EQUI-INTEGRATY PARTITIONS IN GRAPHS

Sundareswaran, R. and Swaminathan, V.

Abstract

C.A. Barefoot, et. al. introduced the concept of the integrity of a graph. It is an useful measure of vulnerability and it is defined as follows $I(G)=\min \{|S|+m(G-S): S \subset V(G)\}$, where $m(G-S)$ denotes the order of the largest component in $G-S$. The integrity of the set S is defined as $|S|+m(G-S)$ and is denoted by I_{S}, where $m(G-S)$ denotes the order of maximum component in $G-S$. A partition of $V(G)$ into subsets $V_{1}, V_{2}, \cdots, V_{t}$ such that $I_{V_{i}}, 1 \leqslant i \leqslant t$ is a constant is called equi-integrity partition of G. The maximum cardinality of such a partition is called equi-integrity partition number of G and is denoted by $E I(G)$. Since $V(G)$ itself is an equi-integrity partition of G , the existence of EI-partition is guaranteed. In this paper, a study of this new parameter is initiated.

Keywords: Integrity, Equi-Integrity Partitions

1. Introduction

The stability of a communication network is of prime importance for network designers. In an analysis of the vulnerability of a communication network to disruption, two quantities that come to our mind are the number of elements that are not functioning and the size of the largest remaining sub network within which mutual communications can still occur. In adverse relationship, it would be desirable for an opponent's network to be such that the two quantities can be made simultaneously small. In articles of C.A. Barefoot, R.Entriger and H.Swart ([1]) and G. Chartrand, S.F. Kapoor, T.A. McKee and O.R. Oellermann ([4]) and (See, also, W.D.Goddard [2] and K.S. Bagga, L.W. Beineke, W.D. Goddard, M.J. Lipman and R.E. Pippert $[\mathbf{3}])$ introduced the concept of the integrity of a graph. It is an useful measure of vulnerability and it is defined as follows $I(G)=\min \{|S|+m(G-S): S \subset V(G)\}$,

[^0]where $m(G-S)$ denotes the order of the largest component in $G-S$. Unlike the connectivity measures, integrity shows not only the difficulty to break down the network but also the damage that has been caused. A partition of $V(G)$ into subsets $V_{1}, V_{2}, \cdots, V_{t}$ such that $I_{V_{i}}, 1 \leqslant i \leqslant t$ is a constant is called equi-integrity partition of G. The maximum cardinality of such a partition is called equi-integrity partition number of G and is denoted by $E I(G)$. Since $V(G)$ itself is an equi-integrity partition of G, the existence of EI-partition is guaranteed.

This new parameter is related to the connectivity of the graph. If G has no cut vertices, then $E I(G)$ is maximum, namely the order of the graph. If a graph has more cut vertices such that the connected components resulting out of the removal of a cut vertex are more in number and have smaller orders, then $E I(G)$ becomes small. Thus, this parameter has relationship with connected graphs of connectivity one.

2. Equi-Integrity Partitions of graphs

Definition 2.1. ([1]) A set of vertices S in a graph G is an I-set of G if $|S|+m(G-S)=I(G)$.

Definition 2.2. For a subset S of $V(G)$, let $I_{s}=|S|+m(G-S)$, where $m(G-S)$ denotes the order of the largest component in $G-S$.

Definition 2.3. A partition of $V(G)$ into subsets $V_{1}, V_{2}, \cdots, V_{t}$ such that $I_{V_{i}}, 1 \leqslant i \leqslant t$ is a constant is called equi-integrity partition of G. The maximum cardinality of such a partition is called equi-integrity partition number of G and is denoted by $E I(G)$.

Remark 2.1. Since $V(G)$ itself is an equi-integrity partition of G, the existence of EI-partition is guaranteed.

Theorem 2.1. Let G be a nontrivial connected graph with order n. Then $E I(G)=n$ if and only if G has no cut vertex.

Proof. Suppose G is a nontrivial connected graph without cut vertex. Then $E I(G)=n$.

Conversely, suppose G is a nontrivial connected graph. Then G has at least two vertices which are not cut vertices. For such a vertex say $u, I_{u}=n$. If G has a cut vertex say v. Then $I_{v}=1+m(G-v)<1+n-1=n$, a contradiction .

REMARK 2.2. It can be easily shown that $E I\left(K_{n}\right)=n, E I\left(K_{m, n}\right)=m+$ $n, E I\left(W_{1, n}\right)=n+1, E I\left(C_{n}\right)=n$.

Theorem 2.2. $E I\left(P_{n}\right)=\left\lceil\frac{n}{2}\right\rceil$.
Proof. Let $V\left(P_{n}\right)=\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$.
If n is odd and $n=2 k+1$, then $\left\{\left\{v_{1}, v_{k+1}\right\},\left\{v_{2}, v_{k+3}\right\}, \cdots,\left\{v_{k}, v_{2 k+1}\right\},\left\{v_{k+2}\right\}\right\}$ is a EI-partition with $I_{V_{i}}=k+2$, for all $i, 1 \leqslant i \leqslant k+1$. Therefore, $E I\left(P_{n}\right) \geqslant \frac{n+1}{2}$. Suppose $E I\left(P_{n}\right)>\frac{n+1}{2}=k+1$. Then any maximum EI-partition has at least three singletons with equal integrity, a contradiction, since P_{n} has at most two singletons have same integrity. Therefore, $E I\left(P_{n}\right)=\frac{n+1}{2}$.

If n is even and $n=2 k$, then $\left\{\left\{v_{1}, v_{k+1}\right\},\left\{v_{2}, v_{k+2}\right\}, \cdots,\left\{v_{k}, v_{2 k}\right\}\right\}$ is a EIpartition with $I_{V_{i}}=k+1$, for all $i, 1 \leqslant i \leqslant k$. Therefore, $E I\left(P_{n}\right) \geqslant \frac{n}{2}$. Suppose $E I\left(P_{n}\right)>n / 2=k$. Then any maximum EI-partition has at least two singletons. If there are three or more singletons, we get a contradiction. Therefore, any maximum EI-partition contains exactly two singletons and the remaining are doubletons. It can be easily verified that in a such a partition, the set may not have equal integrity. Therefore, $E I\left(P_{n}\right) \leqslant \frac{n}{2}$. Therefore, $E I\left(P_{n}\right)=\left\lceil\frac{n}{2}\right\rceil$.

Definition 2.4. Let G be graph with $V(G)=\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$. The Mycielski transformation of G, denoted $\mu(G)$, has for its vertex set, the set $\left\{x_{1}, x_{2}, \cdots, x_{n}\right.$, $\left.y_{1}, y_{2}, \cdots, y_{n}, z\right\}$. As for adjacency, x_{i} is adjacent with x_{j} in $\mu(G)$ if and only if v_{i} is adjacent with v_{j} in G, x_{i} is adjacent with y_{j} in $\mu(G)$ if and only if v_{i} is adjacent with v_{j} in G, and y_{i} is adjacent with z in $\mu(G)$ for all $i \in\{1,2, \cdots, n\}$.

Corollary 2.1. If G is any connected graph of order n, then $E I(\mu(G))=$ $|V(\mu(G))|$, since $(\kappa(\mu(G))) \geqslant 2$.

Theorem 2.3. Let G be a connected graph of order n without cut vertices. Attach one pendent vertex each at k of the vertices of G. Let H be the resulting graph. Then $E I(H)=n$.

Proof. Let $\left\{u_{1}, u_{2}, \cdots, u_{n}\right\}$ be the vertex set of G. Let $\left\{u_{1}, u_{2}, \cdots, u_{k}\right\}$ be the set of vertices of G at which pendent vertices $v_{1}, v_{2}, \cdots, v_{k}$ are attached. Then $\left\{\left\{u_{1}, v_{1}\right\},\left\{u_{2}, v_{2}\right\}, \cdots,\left\{u_{k}, v_{k}\right\}, \cdots,\left\{u_{k+1}\right\}, \cdots,\left\{u_{n}\right\}\right\}\left(=\left\{\left\{V_{1}\right\}, \cdots,\left\{V_{n}\right\}\right\}\right)$ is a maximum EI-partition of H and $I_{V_{i}}=n+k$ for all $i, 1 \leqslant i \leqslant n$. Therefore, $E I(H)=n$.

Theorem 2.4. $E I\left(K_{1, n}\right)=2$.
Proof. Let $V\left(K_{1, n}\right)=\left\{u, v_{1}, v_{2}, \cdots, v_{n}\right\}$ and u be the vertex of degree n. Let $\left\{V_{1}, V_{2}, \cdots, V_{t}\right\}$ be a maximum EI-partition of $V\left(K_{1, n}\right)$. Suppose $u \in V_{1}$. Let $I_{V_{1}}=i+2$, where $\left|V_{1}\right|=i+1$. For any $V_{j}, 2 \leqslant j \leqslant t, I_{V_{j}}=n+1$. Since $I_{V_{1}}=I_{V_{j}}$ Therefore, $i=n-1$ and hence $\left|V_{1}\right|=n$. Hence $t=2$. Therefore, $\left|V_{2}\right|=1$.

Theorem 2.5. Let G be a star with at least three pendent vertices. Let H be the graph obtained from G in which each edge of G is subdivided exactly once. Then $E I(H)=2$ or 3 .

Proof. Let G be a star with at least three pendent vertices. Let H be the graph obtained from G in which each edge of the G is subdivided exactly once. Let u be the center vertex of H and $x_{1}, x_{2}, \cdots ., x_{n}$ be the vertices of degree two in H and $y_{1}, y_{2}, \cdots, y_{n}$ be the pendent vertices in H. Let $V_{1}=\left\{u, y_{1}, y_{2}, \cdots, y_{n-1}\right\}$ and $V_{2}=\left\{x_{1}, x_{2}, \cdots, x_{n}, y_{n}\right\} . I_{V_{1}}=I_{V_{2}}=n+2 . V_{1} \cup V_{2}=V(H)$ and $V_{1} \cap V_{2}=\emptyset$. Therefore, $E I(H) \geqslant 2$. Suppose $\left\{V_{1}, V_{2}, \cdots, V_{k}\right\}$ be an EI-partition of maximum cardinality of G with $k \geqslant 3$. Without loss of generality, let $u \in V_{1}$. Let $\left|V_{1}\right|=a$ and $\left|V_{2}\right|=b$. If $a \geqslant n+1$, then $I_{V_{1}}=a+1$ or $a+2$. If $a<n+1$, then $I_{V_{1}}=a+2$.

Case (I) Let $a \geqslant n+1$ and $b \geqslant n$. Then $\left|V_{1}\right|+\left|V_{2}\right| \geqslant 2 n+1 . V_{3}=V_{4}=\cdots=$ $V_{k}=\emptyset$, a contradiction, since $k \geqslant 3$.

Case (II) Let $a<n+1$ and $b \geqslant n$.
Subcase (i): Suppose V_{2} contains $x_{1}, x_{2}, \cdots, x_{n}$. Then $V_{3} \subseteq\left\{y_{1}, y_{2}, \cdots, y_{n-1}\right\}$. Therefore, $I_{V_{2}}=2 n+1=I_{V_{1}}=a+2 \Longrightarrow a=2 n-1<n+1$. That is, $n<2$, contradiction.

Subcase (ii): Suppose V_{2} contains $y_{1}, y_{2}, \cdots, y_{n}$. Then $V_{3} \subseteq\left\{x_{1}, x_{2}, \cdots, x_{n}\right\}$. Let $\left|V_{3}\right|=c$ (say). Then $I_{V_{3}}=c+2(n-c)+1=2 n-c+1$. But $I_{V_{2}}=2 n+1=I_{V_{3}}$. Therefore, $2 n-c+1=2 n+1 \Longrightarrow c=0$, a contradiction.

Subcase (iii): Suppose V_{2} contains $\alpha_{1}, x_{i}^{\prime} s, \beta_{1}, y_{j}^{\prime} s$ for which $x_{j} \in V_{2}$ and $\beta_{2}, y_{j}^{\prime} s$ for which $x_{j} \notin V_{2}$. Therefore $\alpha_{1}+\beta_{1}+\beta_{2}=\left|V_{2}\right|=b \geqslant n$. There are $n-\alpha_{1}, x_{i}^{\prime} s$ in $V-V_{2}$ out of which $n-\alpha_{1}-\beta_{2}$ are pairs of x_{i}, y_{i} and $\beta_{2}, x_{i}^{\prime} s$. Therefore, $I_{V_{2}}=2\left(n-\alpha_{1}-\beta_{2}\right)+\beta_{2}+1+b=2 n-\alpha_{1}+1+\beta_{1}$.

Suppose V_{3} contains $\alpha_{1}^{\prime}, x_{i}^{\prime} s, \beta_{1}^{\prime}, y_{j}^{\prime} s$ for which $x_{j} \in V_{3}$ and $\beta_{2}^{\prime}, y_{j}^{\prime} s$ for which $x_{j} \notin V_{3}$. Then, $I_{V_{3}}=2 n-\alpha_{1}^{\prime}+1+\beta_{1}^{\prime} . I_{V_{1}}=I_{V_{2}}=I_{V_{3}}=a+2$. Therefore, $a=2 n-\alpha_{1}^{\prime}+1+\beta_{1}^{\prime}$. Since $a<n+1$, we get that $2 n-\alpha_{1}^{\prime}+1+\beta_{1}^{\prime}<n+1$. Therefore, $n-\alpha_{1}^{\prime}+1+\beta_{1}^{\prime \prime}<2$. Thus, $n-\beta_{1}^{\prime}<\alpha_{1}^{\prime}+2$.

Adding $\beta_{1}^{\prime}+\beta_{2}^{\prime}$ to both sides, $n+2 \beta_{1}^{\prime}+\beta_{2}^{\prime}<\alpha_{1}^{\prime}+\beta_{1}^{\prime}+\beta_{2}^{\prime}+2=c+2=$ $(2 n+1-a-b)+2$. Therefore, $2 \beta_{1}^{\prime}+\beta_{2}^{\prime}<n+3-a-b$. Since $b \geqslant n, n-b \leqslant .0$. Therefore, $2 \beta_{1}^{\prime}+\beta_{2}^{\prime}<3-a$. That is, $2 \beta_{1}^{\prime}+\beta_{2}^{\prime} \leqslant 2-a$. Since $a \geqslant 1,2-a \leqslant 1$. Therefore, $2 \beta_{1}^{\prime}+\beta_{2}^{\prime} \leqslant 1$.

Subsubcase(i): $2 \beta_{1}^{\prime}+\beta_{2}^{\prime}=0$. Therefore, $\beta_{1}^{\prime}=0=\beta_{2}^{\prime}$. Thus, $2 \beta_{1}^{\prime}+\beta_{2}^{\prime} \leqslant 2-a$. This implies that $a \leqslant 2$. Let $a=2$. $I_{V_{3}}=2 n-\alpha_{1}^{\prime}+1=I_{V_{1}}=a+2=4$. Therefore, $\alpha_{1}^{\prime}=2 n-3$. Therefore, $\left|V_{3}\right|=2 n-3,\left|V_{1}\right|=2$. Therefore, $\left|V_{2}\right|=2 \geqslant n$. That is, $n \leqslant 2$, a contradiction. Let $a=1$. $I_{V_{3}}=2 n-\alpha_{1}^{\prime}+1=I_{V_{1}}=a+2=3$. Therefore, $\alpha_{1}^{\prime}=2 n-2$. Therefore, $\left|V_{3}\right|=2 n-2,\left|V_{1}\right|=1$. Therefore, $\left|V_{2}\right|=2 \geqslant n$. That is, $n \leqslant 2$, a contradiction.

Subsubcase(ii): $2 \beta_{1}^{\prime}+\beta_{2}^{\prime}=1$. Since $2 \beta_{1}^{\prime}+\beta_{2}^{\prime} \leqslant 2-a$ we get that $1 \leqslant 2-a$ implies that $a \leqslant 1$. Therefore, $a=1$. Since $\beta_{1}^{\prime}+\beta_{2}^{\prime}=1$, we get that $\beta_{1}^{\prime}=0, \beta_{2}^{\prime}=1$. $I_{V_{3}}=2 n-\alpha_{1}^{\prime}+\beta_{1}^{\prime}+1=2 n-\alpha_{1}^{\prime}+1=I_{V_{1}}=a+2=3$. Therefore, $\left|V_{3}\right|=$ $\alpha_{1}^{\prime}+\beta_{1}^{\prime}+\beta_{2}^{\prime}=2 n-1$. $\left|V_{2}\right|=1=b \geqslant n$. Therefore, $n \leqslant 1$, a contradiction.

Case (III): Let $a \geqslant n+1$ and $b<n$.
Subcase (i): $I_{V_{1}}=a+1$.
Subsubcase (i): Suppose V_{1} contains $x_{1}, x_{2}, \cdots, x_{n}$. Then $V_{2} \subseteq\left\{y_{1}, y_{2}, \cdots, y_{n}\right\}$. Therefore, $I_{V_{2}}=2 n+1=I_{V_{1}}=a+1 \Longrightarrow a+1$. Therefore, $a=2 n . V_{3}=\emptyset$, contradiction.

Subsubcase (ii): Since $I_{V_{1}}=a+1$, for any $x_{i}, y_{i} ; 1 \leqslant i \leqslant n$, at least one of x_{i}, y_{i} belongs to V_{1}. Therefore, $\beta_{1}^{\prime}=\beta_{1}=0$ Therefore, $I_{V_{2}}=2 n-\alpha_{1}+1=I_{V_{3}}=$ $2 n-\alpha_{1}^{\prime}+1$.

Let V_{1} contains $t, y_{j}^{\prime} s$, where $t \leqslant n-1$. Let without loss of generality, $y_{1}, y_{2}, \cdots, y_{t} \in V_{1}$. Then V_{1} contains $x_{t+1}, x_{t+2}, \cdots, x_{n}$. Suppose $V_{r}=\left\{x_{i}\right\}$ for some $i, 1 \leqslant i \leqslant t$. Then $I_{V_{r}}=2 n=a+1$. Therefore, $a=2 n-1$. Thus, there
are exactly three sets V_{1}, V_{2}, V_{3} such that V_{2} and V_{3} contain exactly one x_{i} and $I_{V_{1}}=I_{V_{2}}=I_{V_{3}}=2 n$. Note that, since $I_{V_{1}}=2 n, V_{2}$ or V_{3} can not contain a single y_{j}. If $V_{r}=\left\{y_{j}\right\}$ for some $j, 1 \leqslant j \leqslant t$. Then $I_{V_{r}}=2 n+1$. Therefore, 2 n $+1=\mathrm{a}+1$. Therefore, $\mathrm{a}=2 \mathrm{n}$. Thus, there are exactly two sets V_{1}, V_{2} with $I_{V_{1}}=I_{V_{2}}=2 n+1$

Suppose $V_{r}=\left\{x_{i 1}, x_{i 2}\right\}$. Then $I_{V_{r}}=2 n-1=a+1$. Therefore, $a=2 n-2$. Since $\left|V_{1}\right|+\left|V_{r}\right|=2 n$, there is exactly one set say V_{3} which is a singleton. If $V_{3}=\left\{x_{i 3}\right\}$, then $I_{V_{3}}=2 n \neq I_{V_{1}}$. Suppose $V_{3}=\left\{y_{j}\right\}$, then $I_{V_{3}}=2 n+1 \neq I_{V_{1}}$, a contradiction.

Suppose $V_{r}=\left\{x_{i 1}, y_{i 2}\right\}$. Then $I_{V_{r}}=2 n=a+1 \Longrightarrow a=2 n-1$. Suppose, without loss of generality, $V_{2}=\left\{x_{i 1}, x_{i 2}, \cdots, x_{i r}\right\}, r \geqslant 2$, then $I_{V_{2}}=2 n-r+1=$ $a+1 \Longrightarrow a=2 n-r$. Therefore, $\left|V_{1}\right|+\left|V_{2}\right|=2 n$. Therefore, the EI-partition contains exactly one singleton set V_{3} other than V_{1} and V_{2}. If $V_{3}=\left\{x_{i}\right\}$, then $I_{V_{3}}=2 n=I_{V_{2}}=2 n-r \Longrightarrow r=0$, a contradiction.

If $V_{3}=\left\{y_{j}\right\}$. then $I_{V_{3}}=2 n+1=I_{V_{2}}=2 n-r \Longrightarrow r=-1$, a contradiction.
Therefore, $E I(H)=3$ if there exist V_{1}, V_{2} and V_{3} with $\left|V_{1}\right|=2 n-1,\left|V_{2}\right|=$ $\left|V_{3}\right|=1$ and each of V_{2} and V_{3} contains exactly one $x_{i}, 1 \leqslant i \leqslant n$. EI $(H)=2$ if there exist V_{1} and V_{2} with $\left|V_{1}\right|=2 n-r+1,\left|V_{2}\right|=r$ and each of V_{1} and V_{2} contains exactly one $y_{j}, 1 \leqslant j \leqslant n$.

Subcase (ii): $I_{V_{1}}=a+2$.
Let $a=n+k(k \geqslant 1) . I_{V_{1}}=n-k+1 . V_{2} \cup V_{3}$ contains $n-k+1$ vertices. Suppose $V_{3} \neq \emptyset$. Then, $\alpha_{1}+\beta_{1}+\beta_{2}=\left|V_{2}\right| \leqslant n-k$. $I_{V_{2}}=2 n-\alpha_{1}+\beta_{1}+1=n+k+2$. Therefore, $\alpha_{1}=\beta_{1}+n+k-1, n \geqslant k$, if $\beta_{1} \geqslant 1$. But $\alpha_{1} \leqslant\left|V_{2}\right| \leqslant n-k$. Therefore, $\alpha_{1} \leqslant n-k$. Thus, $\alpha_{1}=n-k$ and hence $\beta_{1}=0$, a contradiction (since $\beta_{1} \geqslant 1$).

Therefore, $\alpha_{1}=n-k-1$ and hence $\beta_{1}=0, I_{V_{2}}=n+k+2$. V_{2} contains $n-k-1, x_{i}^{\prime} s .\left|V_{3}\right| \leqslant 2$. If $\left|V_{2}\right|=n-k-1$ then $\left|V_{3}\right|=2$.

Suppose V_{3} contains one x_{i} and one y_{j}. If $j=i$, then $I_{V_{3}}=2 n+1=n+k+2 \Longrightarrow$ $n=k+1$. Therefore, $\left|V_{2}\right|=0$, a contradiction. If $j \neq i$, then $I_{V_{2}}=2 n=$ $n+k+2 \Longrightarrow n=k+2$. Therefore, $\left|V_{2}\right|=1$. Thus, V_{2} contains exactly one x_{i}, since $\alpha_{1}=1$.

Then $\left\{V_{1}=\left\{u, y_{2}, \cdots, y_{k+2}, x_{3}, \cdots, x_{k+2}\right\} ; V_{2}=\left\{x_{1}\right\} ; V_{3}=\left\{x_{2}, u_{1}\right\}\right\}$ is a EI-partition of G.

Suppose V_{3} contains two $y_{j}^{\prime} s$. Then $I_{V_{3}}=2 n+1=n+k+2 \Longrightarrow n=k+1$, a contradiction, since $\left|V_{2}\right|=0$. Suppose V_{3} contains two $x_{i}^{\prime} s$. Then $I_{V_{3}}=2 n-1=$ $n+k+2 \Longrightarrow n=k+3$. Therefore, $\left|V_{2}\right|=2$ and $\alpha_{1}=2$. Therefore, V_{1} contains all $y_{j}^{\prime} s$, a contradiction.

Suppose $V_{4} \neq \emptyset$ and $\left|V_{3} \cup V_{4}\right|=2$. Then $\left|V_{3}\right|=1=\left|V_{4}\right|$. If V_{3} and V_{4} each contains exactly one x_{i}, then $I_{V_{3}}=I_{V_{4}}=2 n=n+k+2 \Longrightarrow n=k+2 . V_{2}$ contains exactly one x_{i}, since $\alpha_{1}=1$. Therefore, all $y_{j}^{\prime} s$ are contained in V_{1}, a contradiction. If V_{3} contains one x_{i} and V_{4} each contains one y_{j}, then $I_{V_{2}} \neq I_{V_{4}}$, a contradiction. If V_{3} and V_{4} each contains exactly y_{j}, then $I_{V_{3}}=2 n+1=n+k+2 \Longrightarrow n=k+1$. Therefore, $\left|V_{2}\right|=0$, a contradiction. Suppose $\left|V_{2}\right|=n-k$. Then $\left|V_{3}\right|=1$. If V_{3} contains exactly one y_{j}. Then $I_{V_{2}}=2 n+1=n+k+2 \Longrightarrow n=k+1$. Therefore, $\left|V_{2}\right|=1$ and $\alpha_{1}=0$. V_{2} contains exactly one y_{j}. Therefore, V_{1} contains all $x_{1}^{\prime} s$, a contradiction. If V_{3} contains exactly one x_{i}, then $I_{V_{3}}=2 n=$ $n+k+2 \Longrightarrow n=k+2$. Therefore, $\left|V_{2}\right|=2$ and $\alpha_{1}=1$. Then EI-partition of G is given by $\left\{V_{1}=\left\{u, y_{1}, y_{2}, \cdots, y_{k+2}, x_{3}, \cdots, x_{k+2}\right\} ; V_{2}=\left\{x_{1}, y_{2}\right\} ; V_{3}=\left\{x_{2}\right\}\right\}$. $I_{V_{1}}=I_{V_{2}}=I_{V_{3}}=n+k+2$.

Case (IV): Let $a \leqslant n$ and $b \leqslant n$.
Let $a=n-k(k \geqslant 0)$. Then $I_{V_{1}}=n-k+2 . V_{2} \cup V_{3}$ contains $n-k+1$ vertices. Suppose $V_{3} \neq \emptyset$. Since $b<n,\left|V_{2}\right| \leqslant n-1$. Therefore, $\alpha_{1}+\beta_{1}+\beta_{2}=\left|V_{2}\right| \leqslant n-1$. $I_{V_{2}}=2 n-\alpha_{1}+\beta_{1}+1=n-k+2 . \alpha_{1}=n+k+1+\beta_{1}$. Since β_{1} and k are non-negative and since $\alpha_{1} \leqslant\left|V_{2}\right|+\leqslant n-1$, we get that $k=\beta_{1}=0$. Therefore, $a=n$.

Let $a=n$. Then $I_{V_{1}}=n+2, V_{2} \cup V_{3}$ contains $n+1$ vertices. Suppose $V_{3} \neq \emptyset$. Since $b<n,\left|V_{2}\right| \leqslant n-1$ ad $\left|V_{3}\right| \leqslant n-1$. Therefore, $\alpha_{1}+\beta_{1}+\beta_{2}=\left|V_{2}\right| \leqslant n-1$. $I_{V_{1}}=2 n-\alpha_{1} \leqslant\left|V_{2}\right| \leqslant n-1$. Therefore, $\beta_{1}+n-1 \leqslant n-1$. Therefore, $\beta_{1}=0$ and $\alpha_{1}=n-1$. Therefore, $\left|V_{2}\right|=n-1$. Therefore, V_{2} contains $n-1, x_{i}^{\prime} s$ and no y_{j}. Therefore, $\left|V_{3}\right| \leqslant 2$.

Suppose $\left|V_{3}\right|=2$. If V_{3} contains one x_{i}, then V_{1} contains no x_{j}. If V_{3} contains one x_{i} and corresponding y_{j}, then $I_{V_{3}}=2 n+1=n+2 \Longrightarrow n=1$, a contradiction. If V_{3} contains one x_{i} and one $y_{j}, j \neq i$, then $I_{V_{3}}=2 n=n+2 \Longrightarrow n=2$, a contradiction. If V_{3} contains two $y_{j}^{\prime} s$, then $I_{V_{3}}=2 n+1=n+2 \Longrightarrow n=1$, a contradiction. Suppose $\left|V_{3}\right|=1$ and $\left|V_{4}\right|=1$. If either V_{3} or V_{4} contains one x_{i}, then V_{1} does not contain any $x_{i} . I_{V_{3}}=2 n=n+2 \Longrightarrow n=2$, a contradiction.

Theorem 2.6. Let $H=G \cup t K_{1}$. Then $E I(H)=t+1$.
Proof. Let $V(H)=\left\{v_{1}, v_{2}, \cdots, v_{n}, u_{1}, \cdots, u_{t}\right\}$ and $V(G)=\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$. Let $V_{1}=V(G), V_{2}=\left\{u_{1}\right\}, V_{3}=\left\{u_{2}\right\}, \cdots, V_{t+1}=\left\{u_{t}\right\}$. Then $I_{V_{1}}=n+1$ and $I_{V_{j}}=n+1$, for all $j, 2 \leqslant j \leqslant t+1$. Therefore, $E I(H) \geqslant t+1$. Suppose $E I(H) \geqslant t+2$. Then there exists V_{1}, V_{2} in π (which is an EI-partition) such that V_{1} and V_{2} are proper subsets of $V(G)$. Then $I_{V_{1}}=\left|V_{1}\right|+m\left(H-V_{1}\right)$. Suppose $m\left(H-V_{1}\right)=1$. Then $I_{V_{1}}=\left|V_{1}\right|+1<n+1=I_{V_{j}}$, where $V_{j}=\left\{u_{j-1}\right\}, j \geqslant 2$, a contradiction. Suppose $m\left(H-V_{1}\right) \geqslant 2$. Therefore, $\left|V_{1}\right|=n-m\left(H-V_{1}\right)$. Then $I_{V_{1}}=n-m\left(H-V_{1}\right)+m\left(H-V_{1}\right)=n<n+1=I_{V_{j}}$, where $V_{j}=\left\{u_{j-1}\right\}, j \geqslant 2$, a contradiction. Therefore $E I(H) \leqslant t+1$. Hence $E I(H)=t+1$.

THEOREM 2.7. If $G=\bigcup_{i=1}^{k} G_{i}$, where each G_{i} is connected and G is a vertex disjoint union of some same order graphs $G_{i}, 1 \leqslant i \leqslant k$, then $E(G)=|V(G)|$.

Proof. Since $G_{1}, G_{2}, \cdots, G_{k}$ all have the same order and are all connected, for each vertex u of $G, I_{u}=\left|V\left(G_{i}\right)\right|+1$ is a constant. Therefore, $E I(G)=|V(G)|$.

THEOREM 2.8. Let $G=\bigcup_{i=1}^{k} G_{i}$, where each G_{i} is connected.
Let $\max _{1 \leqslant i \leqslant k}\left|V\left(G_{i}\right)\right|=t$.
(a) Suppose there exists $G_{i 1}, G_{i 2}$ such that $\left|V\left(G_{i 1}\right)\right|=\left|V\left(G_{i 2}\right)\right|=t$. Then $E I(G)=|V(G)|$.
(b)Suppose there exists a unique $G_{i}, 1 \leqslant i \leqslant t$ such that $\left|V\left(G_{i}\right)\right|=t$.
(i) if there exists G_{j} such that $\left|V\left(G_{j}\right)\right|=t-1,1 \leqslant j \leqslant k$, then
$E I(G)= \begin{cases}|V(G)|-\frac{t}{2} & \text { if } t \text { is even } \\ |V(G)|-\frac{t+1}{2} & \text { if } t \text { is odd }\end{cases}$
(ii) Suppose there exists no G_{j} such that $\left|V\left(G_{j}\right)\right|=t-1$. Let $\max _{\left|V\left(G_{i}\right)\right|<t}\left|V\left(G_{i}\right)\right|=$ t_{1}, where $t_{1}<t-1$., Then $E I(G)=n-t-\left\lfloor\frac{t}{t-t_{1}+1}\right\rfloor$.

Proof. (a) In this case, for any vertex u of $G, I_{u}=t+1=$ constant. Therefore, $E I(G)=|V(G)|$.
(b) (i) In this case, for any vertex u of $V\left(G_{l}\right), l \neq i, l \neq j, I_{u}=t+1=1=\mathrm{a}$ constant. For any vertex $u \in V\left(G_{i}\right), I_{u}=t$. Consider $S=\{u, v\}$, where $u \in V\left(G_{i}\right)$ and $v \in V\left(G_{j}\right)$. Then, $I_{s}=t+1$. Also, for any $u_{1}, u_{2} \in V\left(G_{i}\right), I_{\left\{u_{1}, u_{2}\right\}}=t+1$.

Therefore,
$E I(G)= \begin{cases}|V(G)|-\frac{t}{2} & \text { if } \mathrm{t} \text { is even } \\ |V(G)|-\frac{t+1}{2} & \text { if } \mathrm{t} \text { is odd }\end{cases}$
(ii) Let $t=\lambda\left(t-t_{1}+1\right)+\mu$, where $0 \leqslant \mu<t-t_{1}+1$. For any $t-t_{1}+1$ vertices of $V\left(G_{i}\right)$ constituting a set say $S, I_{S}=t-t_{1}+1=t+1$ (note that $m\left(G_{i}-S\right) \leqslant t-\left(t-t_{1}\right)+1=t_{1}+1$ and hence $|S|+m\left(G_{i}-S\right) \leqslant t-t_{1}+1+t_{1}=$ $t<(t+1)$. Then a set S_{1} of at most μ vertices of $V\left(G_{i}\right)$ has $I_{S_{1}}=t+1$. But $I_{S_{1}}=\mu+t<t-t_{1}+1=t+1$. That is, $I_{S_{1}}<t+1$, a contradiction. Therefore, $E I(G) \leqslant n-t+\mu$. Therefore, $E I(G) \leqslant n-t+\lambda=n-t+\left\lfloor\frac{t}{t-t_{1}+1}\right\rfloor$.

REMARK 2.3. Integrity is a vulnerability parameter and it gives a measure of the strength of the network to withstand the failure of certain nodes. If the network is capable of being divided into sub networks, each of which has the same integrity, then the failure in any sub network may be managed in the same way as in any other sub network and that in the event of an attack on the net work, it is possible to remedy it since all sub networks are of equal integrity.

3. Acknowledgements

We are thankful to Department of Science and Technology, Govt. of India, New Delhi for their financial support for the project titled "Domination Integrity in graphs" under which this work was done (DST major Research Project SR/S4/MS:365/06). We thank the referee for his very useful comments and suggestions which resulted in substantial improvement of the paper.

References

[1] C.A. Barefoot, R. Entringer and H. C. Swart, Vulnerability in graphs - a comparative survey, J. Combin. Math. Combin. Comput. 1(1987), 13-22
[2] W.D.Goddard, On the vulnerability of graphs, Ph.D. thesis, University of Natal, Durban, South Africa, 1989
[3] K.S. Bagga, L.W. Beineke, W.D. Goddard, M.J. Lipman and R.E. Pippert, A survey of integrity, Discrete Appl. Math., 37-38 (1992), 13-28
[4] G. Chartrand, S.F.Kapoor, T.A. McKee and O.R.Oellermann; The Mean Integrity of a Graph, Recent Studies in Graph Theory, Vishwa International Publications, (1989) 70-80.
(received by editors 20.12.2011; available on internet 26.03.2012)
JRF, Ramanujan Research Center in Mathematics, Saraswathi Narayanan College, Madurai, India

E-mail address: neyamsundar@yahoo.com
Head, Ramanujan Research Center in Mathematics, Saraswathi Narayanan College, Madurai, India

E-mail address: sulanesri@yahoo.com

[^0]: 2000 Mathematics Subject Classification. 05C40; 05C75.
 Key words and phrases. Integrity, Equ-Integrity Partitions.
 We are thankful to Department of Science and Technology, Govt. of India, New Delhi for their financial support for the project titled "Domination Integrity in graphs" under which this work was done (DST major Research Project SR/S4/MS:365/06).

