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Abstract

In communication networks, ”vulnerability” indicates the resistance of
a network to disruptions in communication after a breakdown of some pro-
cessors or communication links. We may use graphs to model networks,
as graph theoretical parameters can be used to describe the stability and
reliability of communication networks If we think of a graph as model-
ing a network, the average lower independence number of a graph is one
measure of graph vulnerability. For a vertex v of a graph G = (V, E),
the lower independence number iv(G) of G relative to v is the minimum
cardinality of a maximal independent set of G that contains v. The av-
erage lower independence number of G, denoted by iav(G), is the value
iav(G) = 1

|V (G)|
∑

vεV (G) iv(G). In this paper, we defined and examined
this parameter and considered the average lower independence number of
special graphs and theirs total graphs.
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1 Introduction

In a communication network, the vulnerability measures the resistance of the
network to disruption of operation after the failure of certain stations or commu-
nication links. When a network begins losing stations or communication links
there is, eventually, a loss in its effectiveness. Thus, a communication network
must be constructed to be as stable as possible, not only with respect to the
initial disruption, but also with respect to the possible reconstruction of the
network. If we think of a graph as modeling a network, then there are many
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graph theoretical parameters such as connectivity, toughness, integrity, domi-
nation and its variations. Domination and its variations in graphs are now well
studied. In this paper, we introduce and study the concept of average lower
independence number in graphs, a concept closely related to the problem of
finding large independent sets in graphs.

A graph G is denoted by G = (V (G), E(G)), where V (G) and E(G) are vertex
and edge sets of G, respectively. n denotes the number of vertices and m denotes
the number of edges of the graph G, and let v be a vertex in V . The open neigh-
borhood of v is N(v) = {u ∈ V | uv ∈ E} and the closed neighborhood of v is
N [v] = {v} ∪N(v). For a set S ⊆ V , its open neighborhood N(S) = ∪v∈SN(v)
and its closed neighborhood N [S] = N(S) ∪ S.

A set S is dominating set of G if N [S] = V , or equivalently, every vertex in
V − S is adjacent to at least one vertex of S. The dominating number γ(G)
is the minimum cardinality of a dominating set of G. An independent set of
vertices of a graph G is a set of vertices of G whose elements are pair wise
nonadjacent. The independence number β(G) of G is the maximum cardinality
among all independent sets of vertices of G, while the independent domination
number (also called the lower independence number) i(G) of G is the minimum
cardinality of a maximal independent set of G [4,7].

For a vertex v of a graph G = (V, E), the lower independence number iv(G)
of G relative to v is the minimum cardinality of a maximal independent set of
G that contains v. The average lower independence number of G, denoted by
iav(G), is the value iav(G) = 1

|V (G)|
∑

vεV (G) iv(G). Throughout to this paper
iv(G)-set is refer to maximal independence set including vertex v [4,7].

The next section contains results on the average lower independence number
of graph G, In Section 3, we formulates average lower independence number of
total graph of some basic graphs.

2 Basic Results

In this section, we will review some of the known result on average lower inde-
pendence number.

Theorem 2.1 [4, 7] For every vertex v in a graph,

a) i(G) ≤ iv(G) ≤ β(G)

b) i(G) ≤ iav(G) ≤ β(G)

Theorem 2.2 [4] For any graph G of order n. Then,

iav(G) ≤ β(G)− i(G)(β(G)− i(G))
n

.
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Theorem 2.3 [7] If T is a tree of order n ≥ 2. Then,

iav(G) ≤ n− 2 +
2
n

.

Theorem 2.4 [2] Let G1 and G2 be two connected graphs and β(G1) < β(G2).
Then,

iav(G1) + iav(G2) < 2β(G2)

Theorem 2.5 [2] Let G1 and G2 be two connected graphs and i(G1) < i(G2).
Then,

2i(G1) < iav(G1) + iav(G2)

Theorem 2.6 [1] For two graphs G1 and G1 of order m and n, respectively,

iav(G1 + G2) =
iav(G1).m + iav(G2).n

m + n
.

Theorem 2.7 [1] For two graphs G1 and G1 of order m and n, respectively,

iav(G1 + G2) ≤ β(G1).m + β(G2).n
m + n

.

Theorem 2.8 [1] For complete graph Kn of order n and for any graph G of
order m,

iav(GoKn) = m.

3 Average Lower Independence Number Of To-
tal Graphs

In this section, we give some results on the average lower independence number
of T (G) total graph are calculated.

Definition 3.1 [9] The vertices and edges of a graph are called its elements.
Two elements of a graph are neighbors if they are either incident or adjacent.
The total graph T (G) of the graph G = (V (G), E(G)), has vertex set V (G) ∪
E(G), and two vertices of T (G) are adjacent whenever they are neighbors in
G. It is easy to see that T (G) always contains both G and Line graph L(G) as
a induced subgraphs. The total graph is the largest graph that is formed by the
adjacent relations of elements of a graph. It is important from this respect.

Theorem 3.1 The average lower independence number of T (K1,n) with order
of (2n + 1) is defined as iav(K1,n) = 2n2+1

2n+1 .
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Proof. The number of vertices of graphs K1,n and T (K1,n) are |V (K1,n)| = n+1
and |V (T (K1,n))| = 2n + 1, respectively. Let T (K1,n) be G. If we think that
the vertex-set of graph G be V (G) = V1(G) ∪ V2(G) ∪ V3(G) where,

V1(G) : The set contains center vertex with degree of 2n of the graph G.
V2(G) : The set contains n vertices except center vertex of the star graph K1,n

in graph G.
V3(G) : The set contains n new vertices with degree of (n+1) which are obtained
by definition of total graph.

Then, it is easily calculated that the average lower independence number of
graph G. When we calculate the for all v vertices in a graph G, we should
examine the vertices in three cases.

Case 1. Let v be the vertex of the V1(G). The vertex v is the center vertex with
n degree of the star graph K1,n. Center vertex v adjacent to other 2n vertices
due to structural of graph G. Consequently, being v the center vertex,iv(G) = 1.

Case 2. Let v be the vertex of the V2(G). As forming the maximal inde-
pendence set including v, we can use 2 distinct ways:

i) We must not take center vertex and a vertex in V3(G) that adjacent ver-
tex v. Then, we take n vertices at the extremity of the leaves of the graph K1,n.
There are no edges between these taken n vertices, thus set is an independence
set, however maximal independence set. We have to repeat this process for n
vertices with degree 2. Hence, iv(G) = n.

ii) In iv(G)-independence sets, we can take the only one vertex in V3(G) which
doesn’t adjacent to the vertex v. The vertices of V3(G) are adjacent to each
other. And also the vertex u is adjacent to a vertex v in V2(G). Now there
are two vertices in iv(G)-set. To form the whole iv(G)-sets, including vertices
except u and v, we should add the remaining n−2 vertices of V2(G) in the lower
independence set. Now the iv(G)-set there were two vertices. When we add the
remaining n− 2 vertices to the iv(G)-set, consequently, there are totally n ver-
tices in the iv(G)-set . We have to repeat this process for the whole n vertices
with degree 2. Then, we get iv(G) = n.
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From i and ii ; whenever u ∈ V2(G) , we have iv(G) = n.

Case 3. Let v be the vertex of V3(G). The iv(G)-set, which includes ver-
tex v doesn’t include the other vertices of V3(G), because vertex v is adjacent to
the other vertices of V3(G). Thus, iv(G) can’t include the center vertex, which
is adjacent to the vertex v, and one of the vertices with degree 2 in V2(G). Con-
sequently; to have the iv(G)-independence set; we should add the remaining
n−1 vertices in V2(G) to the iv(G)-set. In the iv(G)-set, with vertex v; we have
taken n− 1 vertices. Hence, the iv(G)-independence set has totally n vertices.
We have to repeat this process for n vertices of V3(G). Thus, we get iv(G) = n.
Consequently, by case1,case2 and case3, we have;

iav(G) = 1
|V (G)| (

∑
vεV1(G) iv(G) +

∑
vεV2(G) iv(G) +

∑
vεV3(G) iv(G))

= 1
2n+1 (1 +

n∑

vεV2(G)

n +
n∑

vεV3(G)

n)

= 1
2n+1 (1 + n2 + n2)

= 2n2+1
2n+1

The proof is completed. 2

Theorem 3.2 Let T (Cn) be the total graph of Cn. Then,

iav(T (Cn)) =





2n
5 , if nmod 5 ≡ 0

b 2n
5 c+ 1 , otherwise.

Proof. The number of vertices of graphs Cn and T (Cn) are V |Cn| = n and
V |T (Cn)| = 2n, respectively. Graph T (Cn) is a 4-regular graph . Let T (Cn) be
G. When we take any vertex of graph G, it is adjacent 4 vertices in graph G.
Hence, 5 vertices are dominated by the vertex v, vertex v and the other 4 ver-
tices adjacent to v. We have to repeat this process every 5 vertices. Therefore,
we have 5 cases according to the number of vertices of G.

Case1: ( (2n) mod 5 ≡ 0 ): If n(mod5) ≡ 0 , iv(G)-set has 2n
5 vertices.

So, we get iv(G) = 2n
5 . Thus, iav(G) = 1

|V (G)|

2n∑

vεV (G)

2n

5
=

2n

5
. (1)

Case2: ( (2n) mod 5 ≡ 1 ): When number of vertices graph G is 5k + 1,
then b 2n

5 c subgraph has 5 vertices of graph G. We have to add center vertices
of the induced subgraph of b 2n

5 c in graph G to iv(G)-sets, then finally the only
one vertex remaining in graph G. Thus, ve have iv(G) = b 2n

5 c+1. (2)
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Case3: ( (2n) mod 5 ≡ 2 ): When number of vertices graph G is 5k + 2,
then b 2n

5 c subgraph has 5 vertices of graph G. We have to add center vertices
of the induced subgraph of b 2n

5 c in graph G to iv(G)-sets, then as being the
remaining 2 vertices adjacent to each other, finally the only one of the 2 vertices
remaining in graph G. Thus, the set we have is an set iv(G). Then, we have
iv(G) = b 2n

5 c+1. (3)

Case4: ( (2n) mod 5 ≡ 3 ): When number of vertices graph G is 5k + 3,
then b 2n

5 c subgraph has 5 vertices of graph G. We have to add center vertices
of the induced subgraph of b 2n

5 c in graph G to iv(G)-sets, then as being the
remaining 3 vertices adjacent to each other, finally the only one of the 3 vertices
remaining in graph G. Thus, the set we have is an iv(G)-set.Then, we have
iv(G) = b 2n

5 c+1. (4)

Case5: ( (2n) mod 5 ≡ 4 ): When number of vertices graph G is 5k + 4,
then b 2n

5 c subgraph has 5 vertices of graph G. We have to add center vertices
of the induced subgraph of b 2n

5 c in graph G. Finally remaining graph structural
which has 4 vertices is maximum vertex degree with 3. We show it to Figure2.

We take one vertices which vertex degree with 3 from structural Figure2.
Thus, the set we have is an iv(G)-set. Then, we have iv(G) = b 2n

5 c+1. (5)

From (2),(3),(4) and (5), we have;

iav(G) = 1
|V (G)|

2n∑

vεV (G)

(b2n

5
c+ 1)

iav(G) = 1
2n .2n.(b 2n

5 c+1)⇒ iav(G) = b 2n
5 c+1 (6)

From (1) and (6), the proof is completed. 2
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Theorem 3.3 Let T (Pn) be the total graph of Pn. Then,

iav(T (Pn)) =





1
2n−1 (d 2n−1

5 e.(2n− 2) + (2n− 1)) , if (2n− 1)mod 5 ≡ 0

d 2n−1
5 e , if (2n− 1)mod 5 ≡ 1

1
2n−1 (b 2n−1

5 c+ d 2n−1
5 e.(2n− 1)) , if (2n− 1)mod 5 ≡ 2

1
2n−1 (d 2n−1

5 e.(2n− 4) + (2n− 1)) , if (2n− 1)mod 5 ≡ 3

1
2n−1 (d 2n−1

5 e.(2n− 3) + (2n− 1)) , if (2n− 1)mod 5 ≡ 4

Proof. The number of vertices of Pn and T (Pn) are |V (Pn)| = n and |V (T (Pn))| =
2n − 1, respectively. Let T (Pn) be G and let v be the vertex of T (Pn). The
independence sets of T (Pn), iv(G), are also the independence domination sets
of T (Pn). For the value iav(G), the iv(G) independence sets for every v ∈
V (T (Pn)) should be found including v, and also at least 3, at most 5 vertices
can be dominated. Therefore, we have 5 cases according to the number of ver-
tices of T (Pn).

Case1: ( (2n-1) mod 5 ≡ 0 ): The values n such as (2n − 1)mod 5 ≡ 0;
firstly, It’s seen that the iv(G)−sets have d 2n−1

5 e vertices of graph G. Neverthe-
less, iv(G)−sets have d 2n−1

5 e+1 vertices for remaining whole (2n− 1)−d 2n−1
5 e

vertices. Therefore;

iav(G) = 1
2n−1 .[d 2n−1

5 e.d 2n−1
5 e+ ((2n− 1)− d 2n−1

5 e).(d 2n−1
5 e+ 1)]

= 1
2n−1 [d 2n−1

5 e2 + (2n− 1).d 2n−1
5 e+ (2n− 1)−d 2n−1

5 e2−d 2n−1
5 e]

= 1
2n−1 (d 2n−1

5 e.(2n− 2) + (2n− 1)).

Case2: ( (2n-1) mod 5 ≡ 1 ): The cardinality of iv(G)−sets are always
same for every vertices of any graph G, and equals to d 2n−1

5 e. Then, we have;

iav(G) = 1
2n−1 .(2n− 1).d 2n−1

5 e = d 2n−1
5 e.

Case3: ( (2n-1) mod 5 ≡ 2 ): iv(G)−sets have d 2n−1
5 e + 1 vertices for

b 2n−1
5 c vertices of graph G. Moreover, iv(G)−sets have d 2n−1

5 e vertices for the
whole (2n− 1)− b 2n−1

5 c vertices remaining. Thus, we have;

iav(G) = 1
2n−1 .[(b 2n−1

5 c).(d 2n−1
5 e+ 1) + ((2n− 1)− b 2n−1

5 c).(d 2n−1
5 e)]

= 1
2n−1 [b 2n−1

5 c.d 2n−1
5 e+b 2n−1

5 c+(2n−1)d 2n−1
5 e−b 2n−1

5 c.d 2n−1
5 e]
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= 1
2n−1 (b 2n−1

5 c+ d 2n−1
5 e.(2n− 1)).

Case4: ( (2n-1) mod 5 ≡ 3 ): The cardinality of an iv(G)−sets have d 2n−1
5 e,

for 3.d 2n−1
5 e vertices of any graph G. Moreover, iv(G)− sets have d 2n−1

5 e + 1
vertices for the whole remaining (2n− 1)− 3.d 2n−1

5 e vertices. Then, we have;

iav(G) = 1
2n−1 .[(3.d 2n−1

5 e).(d 2n−1
5 e)+ ((2n− 1)− 3.d 2n−1

5 e).(d 2n−1
5 e+1)]

= 1
2n−1 [3.d 2n−1

5 e2+(2n−1).d 2n−1
5 e+(2n−1)−3.d 2n−1

5 e2−3d 2n−1
5 e]

= 1
2n−1 (d 2n−1

5 e.(2n− 4) + (2n− 1)).

Case5: ( (2n-1) mod 5 ≡ 4 ): The cardinality of any iv(G)−set is equal
to d 2n−1

5 e for 2.d 2n−1
5 e vertices of a graph T (Pn). Furthermore, iv(G)−sets

have d 2n−1
5 e+ 1 vertices for the whole remaining (2n− 1)− 2.d 2n−1

5 e vertices.
Thus, we have;

iav(G) = 1
2n−1 .[(2.d 2n−1

5 e).(d 2n−1
5 e)+ ((2n− 1)− 2.d 2n−1

5 e).(d 2n−1
5 e+1)]

= 1
2n−1 [2.d 2n−1

5 e2.+(2n−1)d 2n−1
5 e+(2n−1)−2.d 2n−1

5 e2−2d 2n−1
5 e]

= 1
2n−1 (d 2n−1

5 e.(2n− 3) + (2n− 1)).

The proof is completed. 2

Theorem 3.4 Let T (W1,n) be the total graph of W1,n. Then,
iav(G) = 1

3n+1 [(1 + dn
3 e) + (n.(5 + d 2n−8

5 e+ d 2n−3
5 e+ dn−3

3 e))].
Proof. The number of vertices of W1,n and T (W1,n) are |V (W1,n)| = n + 1 and
|V (T (W1,n))| = 3n + 1, respectively. Let T (W1,n) be G and let vertices set of
G be V (G) = V1(G) ∪ V2(G) ∪ V3(G) ∪ V4(G).

V1(G) : The set contains center vertex of graph W1,n.
V2(G) : The set contains all vertices of graph W1,n except center vertex.
V3(G) : The set contains the edges of graph W1,n, which are adjacent to center
vertex; are the vertices of graph T (W1,n).
V4(G) : The set contains the edges of the cycle of graph W1,n are the vertices
of graph T (W1,n).

To find the value of iav of graph T (W1,n), we have 4 cases for taking the proper
vertices.

Case 1.Let v be the vertex of V1(G). The vertex v is the center vertex with
degree n of graph W1,n. The proof is similar to Theorem 3.1 Case1. Then, we
have iv(G) = 1 + dn

3 e.
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Case 2. Let v be the vertex of V2(G). The degree of vertices of V2(G) are
6. Vertex v adjacent 2 vertices of V4(G), 1 vertex from V3(G), center vertex
which is V1(G), 2 vertices of V3(G). There are 3n − 6 vertices remaining in
graph of G. To obtain the iv(G)-independence set, we do as follows. Firstly, to
iv(G)-independence set we should add the vertex which is at most interconnec-
tion of each other vertices in V3(G). This vertex is first vertex with maximum
degree of V3(G). Then, the number of remaining vertices are 2n − 8 and now
we have the graph which is showed Figure 3.

This graphs’s maximum vertex degree is 4. Then, we can add at least d 2n−8
5 e

vertices to the iv(G)-set. Consequently, when v ∈ V2(G) , for n vertices, there
are totally (2 + d 2n−8

5 e) vertices in the iv(G)-set. Then. we have iv(G) =
2 + d 2n−8

5 e.

Case 3. Let v be the vertex of V3(G). The degree of vertices of V3(G)
are n + 3. Vertex v adjacent n + 3 vertices. These vertices are 2 vertices of
V4(G), one vertex of V2(G), center vertex and remaining n−1 vertices of V3(G).
Therefore, there remain 2n − 3 vertices in graph G. Thus, we now have the
graph T (Pn−1) remaining. At most 5 vertices in graph T (Pn) can be dominated
by any one vertex. Moreover, we can add at least d 2n−3

5 e vertices to iv(G)-set.
Consequently, when v ∈ V3(G), for n vertices, there are totally (1 + d 2n−3

5 e)
vertices in the iv(G)-set.

Case 4.Let v be the vertex of V4(G). The degree of vertices of V4(G) are 6
and vertex v adjacent 6 vertices. These vertices are 2 vertices of V3(G), 2 ver-
tices of V2(G), 3 vertices of V4(G). Then, there remain 3n− 6 vertices in graph
G. To obtain the iv(G)-set, we do as follows. Firstly; we add center vertex of
V1(G). This vertex adjacent remaining vertex of the V2(G) and V3(G). In graph
G, there are finally n−3 remaining vertices of V4(G) and we now have the graph
T (Pn−3). Then, one of these vertices can dominate at most three vertices. We
should add at least dn−3

3 e vertices to iv(G)-set. Consequently, when v ∈ V4(G),
for n vertices there are totally (2 + dn−3

3 e) vertices in the iv(G)-set.

By cases 1, 2, 3 and 4, we have
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iav(G) = 1
|V (G)| (

∑
vεV1(G) iv(G)+

∑
vεV2(G) iv(G)+

∑
vεV3(G) iv(G)+

∑
vεV4(G) iv(G))

= 1
3n+1 [(1 + dn

3 e) +
n∑

vεV2(G)

(2 + d2n− 8
5

e) +
n∑

vεV3(G)

(1 + d2n− 3
5

e) +
n∑

vεV4(G)

(2 +

dn− 3
3

e)]

= 1
3n+1 [(1 + dn

3 e) + (n.(2 + d 2n−8
5 e)) + (n.(1 + d 2n−3

5 e)) + (n.(2 + dn−3
3 e))]

= 1
3n+1 [(1 + dn

3 e) + (n.(5 + d 2n−8
5 e+ d 2n−3

5 e+ dn−3
3 e))].

Thus, the proof is completed. 2

Theorem 3.5 Let T (Kn) be the total graph of Kn. Then,

iav(T (Kn)) = 1 + bn− 1
2

c.

Proof. The number of vertices of Kn and T (Kn) are |V (Kn)| = n and |V (T (Kn))| =
n2+n

2 , respectively. Let T (Kn) be G. A graph G is (2n − 2)-regular. Let v be
the any vertex of graph G. Vertex v adjacent (2n − 2) vertices. To obtain the
iv(G)-set, we can not add these (2n− 2) vertices. There are (n−2)(n−1)

2 vertices
remaining which are not adjacent vertex v and the new graph be formed by
these vertices. This new graph is (2n − 6)- regular. When we take one vertex
to new graph, there are [ (n−2)(n−1)

2 − (2n− 5)] vertices remaining and one new
graph formed. This graph is (2n − 10) -regular. This procedure of selecting
vertex proceeds repeatedly till the last graph is whether 0-regular that mean
trivial graph or 2-regular graph K3. This process repeat with b 2n−2

4 c, so bn−1
2 c

for expect choosing firstly vertex v. Finally, for n vertices there are vertices in
the iv(G)-set. Then we have,

iav(G) = 1
|V (G)|

∑
vεV (G) iv(G)

= 1
n2+n

2

[(n2+n
2 ).(1 + bn−1

2 c)]

= 1 + bn−1
2 c.

Thus, the proof is completed. 2
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