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A new Extension of Gegenbauer Matrix Polynomials

and Their Properties

A. Shehata

Abstract. The aim of this paper is to define and study of the Gegenbauer
matrix polynomials of two variables. An explicit representation, a three-term
matrix recurrence relations, differential recurrence relations and hypergeomet-

ric matrix representation for the Gegenbauer matrix polynomials of two vari-
ables are given. The Gegenbauer matrix polynomials are solutions of the
matrix differential equations and expansion of the Gegenbauer matrix polyno-
mials as series of Hermite and Laguerre matrix polynomials of two variables

are established.

1. Introduction

An extension to the matrix framework of the classical families of Hermite,
Jacobi, Gegenbauer, Laguerre and Chebyshev matrix polynomials was introduced
and studied in a number of previous papers [1, 2, 3, 4, 5, 8, 10, 15, 17] for
matrix in CN×N . Moreover, some properties of the Hermite matrix polynomials
are given [12, 18] and a generalized form of the Hermite matrix polynomials has
been introduced and studied in [12, 13, 14, 19]. Jódar and Cortés introduced
and studied the hypergeometric matrix function and the hypergeometric matrix
differential equation in [6] and the explicit closed form general solution of it has
been given in [7]. Sayyed et al. introduced and studied the Gegenbauer matrix
polynomials and second order matrix differential equation in [9, 11, 19].

The main goal of this paper is to consider a new system of matrix polyno-
mials, namely the Gegenbauer matrix polynomials of two variables. The paper is
organized as follows: In Section 2 a definition of Gegenbauer matrix polynomi-
als of two variables are given. Some differential recurrence relations, in particular
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Gegenbauer’s matrix differential equation are established in Section 3. Moreover,
hypergeometric matrix representations of these polynomials are given in Section
4. Finally, in Section 5 an expansion of the Gegenbauer’s as series of Hermite and
Laguerre matrix polynomials are obtained.

Throughout this paper D0 denotes the complex plane cut along the negative
real axis and its spectrum σ(A) denotes the set of all the eigenvalues of A. If A is
a matrix in CN×N , its two-norm denoted by ||A||2 is defined by

||A||2 = sup
x ̸=0

||Ax||2
||x||2

where for a vector y in CN , ||y||2 denotes the Euclidean norm of y, ||y||2 = (yT y)
1
2 .

The set of all the eigenvalues of A is denoted by σ(A). If f(z) and g(z) are holo-
morphic functions of the complex variable z, which are defined in an open set Ω of
the complex plane, and if A is a matrix in CN×N such that σ(A) ⊂ Ω, then from
the properties of the matrix functional calculus [2, 8], it follows that

f(A)g(A) = g(A)f(A).

If A is a matrix in CN×N with σ(A) ⊂ D0, then A
1
2 =

√
A = exp( 12 log(A)) denotes

the image by z
1
2 =

√
z = exp( 12 log(z)) of the matrix functional calculus acting on

the matrix A. Let A is a matrix in CN×N such that

Re(z) > 0, for all z ∈ σ(A).(1.1)

The reciprocal gamma function denoted by Γ−1(z) = 1
Γ(z) is an entire function of

the complex variable z. Then for any matrix A in CN×N , the image of Γ−1(z)
acting on A denoted by Γ−1(A) is a well-defined matrix. Then Γ(A) is invertible,
its inverse coincides with Γ−1(A) and one gets the formula [16]

(A)n = A(A+ I)...(A+ (n− 1)I) = Γ(A+ nI)Γ−1(A);

n > 1; (A)0 = I.
(1.2)

From (1.2), it is easy to find that

(A)n−k = (−1)k(A)n[(I −A− nI)k]
−1; 0 6 k 6 n.(1.3)

From the relation (1.3) of [9, 19, 15], one obtains

(−1)k

(n− k)!
I =

(−n)k
n!

I =
(−nI)k

n!
; 0 6 k 6 n.(1.4)

The hypergeometric function F (A,B;C; z) has been given in the form [16]

2F1(A,B;C; z) =
∞∑
k=0

(A)k(B)k[(C)k]
−1

n!
zk(1.5)

for matrices A, B and C in CN×N such that C + nI is invertible for all integer
n > 0. We will exploit the following relation due to [6]

(1− z)−A = 1F0(A;−; z) =
∞∑

n=0

1

n!
(A)nz

n; |z| < 1.(1.6)
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It has been seen by Defez and Jódar [2] that, for matrices A(k, n) and B(k, n) are
matrices in CN×N for n > 0, k > 0, the following relations are satisfied

∞∑
n=0

∞∑
k=0

A(k, n) =
∞∑

n=0

[ 12n]∑
k=0

A(k, n− 2k)(1.7)

and
∞∑

n=0

∞∑
k=0

B(k, n) =
∞∑

n=0

n∑
k=0

B(k, n− k).(1.8)

Similarly, we can write

∞∑
n=0

[ 12n]∑
k=0

A(k, n) =
∞∑

n=0

∞∑
k=0

A(k, n+ 2k),(1.9)

∞∑
n=0

n∑
k=0

A(k, n) =
∞∑

n=0

[ 12n]∑
k=0

A(k, n− k)(1.10)

and
∞∑

n=0

n∑
k=0

B(k, n) =
∞∑

n=0

∞∑
k=0

B(k, n+ k).(1.11)

2. Gegenbauer matrix polynomials of two variables

Let A be a positive stable matrix in CN×N . We define the Gegenbauer matrix
polynomials of two variables by the relation

F (x, y, t, A) = (1− 2xt+ yt2)−A =

∞∑
n=0

CA
n (x, y)tn;

|x| 6 1, |y| 6 1, |t| < 1.

(2.1)

By using (1.6) and (1.10), we have

(1− 2xt+ yt2)−A =

∞∑
n=0

(A)n(2x− yt)ntn

n!

=
∞∑

n=0

n∑
k=0

(A)n(−1)kyk(2x)n−k

k!(n− k)!
tn+k

=
∞∑

n=0

[ 12n]∑
k=0

(−1)kyk(2x)n−2k(A)n−k

k!(n− 2k)!
tn.

(2.2)
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By equating the coefficients of tn in (2.1) and (2.2), we obtain an explicit represen-
tation of the Gegenbauer matrix polynomials in the form

CA
n (x, y) =

[ 12n]∑
k=0

(−1)kyk(2x)n−2k

k!(n− 2k)!
(A)n−k.(2.3)

It is clear that

CA
−1(x, y) = 0, CA

0 (x, y) = I, CA
1 (x, y) = 2xA,

CA
2 (x, y) = 2x2A(A+ I)− yA and CA

n (x, 0) =
(2x)n

n!
(A)n.

It has already been shown that most of the properties of the CA
n (x, y) matrix

polynomials, linked to the ordinary case by

CA
n (x, y) = y

n
2 CA

n (
x
√
y
).(2.4)

Clearly, CA
n (x, y) is a matrix polynomial of degree n in x. Replacing x by −x and

t by −t in (2.1), the left side remains unchanged, we obtain

CA
n (−x, y) = (−1)nCA

n (x, y).(2.5)

For x = 1 and y = 1, we have

(1− t)−2A =
∞∑

n=0

tnCA
n (1, 1); |t| < 1.

By (1.6) to obtain

CA
n (1, 1) =

1

n!
(2A)n.(2.6)

For x = 0, it follows

(1 + yt2)−A =
∞∑

n=0

tnCA
n (0, y).

Also, by (1.6) one gets

(1 + yt2)−A =

∞∑
n=0

(−1)n

n!
ynt2n(A)n; |yt2| < 1.

Therefore, we have

CA
2n(0, y) =

(−1)n

n!
yn(A)n, C

A
2n+1(0, y) = 0.(2.7)
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3. Matrix Differential recurrence relations

By differentiating (2.1) with respect to x, y and t yields respectively

∂

∂x
F (x, y, t, A) =

t

1− 2xt+ yt2
2A F (x, y, t, A),(3.1)

∂

∂y
F (x, y, t, A) =

−t2

1− 2xt+ yt2
A F (x, y, t, A)(3.2)

and
∂

∂t
F (x, y, t, A) =

x− yt

1− 2xt+ yt2
2A F (x, y, t, A).(3.3)

So that the matrix function F satisfies the partial matrix differential equation

(x− yt)
∂

∂x
F (x, y, t, A)− t

∂

∂t
F (x, y, t, A) = 0.

Therefore, by (2.1), we get
∞∑

n=0

x
∂

∂x
CA

n (x, y)tn −
∞∑

n=0

nCA
n (x, y)tn =

∞∑
n=1

y
∂

∂x
CA

n−1(x, y)t
n.

Since ∂
∂xC

A
0 (x, y) = 0, we obtain the matrix differential recurrence relation

x
∂

∂x
CA

n (x, y)− nCA
n (x, y) = y

∂

∂x
CA

n−1(x, y);n > 1.(3.4)

From (3.1) and (3.3) with the aid of (2.1), we get respectively the following

2A

1− 2xt+ yt2
(1− 2xt+ yt2)−A =

∞∑
n=1

∂

∂x
CA

n (x, y)tn−1(3.5)

and

2(x− yt)A

1− 2xt+ yt2
(1− 2xt+ yt2)−A =

∞∑
n=1

nCA
n (x, y)tn−1.(3.6)

Note that 1− yt2− 2t(x− yt) = 1− 2xt+ yt2. Thus by multiplying (3.5) by 1− yt2

and (3.6) by 2t and subtracting (3.6) from (3.4), we obtain

2(A+ nI)CA
n (x, y) =

∂

∂x
CA

n+1(x, y)− y
∂

∂x
CA

n−1(x, y).(3.7)

From (3.4) and (3.7), one gets

x
∂

∂x
CA

n (x, y) =
∂

∂x
CA

n+1(x, y)− (2A+ nI)CA
n (x, y).(3.8)

Substituting n− 1 for n in (3.8) and putting the resulting expression for

∂

∂x
CA

n−1(x, y)

into (3.4), gives

(x2 − y)
∂

∂x
CA

n (x, y) = nxCA
n (x, y)− (2A+ (n− 1)I)yCA

n−1(x, y).(3.9)
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Now, by multiplying (3.4) by (x2 − y) and substituting for (x2 − y) ∂
∂xC

A
n (x, y)

and (x2 − y) ∂
∂xC

A
n−1(x, y) from (3.9) to obtain the three terms matrix recurrence

relation in the form

nCA
n (x, y) =

2x(A+ (n− 1)I)CA
n−1(x, y)− y(2A+ (n− 2)I)CA

n−2(x, y).
(3.10)

By the same way, we get

(n− 1)CA
n−1(x, y) = 2x

∂

∂y
CA

n (x, y)− 2y
∂

∂y
CA

n−1(x, y),

2(A+ nI)CA
n (x, y) = y

∂

∂y
CA

n (x, y)− ∂

∂y
CA

n+2(x, y),

(4A+ 5(n− 1)I)CA
n−1(x, y) = 2x

∂

∂y
CA

n (x, y)− 2
∂

∂y
CA

n+1(x, y).

(3.11)

Formulas (3.4), (3.7), (3.8), (3.9) (3.10) and (3.11) are called the matrix recurrence
formulas for Gegenbauer matrix polynomials.

In the following theorem, we obtain the properties Gegenbauer matrix polyno-
mials as follows.

Theorem 3.1. The Gegenbauer matrix polynomials satisfying the following
relations

∂r

∂xr
CA

n (x, y) + (−1)r−12r
∂r

∂yr
CA

n+r(x, y) = 0.(3.12)

Proof. Differentiating the identity (2.1) with respect to x and y, we get

2tA(1− 2xt+ yt2)−(A+I) =
∞∑

n=0

∂

∂x
CA

n (x, y)tn(3.13)

and

−t2A(1− 2xt+ yt2)−(A+I) =

∞∑
n=0

∂

∂y
CA

n (x, y)tn.(3.14)

Iteration (3.13) and (3.14), for 0 6 r 6 n, implies (3.12) and the proof of Theorem
3.1 is completed. �

We can write (3.13) and (3.14) in the form

2A(1− 2xt+ yt2)−(A+I) =
∞∑

n=1

∂

∂x
CA

n (x, y)tn−1 =
∞∑

n=0

∂

∂x
CA

n+1(x, y)t
n,

−A(1− 2xt+ yt2)−(A+I) =
∞∑

n=2

∂

∂y
CA

n (x, y)tn−2 =
∞∑

n=0

∂

∂y
CA

n+2(x, y)t
n.

(3.15)



A NEW EXTENSION OF GEGENBAUER MATRIX POLYNOMIALS AND ... 35

By applying (2.1), it follows

2A(1− 2xt+ yt2)−(A+I) =

∞∑
n=0

2A CA+I
n (x, y)tn,

−A(1− 2xt+ yt2)−(A+I) = −
∞∑

n=0

A CA+I
n (x, y)tn.

(3.16)

Identification of the coefficients of tn in (3.15) and (3.16) yields

∂

∂x
CA

n+1(x, y) = 2A CA+I
n (x, y),

∂

∂y
CA

n+2(x, y) = −A CA+I
n (x, y).

which gives

∂

∂x
CA

n (x, y) = 2A CA+I
n−1 (x, y),

∂

∂y
CA

n (x, y) = −A CA+I
n−2 (x, y).

(3.17)

Iteration (3.17) yields, for 0 6 r 6 n;

∂r

∂xr
CA

n (x, y) = 2r(A)r CA+rI
n−r (x, y),

∂r

∂yr
CA

n (x, y) = (−1)r(A)r CA+rI
n−2r (x, y).

(3.18)

Now, we can state and prove the following theorem.

Theorem 3.2. The Gegenbauer’s matrix polynomials are solutions of the ma-
trix partial differential equations in the form

(y − x2)
∂2

∂x2
CA

n (x, y)− x(2A+ I)
∂

∂x
CA

n (x, y)+

n(2A+ nI)CA
n (x, y) = 0.

(3.19)

Proof. In (3.8), replace n by n− 1 and differentiate with respect to x to find

x
∂2

∂x2
CA

n−1(x, y) =
∂2

∂x2
CA

n (x, y)− (2A+ nI)
∂

∂x
CA

n−1(x, y).(3.20)

Also, by differentiating (3.4) with respect to x, we have

x
∂2

∂x2
CA

n (x, y)− (n− 1)
∂

∂x
CA

n (x, y) = y
∂2

∂x2
CA

n−1(x, y).(3.21)

From (3.4) and (3.21) by putting ∂
∂xC

A
n−1(x, y) and ∂2

∂x2C
A
n (x, y) into (3.20) and

rearrangement of terms in the above equation gives us Gegenbauer’s matrix differ-
ential equation for Gegenbauer’s matrix polynomials in the form (3.19) and hence
the proof of Theorem. �
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4. Hypergeometric matrix representations of CA
n (x, y)

From the relation (1.4) of [9, 19], one obtains

1

(n− 2k)!
I =

(−n)2k
n!

I =
(−nI)2k

n!
; 0 6 2k 6 n.(4.1)

By using (1.3) and taking into account that

(−nI)2k = 22k(−1

2
nI)k(−

1

2
(n− 1)I)k(4.2)

the explicit representation (2.3) becomes

CA
n (x, y) =

[ 12n]∑
k=0

(−1)k(A)n−ky
k(2x)n−2k

k!(n− 2k)!

=

[ 12n]∑
k=0

(−1)k(A)n−k(−nI)2ky
k(2x)n−2k

k!n!

=

[ 12n]∑
k=0

(A)n[(I −A− nI)k]
−1(−nI)2ky

k(2x)n−2k

k!n!

=

[ 12n]∑
k=0

22k(A)n(− 1
2nI)k(−

1
2 (n− 1)I)k[(I −A− nI)k]

−1yk(2x)n−2k

k!n!

=
(2x)n

n!
(A)n

[ 12n]∑
k=0

2+2k(−1
2nI)k(−

1
2 (n− 1)I)k[(I −A− nI)k]

−1yk(2x)−2k

k!

=
(2x)n

n!
(A)n 2F1(−

1

2
nI,−1

2
(1− n)I; I −A− nI;

y

x2
)

(4.3)

which gives another hypergeometric matrix representation in the form:

CA
n (x, y) =

(2x)n

n!
(A)n 2F1(−

1

2
nI,−1

2
(1− n)I; I −A− nI;

y

x2
)(4.4)

where the hypergeometric matrix function 2F1(..., ...; ...; ...) is given as

2F1(−
1

2
nI,−1

2
(1− n)I; I −A− nI;

y

x2
) =

[ 12n]∑
k=0

(−1
2nI)k(−

1
2 (n− 1)I)k[(I −A− nI)k]

−1ykx−2k

k!

such that I −A− nI + kI is invertible for all n− k 6 1.
Note that, we can write

(1− 2xt+ yt2)−A =

(
1− (x2 − y)t2

(1− xt)2

)−A

(1− xt)−2A.(4.5)
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Therefore, by using (1.6) and (1.7) we have that
∞∑

n=0

CA
n (x, y)tn =

∞∑
k=0

(A)k(x
2 − y)kt2k

k!
(1− xt)−2A−2kI

=
∞∑

n=0

∞∑
k=0

(A)k(A)n+2k[(2A)2k]
−1xn(x2 − y)ktn+2k

k!n!

=

∞∑
n=0

∞∑
k=0

(2A)n+2k[(A+ 1
2I)k]

−1xn(x2 − y)ktn+2k

k!n!22k

=
∞∑

n=0

[ 12n]∑
k=0

(2A)n[(A+ 1
2I)k]

−1xn−2k(x2 − y)ktn

k!(n− 2k)!22k
.

(4.6)

By identification of the coefficients of tn, another form for the Gegenbauer matrix
polynomials follows

CA
n (x, y) =

[ 12n]∑
k=0

(2A)n[(A+ 1
2I)k]

−1xn−2k(x2 − y)k

k!(n− 2k)!22k
.(4.7)

Equation (4.7) yields

∞∑
n=0

[(2A)n]
−1CA

n (x, y)tn =
∞∑

n=0

[ 12n]∑
k=0

[(A+ 1
2I)k]

−1xn−2k(x2 − y)ktn

k!(n− 2k)!22k

=
∞∑

n=0

∞∑
k=0

[(A+ 1
2I)k]

−1xn(x2 − y)ktn+2k

k!n!22k

(4.8)

By identification of the coefficients of tn, we obtain a generating relation for the
Gegenbauer matrix polynomials in the form:

∞∑
n=0

[(2A)n]
−1CA

n (x, y)tn =
∞∑

n=0

xntn

n!

∞∑
k=0

[(A+ 1
2I)k]

−1(x2 − y)kt2k

k!22k

=exp(xt) 0F1(−;A+
1

2
I;

t2(x2 − y)

4
)

(4.9)

where 0F1(−; ...; ...) is given as

0F1(−;A+
1

2
I;

t2(x2 − y)

4
) =

∞∑
k=0

[(A+ 1
2I)k]

−1(x2 − y)kt2k

k!22k

and A+ 1
2I + kI is invertible for all k > −1

2 . The expansion of xnI indeed easy in
a series of Gegenbauer matrix polynomials of two variables as follows

(2x)nI = n!

[ 12n]∑
k=0

(A+ (n− 2k)I)[(A)n−k+1]
−1

k!
ykCA

n−2k(x, y).(4.10)

Finally, we will expand the Gegenbauer matrix polynomials of two variables in
series of Hermite and Laguerre matrix polynomials of two variables.
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5. Expanding of Gegenbauer matrix polynomials in series of Hermite
and Laguerre matrix polynomials of two variables

If A is a positive stable matrix in CN×N , then the nth Hermite matrix polyno-
mials of two variables was defined by [1, 12]

Hn(x, y,A) = n!

[ 12n]∑
k=0

(−1)kyk

k!(n− 2k)!
(x
√
2A)n−2k(5.1)

and the expansion of xnI in a series of Hermite matrix polynomials of two variables
has been given in [1, 12]

(x
√
2A)n = n!

[ 12n]∑
k=0

yk

k!(n− 2k)!
Hn−2k(x, y,A).(5.2)

Now, the Gegenbauer matrix polynomials of two variables are expanded in series
of Hermite matrix polynomials of two variables. Employing (2.1) and (1.9) with
the aid of (5.2) and taking into account that each matrix commutes with itself, one
gets

∞∑
n=0

CA
n (x, y)tn =

∞∑
n=0

[ 12n]∑
k=0

(−1)k(A)n−ky
k(2x)n−2k

k!(n− 2k)!
tn

=
∞∑

n=0

∞∑
k=0

(−1)k(A)n+ky
k(2x)n

k!n!
tn+2k

=
∞∑

n=0

∞∑
k=0

[ 12n]∑
s=0

(−1)k2n(A)n+k(
√
2A)−nyk+s

k!s!(n− 2s)!
Hn−2s(x, y,A) tn+2k.

(5.3)

Hence, we can write (5.3) in the form

∞∑
n=0

CA
n (x, y)tn =

∞∑
n=0

∞∑
k=0

[ 12n]∑
s=0

(−1)k2n(A)n+k(
√
2A)−nyk+s

k!s!(n− 2s)!
Hn−2s(x, y,A)tn+2k.

Thus
∞∑

n=0

2−n(
√
2A)nCA

n (x, y)tn =

∞∑
n=0

∞∑
k=0

[ 12n]∑
s=0

(−1)k(A)n+ky
k+s

k!s!(n− 2s)!
Hn−2s(x, y,A)tn+2k.

(5.4)

By using (1.9) the expression (5.4) becomes

∞∑
n=0

2−n(
√
2A)nCA

n (x, y)tn =
∞∑

n=0

∞∑
k=0

∞∑
s=0

(−1)k(A)n+k+2sy
k+s

k!s!n!
Hn(x, y,A)tn+2k+2s



A NEW EXTENSION OF GEGENBAUER MATRIX POLYNOMIALS AND ... 39

and using (1.9), yields,

∞∑
n=0

2−n(
√
2A)nCA

n (x, y)tn =

∞∑
n=0

∞∑
k=0

k∑
s=0

(−1)k−s(A)n+k+sy
k

(k − s)!s!n!
Hn(x, y,A)tn+2k.

Since

(A)n+k+s = (A+ (n+ k)I)s(A)n+k

then by using (1.5) and (1.8), we get
∞∑

n=0

2−n(
√
2A)nCA

n (x, y)tn =

∞∑
n=0

∞∑
k=0

k∑
s=0

(−1)k(−k)s(A+ (n+ k)I)s(A)n+k

k!s!n!
ykHn(x, y,A)tn+2k

=
∞∑

n=0

∞∑
k=0

(−1)k

k!n!
2F0(−kI,A+ (n+ k)I;−; 1)(A)n+ky

kHn(x, y,A)tn+2k

=
∞∑

n=0

[ 12n]∑
k=0

(−1)k

k!(n− 2k)!
2F0(−kI,A+ (n− k)I;−; 1)(A)n−ky

kHn−2k(x, y,A)tn.

Therefore, by identification of coefficient of tn, we obtain an expansion of Gegen-
bauer matrix polynomials as a series of Hermite matrix polynomials in the form

CA
n (x, y) =

[ 12n]∑
k=0

(−1)k(A)n−k

k!(n− 2k)!
2F0(−kI,A+ (n− k)I;−; 1)

·2n(
√
2A)−nykHn−2k(x, y,A).

(5.5)

Furthermore, the nth Laguerre matrix polynomials L
(A,λ)
n (x, y) of two variables is

defined by

L(A,λ)
n (x, y) =

n∑
k=0

(−1)kλkxkyn−k

k!(n− k)!
(A+ I)n[(A+ I)k]

−1(5.6)

where A is a matrix in CN×N such that −k is not an eigenvalue of A, for every
integer k > 0 and λ is a complex number such that Re(λ) > 0.

In (5.6), putting λ = 1 gives

L(A)
n (x, y) =

n∑
k=0

(−1)kxkyn−k

k!(n− k)!
(A+ I)n[(A+ I)k]

−1.(5.7)

The expansion of xnI in a series of Laguerre matrix polynomials of two variables
has been given in [4] in the form

xnI = n!
n∑

k=0

(−1)k

k!(n− k)!
(A+ I)n[(A+ I)k]

−1yn−kL
(A)
k (x, y).(5.8)
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We use (5.8) to expand the Gegenbauer matrix polynomials of two variables in
series of Laguerre matrix polynomials of two variables. We consider the series

∞∑
n=0

CA
n (x, y)tn =

∞∑
n=0

[ 12n]∑
s=0

(−1)s(A)n−sy
k(2x)n−2s

s!(n− 2s)!
tn

=
∞∑

n=0

∞∑
s=0

(−1)s(A)n+sy
k(2x)n

s!n!
tn+2s

=

∞∑
n=0

∞∑
s=0

n∑
k=0

(−1)k+s2n(A)n+sy
k

s!(n− k)!
(A+ I)n[(A+ I)k]

−1yn−kL
(A)
k (x, y)tn+2s.

(5.9)

which, by using (1.11), becomes∑∞
n=0 C

A
n (x, y)tn =∑∞

n=0

∑∞
k=0

∑∞
s=0

(−1)k+s2n+k

n!s! (A)n+k+s(A+ I)n+k

[(A+ I)k]
−1yn+kL

(A)
k (x, y)tn+k+2s.

From (1.7), we have

∞∑
n=0

CA
n (x, y)tn

=

∞∑
n=0

∞∑
k=0

[ 12n]∑
s=0

(−1)k+s2n+k−2s

s!(n− 2s)!
(A)n+k−s(A+ I)n+k−2s

[(A+ I)k]
−1yn+k−2sL

(A)
k (x, y)tn+k.

(5.10)

Form (1.2), it is easy to find that

(A)2n = 22n(
1

2
(A+ I))n(

1

2
(A))n

and

(A)n+k = (A)n(A+ nI)k.

In accordance with (1.3), one gets

(A)n+k−s = (−1)s(A)n+k[((1− n− k)I −A)s]
−1

and

(A+ I)n+k−2s = 2−2s(A+ I)n+k[(
1

2
((1− n− k)I −A))s]

−1[(−1

2
((n+ k)I +A))s]

−1.

Therefore ∑∞
n=0 C

A
n (x, y)tn =∑∞

n=0

∑∞
k=0

∑[ 12n]
s=0

(−1)k+s2n+k−2s

s!(n−2s)! (−1)s(A)n+k[((1−n−k)I−A)s]
−12−2s(A+I)n+k

[( 12 ((1−n−k)I−A))s]
−1[(−1

2 ((n+k)I+A))s]
−1[(A+I)k]

−1yn+k−2sL
(A)
k (x, y)tn+k =
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n=0

∑∞
k=0

∑[ 12n]
s=0

1
s! (−

1
2nI)s(−

1
2 (n− 1

2 )I)s

[((1− n− k)I −A)s]
−1[( 12 ((1− n− k)I −A))s]

−1[(− 1
2 ((n+ k)I +A))s]

−1

( 14 )
s (−1)k2n+k

n! (A)n+k(A+ I)n+k[(A+ I)k]
−1yn+k−2sL

(A)
k (x, y)tn+k=∑∞

n=0

∑∞
k=0 2F3(− 1

2nI,−
1
2 (n− 1

2 )I; (1− n− k)I −A, 1
2 ((1− n− k)I −A)

,−1
2 ((n+k)I+A); 1

4y2 )
(−1)k2n+k

n! (A)n+k(A+I)n+k[(A+I)k]
−1yn+kL

(A)
k (x, y)tn+k =∑∞

n=0

∑n
k=0 2F3(−1

2 (n− k)I,−1
2 ((n− k)− 1

2 )I; (1− n)I −A, 1
2 ((1− n)I −A)

,− 1
2 (A+ nI); 1

4y2 )
(−1)k2n

(n−k)! (A)n(A+ I)n[(A+ I)k]
−1ynL

(A)
k (x, y)tn.

where (1− n)I −A+ sI, 1
2 ((1− n)I −A+ sI and −1

2 (A+ nI) + sI are invertible.

Equation the coefficients of tn gives an expansion of as a series of Gegenbauer
matrix polynomials in the form

CA
n (x, y) =

n∑
k=0

2F3(−
1

2
(n− k)I,−1

2
((n− k)− 1

2
)I; (1− n)I −A,

1

2
((1− n)I −A)

,−1

2
(A+ nI);

1

4y2
)
(−1)k2n

(n− k)!
(A)n(A+ I)n[(A+ I)k]

−1ynL
(A)
k (x, y)

(5.11)

which can be written in a convenient form as follows

CA
n (x, y) = 2n

n! (A)n(A+ I)n
∑n

k=0 2F3(− 1
2 (n− k)I,−1

2 ((n− k)− 1
2 )I;

(1− n)I −A, 1
2 ((1− n)I −A),− 1

2 (A+ nI); 1
4y2 )

·(−nI)k[(A+ I)k]
−1ynL

(A)
k (x, y).

The results of this paper are variant, significant and so it is interesting and capable
to develop its study in the future.
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