Vol. 2(2012), 167-171

Former BULLETIN OF SOCIETY OF MATHEMATICIANS BANJA LUKA ISSN 0354-5792 (o), ISSN 1986-521X (p)

CONTRACTIVE OPERATORS ON TOPOLOGICAL VECTOR SPACES

Ivan Aranđelović and Vesna Mišić

ABSTRACT. In this paper we define contractive bounded linear operators on partially ordered Haussdorff topological vector space and study theirs basic properties.

1. Introduction

I. Aranđelović and V. Mišić [3] (see also [4]) introduced the notion of a contractive linear operator on metric linear spaces and present some fixed point results with operator contractive condition which generalize some results from [5] and [8]. In [2] authors consider contractive linear operators on locally convex topological vector spaces.

In this paper we define contractive bounded linear operators on partially ordered (non-necessarily locally convex) Haussdorff topological vector spaces and study theirs basic properties.

2. Preliminaries

Let E be a linear topological space. Let E be a linear topological space. A subset P of E is called a cone if:

- 1) P is closed, nonempty and $P \neq \{0\}$;
- 2) $a, b \in \mathbf{R}$, a, b > 0, and $x, y \in P$ imply $ax + by \in P$;
- 3) $P \cap (-P) = \{0\}.$

Given a cone, $P \subseteq E$ we define partially ordering \leq on E with respect to P by $x \leq y$ if and only if $y - x \in P$. We shall write x < y to indicate that $x \leq y$ and $x \neq y$, while $x \ll y$ will stand for $y - x \in \text{int}P$ (interior of P).

²⁰¹⁰ Mathematics Subject Classification. Primary 54H25; Secondary 47H10.

Key words and phrases. contractive operator, ordered topological vector space.

The first author was partially supported by MNZZS Grant, No. 174002, Serbia.

Let E be a linear topological space and let $P \subseteq E$ be a cone. We say that P is a solid cone if and only if $\operatorname{int} P \neq \emptyset$. Then c is an interior point of P if and only if [-c,c] is a neighborhood of Θ in E.

Ordered topological vector space (E, P) is order-convex if its base of neighborhoods of zero consists of order-convex subsets. In this case the cone P is said to be normal, or P-saturated.

Let E be a Banach space and let P be a solid cone in E such that \leq is a partially ordering on E with respect to P. P is a normal cone if and only if there exists a real number K > 0 such that $x \leq y$ implies

$$(2.1) ||x|| \leqslant K||y||$$

for each $x, y \in P$. The least positive K satisfying (2.1) is called the normal constant of P. In [8] Sh. Rezapour and R. Hamlbarani proved that $K \ge 1$, when E is a Banach space.

Let (E, |.||) be a topological vector space and $P \subseteq E$ be a cone. P is a solid cone if and only if $int P \neq \emptyset$.

There exists solid cone which is non-normal.

THEOREM 2.1. (J. S. Vandergraft [10]) If the cone P of an ordered topological vector space (E, P) is normal and solid, then (E, P) is an ordered normed space.

Theorem 2.2. (Arandelović, Keckić [2]) There exists non-normable locally convex topological vector space which has solid cone.

Theorem 2.3. There exists non-locally convex and non-metrizable topological vector space which has solid cone.

PROOF. Let X = [0,1], $E = C_{\mathbf{R}}[0,1]$ equipped with the strongest Hausdorff topology and $P = \{h \in E : h(t) \ge 0, t \in [0,1]\}$. Then E is a Hausdorff non-locally convex, because its base in uncountable [1], and P is a non-normal solid cone, by Theorem 2.3. from [6]. \square

In the following we always suppose that E is a (non-necessarily locally convex) Haussdorff topological vector space, P is a solid cone in E such that \leq is partially ordering on E with respect to P. By I we denote identity operator on E i.e. I(x) = x for each $x \in E$.

3. Main Results

We start with the following definition.

DEFINITION 3.1. If $A: E \to E$ is an one to one function such that A(P) = P, I - A is one to one and (I - A)(P) = P then A is contractive operator.

EXAMPLE 3.1. Let n be a positive integer, $E = \mathbf{R}^n$, $P = \{(x_1, \dots, x_n) \in E : x_i \ge 0 \ i = 1, \dots, n\}, \ \lambda_1, \dots, \lambda_n \in (0, 1) \text{ and } \Lambda = [a_{ij}]_{1 \le i,j \le n} \text{ be square matrix such that}$

$$a_{ij} = \begin{cases} 0 & 0, i \neq j; \\ \lambda_j, i = j \end{cases}, 1 \leqslant i, j \leqslant n.$$

Then $A: E \to E$ defined by $A(x) = \Lambda[x]$ is contractive bounded linear operator.

EXAMPLE 3.2. Let $E = \mathcal{C}^2([0,1])$ with the norm

$$||f|| = ||f||_{\infty} + ||f'||_{\infty},$$

and consider the cone

$$P = \{ f \in E : f \geqslant 0 \}.$$

Then P is non-normal solid cone in E (see [8]).

Then $A: E \to E$ defined by

$$|A(f)|_x = \exp(-x)f(x)$$

is contractive bounded linear operator. We can see that ||A|| = 3, and so A is not contractive operator in sense of Banach.

Now we need the following Lemma.

Lemma 3.1. If $A: E \to E$ is the contractive bounded linear operator then

- 1) there exists A^{-1} and it is bounded linear operator;
- 2) there exists $(I A)^{-1}$ and it is bounded linear operator;
- 3) $A(x) \ll x$ for any $x \in \text{int}P$;
- 4) $x \leq y$ implies $A(x) \leq A(y)$ for any $x, y \in P$;
- 5) $x \ll y$ implies $A(x) \ll A(y)$ for any $x, y \in P$;
- 6) $(I A)(x) \ll x$ for any $x \in \text{int}P$;
- 7) $I + A + \cdots + A^n = (I A)^{-1} \circ (I A^{n+1}).$

PROOF. 1) A^{-1} exists because A is one to one. For any $a, b \in E$ there exists $c, d \in E$ such that a = A(c) and b = A(d). From

$$A^{-1}(\alpha a + \beta b) = A^{-1}(\alpha A(c) + \beta A(d)) = A^{-1}(A(\alpha c + \beta d)) = \alpha A^{-1}(a) + \beta A^{-1}(b),$$

it follows that A^{-1} is linear. A is continuous because it is bounded, which implies that A^{-1} is continuous. So A^{-1} is bounded because it is linear.

- 2) I A is one to one bounded linear operator because I and A are one to one bounded linear operators. Now proof follows from 1).
- 3) I-A is one to one bounded linear operator because I and A are one to one bounded linear operators. (I-A)(P)=P and (I-(I-A))(P)=A(P)=P because A is contractive.

From (I - A)(P) = P by Open mapping theorem (see [11]) it follows that $(I - A)(\text{int}P) \subseteq \text{int}P$, which implies that $x - A(x) \in \text{int}P$ for each $x \in \text{int}P$.

- 4) From $x \leq y$ it follows $y-x \in P$ which implies $A(y-x) \in P$ because A(P)=P.
- 5) From A(P) = P by Open mapping theorem (see [11]) it follows that $A(\text{int}P) \subseteq \text{int}P$. $x \ll y$ implies $y x \in \text{int}P$ which implies $A(y x) \in \text{int}P$ because $A(\text{int}P) \subseteq \text{int}P$.

6) It follows from $A(\text{int}P) \subseteq \text{int}P$ and A(x) = x - (x - A(x)).

7) It follows from
$$(I - A) \circ (I + A + \cdots + A^n) = I - A^{n+1}$$
.

In this section our main result is the following theorem.

Theorem 3.1. If $A: E \to E$ is the contractive bounded linear operator then for each $x \in P$ and any $c \in \text{int}P$ there exists a positive integer n_0 such that

$$A^n(x) \ll c$$

for all $n > n_0$.

PROOF. By Lemma 3.1 we get that

$$(I-A) \circ (n+1)A^n(x) \leqslant (I-A) \circ (I+A+\dots+A^n)(x) =$$

= $(I-A^{n+1})(x) = x - A^{n+1}(x) \leqslant x$

for any $x \in P$, because $A^n(x) \leq A^k(x)$ for any $k = 0, \dots, n$. So

$$(I-A)\circ(n+1)A^n(x)\leqslant x.$$

Hence

$$A^{n}(x) \leqslant \frac{1}{n+1}(I-A)^{-1}(x).$$

For any $0 \ll c$ we get that there exists a positive integer n_0 such that $n > n_0$ implies

$$\frac{1}{n+1}(I-A)^{-1}(x) \ll c,$$

because

$$\frac{1}{n+1}(I-A)^{-1}(x)$$

is a convergent sequence. So $n > n_0$ implies

$$A^n(x) \ll c$$
.

From Lemma 3.1 and Theorem 3.1 we obtain:

COROLLARY 3.1. If $A: E \to E$ is a contractive bounded linear operator then $\lim_{n \to \infty} (I + A + \dots + A^n) = (I - A)^{-1}.$

Next Corollary extends famous Volterra's fixed point theorem (see [7]).

Corollary 3.2. If $A: E \to E$ is a contractive bounded linear operator then for any $z \in P$ equation

$$x = z + A(x)$$

has a unique solution $y \in P$ and

$$y = \lim_{n \to \infty} (I + A + \dots + A^n)(x)$$

for any $x \in \text{int} P$.

References

- N. Adasch, B. Ernst, D. Keim, Topological vestor spaces. The theory without convexity conditions. Lecture notes in Mathematics 639, Springer, Berlin - Heidelberg - New York, 1978.
- [2] I. Aranđelović, D. Kečkić, On nonlinear quasi-contractions on TVS-cone metric spaces, Appl. Math. Lett., 24 (2011), 1209–1213.
- [3] I. Aranđelović, V. Mišić, Contractive linear operators and its applications in cone metric fixed point, Int. J. Math. Anal. (Ruse), 4/41 (2010) 2005-2015.
- [4] I. Aranđelović, V. Mišić, Common fixed point results with linear operator contractive condition in F cone metric spaces, Int. J. Contemp. Math. Sci., 5/39 (2010), 1931-1942.
- [5] L. G. Huang, X. Zhang, Cone metric spaces and fixed point theorems of contractive mappings,
 J. Math. Anal. Appl. 332 (2007) 1468–1476.
- [6] S. Janković, Z. Kadelburg, S. Radenović, On cone metric spaces: A survey, Nonlinear Anal. 74 (2011), 2591–2601.
- [7] D. S. Mitrinović, J. E. Pecarić, A. M. Fink, Inequalities involving functions and their integrals and derivatives, Kluwer Academic, Dordrecht, (1991).
- [8] Sh. Rezapour, R. Hamlbarani, Some notes on the paper "Cone metric spaces and fixed point theorems of contractive mappings", J. Math. Anal. Appl. 345 (2008) 719–724.
- [9] H. Schaefer, Topological vector spaces, Springer, New York Heidelberg Berlin, 1971.
- [10] J. S. Vandergraft, Newton's method for convex operators in partially ordered spaces, SIAM J. Numer. Anal., 4 (3) (1967), 406–432.
- $[11] \ \ A. \ \ Wilansky, \ \textit{Modern methods in topological vector spaces}, \ McGraw-Hill, \ New \ York, \ 1978.$

Received by editors 21.06.2012; available on internet on 27.08.2012

University of Belgrade, Faculty of Mechanical Engineering, 11000 Belgrade, Serbia

E-mail address: iarandjelovic@mas.bg.ac.rs

University of East Sarajevo, Faculty of Transport and Traffic Engineering, 53000 Doboj, Bosnia and Herzegovina

 $E\text{-}mail\ address{:}\ \mathtt{vesnasmisic@yahoo.com}$