J. Applied Mathematics and Stochastic Analysis, Volume 2006, Article ID 21961, pp. 1-13.
- [22] Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc. 73(1967), 591-597.

Received 23.02.2012; available online 03.09.2012

Department of Mathematics, J H Government Post Graduate College, Betul, INDIA-460001

E-mail address: dssaluja@rediffmail.com

Department of Mathematics, Faculty of Science, Assiut University, Assiut, Egypt, $E\text{-}mail\ address:\ rr_rashwan54@yahoo.com$

Department of Mathematics, NRI Institute of Information Science and Technology, Bhopal, INDIA-462021

 $E ext{-}mail\ address: pmathsjhade@gmail.com}$