A COMMON FIXED POINT THEOREM IN A MENGER SPACE USING WEAK COMPATIBILITY

Nagaraja Rao. I.H ${ }^{1}$, Rajesh. \mathbf{S}^{2}, and Venkata Rao. \mathbf{G}^{3}

Abstract. A common fixed point theorem is established for four self maps on a complete Menger space assuming that a pair of maps has commmon fixed point and other pair is weakly compatible.

1. Introduction

Jungck ([1]) proved a common fixed point theorem for commuting maps generalizing the Banach's fixed point theorem. Consequently, he introduced the notion of compatibility and established various fixed point theorems. Jungck and Rhodes ([2]) introduced the notion of weak compatibility which is a generalization of compatibility and considered the corresponding fixed point results. Mishra ([3]) established a fixed point result in a Menger space using compatibility. We generalize and extended this result using weak compatibility. The claim is also supported by an example.

2. Preliminaries

We take the standard definitions and results given in Schweizer and Sklar ([4]). We mainly use the following results in the subsequent section.
2.1. Result ([4]). Let $\left\{x_{n}\right\}(n=0,1,2, \ldots)$ be a sequence in a Menger space $(X, F, *)$, where $*$ is continuous and $x * x \geqslant x$ for all $x \in[0,1]$. If there is a $k \in(0,1)$ such that

$$
F_{x_{n}, x_{n+1}}(k t) \geqslant F_{x_{n-1}, x_{n}}(t)
$$

for all $t>0$ and $n \in \mathbb{N}$, then $\left\{x_{n}\right\}$ is a Cauchy sequence in X.

[^0]2.2. Result ([5]). Let $(X, F, *)$ be a Menger space. If there is a $k \in(0,1)$ such that
$$
F_{x, y}(k t) \geqslant F_{x, y}(t)
$$
for all $x, y \in X$ and $t>0$, then $y=x$.

3. Main Result

We state the Theorem of Mishra ([3]).
Theorem 3.1. Let A, B, S and T be self maps of a complete Menger space (X, F, t) with continuous t-norm and $t(x, x) \geqslant x$ for all $x \in[0,1]$, satisfying:
(3.1.1) $A(X) \subseteq T(X)$ and $B(X) \subseteq S(X)$,
(3.1.2) for all $x, y \in X, u>0$ and $\alpha \in(0,2)$ and for some $k \in(0,1)$

$$
F_{A x, B y}(k u) \geqslant t\left(F_{A x, S x}(u), t\left(F_{B y, T y}(u), t\left(F_{A x, T y}(\alpha u), F_{B y, S x}((2-\alpha) u)\right)\right)\right),
$$

(3.1.3) the pairs $\{A, S\}$ and $\{B, T\}$ are compatible,
(3.1.4) S and T are continuous.

Then A, B, S and T have a unique common fixed point in X.
Now, we prove the following generalization.
Theorem 3.2. Let A, B, S and T be self mappings on a complete Menger space $(X, F, *)$, where $*$ is a continuous t-norm such that $u * u \geqslant u$, for all $u \in[0,1]$, satisfying:
(3.2.1) $A(X) \subseteq T(X)$ and $B(X) \subseteq S(X)$;
(3.2.2) either
(i) $A \& S$ have a common fixed point and $\{B, T\}$ is weakly compatible or
(ii) $B \& T$ have a common fixed point and $\{A, S\}$ is weakly compatible;
(3.2.3) there is a $k \in(0,1)$ such that
$F_{A x, B y}^{m}(k u) \geqslant F_{A x, S x}^{m}(u) * F_{B y, T y}^{m}(u) * F_{S x, T y}^{m}(u) * F_{A x, T y}(\alpha u) * F_{B y, S x}((2-\alpha) u)$
for all $x, y \in X$, for all $u>0$, for all $\alpha \in(0,2)$ and for some positive integer m.
Then A, B, S and T have a unique common fixed point in X.
Proof: Let $x_{0} \in X$. By virtue of (3.2.1) we construct sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ in X such that

$$
\begin{gathered}
A x_{2 n}=T_{2 n+1}=y_{2 n}(\text { say }) \\
\text { and } \quad B x_{2 n+1}=S x_{2 n+2}=y_{2 n+1}(\text { say }), \text { for } \quad n=0,1,2, \ldots
\end{gathered}
$$

Taking $x=x_{2 n}, y=x_{2 n+1}$ and $\alpha=1-q$ with $q \in(0,1)$ in (3.2.3), for $n \geqslant 1$, we get that

$$
F_{y_{2 n}, y_{2 n+1}}^{m}(k u) \geqslant
$$

$$
F_{y_{2 n}, y_{2 n-1}}^{m}(u) * F_{y_{2 n+1}, y_{2 n}}^{m}(u) * F_{y_{2 n-1}, y_{2 n}}^{m}(u) * F_{y_{2 n}, y_{2 n}}((1-q) u) * F_{y_{2 n+1}, y_{2 n-1}}((1+q) u)
$$

Using the properties of F, viz.
$F_{x, z}(u+v) \geqslant F_{x, y}(u) * F_{y, z}(v)$, for all $x, y, z \in X \& u, v>0, F_{x, y}(u)=F_{y, x}(u)$, $F_{x, x}(u)=1$ for all $x, y \in X \& u>0$ and that of $*$, we get that

$$
F_{y_{2 n}, y_{2 n+1}}^{m}(k u) \geqslant F_{y_{2 n-1}, y_{2 n}}^{m}(u) * F_{y_{2 n}, y_{2 n+1}}^{m}(u) * F_{y_{2 n}, y_{2 n+1}}(q u) .
$$

As t -norm is continuous and F is left continuous, $q \rightarrow 1-0$, we get that

$$
\begin{gathered}
\quad F_{y_{2 n}, y_{2 n+1}}^{m}(k u) \geqslant F_{y_{2 n-1}, y_{2 n}}^{m}(u) * F_{y_{2 n}, y_{2 n+1}}^{m}(u) \\
\Rightarrow F_{y_{2 n}, y_{2 n+1}}(k u) \geqslant F_{y_{2 n-1}, y_{2 n}}(u) * F_{y_{2 n}, y_{2 n+1}}(u) .
\end{gathered}
$$

Similarly, by taking $x=x_{2 n+2}, y=x_{2 n+1}$ and $\alpha=1+q$ with $q \in(0,1)$ in (3.2.3), we get that

$$
F_{y_{2 n+1}, y_{2 n+2}}(k u) \geqslant F_{y_{2 n}, y_{2 n+1}}(u) * F_{y_{2 n+1}, y_{2 n+2}}(u) .
$$

Thus, for any positive integer n, we have

$$
F_{y_{n}, y_{n+1}}(k u) \geqslant F_{y_{n-1}, y_{n}}(u) * F_{y_{n}, y_{n+1}}(u) .
$$

Consequently, $F_{y_{n}, y_{n+1}}(u) \geqslant F_{y_{n-1}, y_{n}}\left(k^{-1} u\right) * F_{y_{n}, y_{n+1}}\left(k^{-1} u\right)$.
By repeated application of the above inequality to $F_{y_{n}, y_{n+1}}\left(k^{-l} u\right)$ etc. and using the properties of $*$, we get that $F_{y_{n}, y_{n+1}}(u) \geqslant F_{y_{n-1}, y_{n}}\left(k^{-1} u\right) * F_{y_{n}, y_{n+1}}\left(k^{-l} u\right)$, for any positive integer l.
Further, $F_{y_{n}, y_{n+1}}\left(k^{-l} u\right) \rightarrow 1$ as $l \rightarrow \infty\left(\right.$ since $\left.k^{l} u \rightarrow \infty\right)$; so we get that

$$
F_{y_{n}, y_{n+1}}(u) \geqslant F_{y_{n-1}, y_{n}}\left(k^{-1} u\right)
$$

$\Rightarrow F_{y_{n}, y_{n+1}}(k u) \geqslant F_{y_{n-1}, y_{n}}(u)$, for all positive integer n.
Now, by Result (2.1), follows that $\left\{y_{n}\right\}$ is a Cauchy sequence in X. Since X is complete, there is a $z \in X$ such that $\left\{y_{n}\right\} \rightarrow z$. So, follow that $\left\{y_{2 n}\right\}=\left\{A x_{2 n}\right\}=$ $\left\{T x_{2 n+1}\right\} \rightarrow z$ and $\left\{y_{2 n+1}\right\}=\left\{B x_{2 n+1}\right\}=\left\{S x_{2 n}\right\} \rightarrow z$.

Suppose (3.2.2)(i) holds; now there is a $v \in X$ such that $A v=S v=v$.
Taking $x=v, y=x_{2 n+1}$ and $\alpha=1$ in (3.2.3) and using $A v=S v$, we get that

$$
F_{A v, y_{2 n+1}}^{m}(k u) \geqslant F_{A v, A v}^{m}(u) * F_{y_{2 n+1}, y_{2 n}}^{m}(u) * F_{A v, y_{2 n}}^{m}(u) * F_{A v, y_{2 n}}(u) * F_{y_{2 n}, A v}(u)
$$

Now, as $n \rightarrow \infty$, we get that

$$
F_{v, z}^{m}(k u) \geqslant F_{v, v}^{m}(u) * F_{z, z}^{m}(u) * F_{v, z}^{m}(u) * F_{v, z}(u) * F_{z, v}(u) \geqslant F_{v, z}^{m}(u) .
$$

By Result(2.2), we get that $v=z$ so $A z=S z=z$.

Since $A(X) \subseteq T(X)$, there is a $w \in X$ such that $z=T w$.
Taking $x=x_{2 n}, y=w$ and $\alpha=1$ in (3.2.3), we get that

$$
F_{y_{2 n}, B w}^{m}(k u) \geqslant F_{y_{2 n}, y_{2 n-1}}^{m}(u) * F_{B w, z}^{m}(u) * F_{y_{2 n-1}, z}^{m}(u) * F_{y_{2 n}, z}(u) * F_{B w, y_{2 n-1}}(u) .
$$

Now, as $n \rightarrow \infty$, we get that

$$
F_{z, B w}^{m}(k u) \geqslant F_{z, z}^{m}(u) * F_{B w, z}^{m}(u) * F_{z, z}^{m}(u) * F_{z, z}(u) * F_{B w, z}(u) \geqslant F_{z, B w}^{m}(u) .
$$

By the Result(2.2), we get that $B w=z(=T w)$.

Since $\{B, T\}$ is weakly compatible, follows that $B T w=T B w$; i.e, $B z=T z$. Taking $x=x_{2 n}, y=z, \alpha=1$ and $T z=B z$ in (3.2.3), we get that
$F_{y_{2 n}, B z}^{m}(k u) \geqslant F_{y_{2 n}, y_{2 n-1}}^{m}(u) * F_{B z, B z}^{m}(u) * F_{y_{2 n-1}, B z}^{m}(u) * F_{y_{2 n}, B z}(u) * F_{B z, y_{2 n-1}}(u)$.
Now, as $n \rightarrow \infty$, we get that

$$
F_{z, B z}^{m}(k u) \geqslant F_{z, z}^{m}(u) * F_{B z, B z}^{m}(u) * F_{z, B z}^{m}(u) * F_{z, B z}(u) * F_{B z, z}(u) \geqslant F_{z, B z}^{m}(u)
$$

So, we get that $B z=z \Rightarrow B z=T z=z$. Thus $A z=B z=S z=T z=z$.
Similarly in the case (3.2.2)(ii) we first get that $B z=T z=z$ and then $A z=S z=z$.

Uniqueness:- Let z^{\prime} be also a common fixed point for A, B, S and T. So, $A z^{\prime}=B z^{\prime} S z^{\prime}=T z^{\prime}=z^{\prime}$.
Taking $x=z, y=z^{\prime}$ and $\alpha=1$ in (3.2.3), we get that

$$
\begin{aligned}
& F_{A z, B z^{\prime}}^{m}(k u) \geqslant F_{A z, S z}^{m}(u) * F_{B z^{\prime}, T z^{\prime}}^{m}(u) * F_{S z, T z^{\prime}}^{m}(u) * F_{A z, T z^{\prime}}(u) * F_{B z^{\prime}, S z}(u) \\
& \text { i.e, } F_{z, z^{\prime}}^{m}(k u) \geqslant F_{z, z}^{m}(u) * F_{z^{\prime}, z^{\prime}}^{m}(u) * F_{z, z^{\prime}}^{m}(u) * F_{z, z^{\prime}}(u) * F_{z^{\prime}, z}(u) \geqslant F_{z, z^{\prime}}^{m}(u) .
\end{aligned}
$$

By Result (2.2), follows that $z^{\prime}=z$. Hence z is the unique common fixed point for A, B, S and T.

We support this by means of the following:
Example 3.1. $(X, F, *)$ is a Menger space, where $X=[0,10)$ with the usual metric and $F: \mathbb{R} \rightarrow[0,1]$ is defined by

$$
F_{x, y}(u)=\frac{u}{u+|x-y|}
$$

for all $x, y \in \mathbb{R}, u>0$ and $*$ is the $\min \mathrm{t}$-norm, i.e, $a * b=\min \{a, b\}$ for all $a, b \in[0,1]$.
Let A, B, S and T be the self maps on X, defined by

$$
\begin{gathered}
A(x)= \begin{cases}0 & \text { if } x \leqslant 9 \\
1 & \text { if } x>9\end{cases} \\
S(x)= \begin{cases}0 & \text { if } x \leqslant 9 \\
x^{\frac{1}{2}} & \text { if } x>9\end{cases}
\end{gathered}
$$

$B x=0$ and $T x=x$ for all $x \in X$.
Then, clearly A, B, S and T satisfy the hypothesis of Theorem(3.2) with $k \in$ $\left[\frac{1}{2}, 1\right) \subset(0,1)$.
For, when $x>9$,

$$
F_{A x, B y}^{m}(k u)=\left(\frac{k u}{k u+1}\right)^{m}=\left(\frac{u}{u+\frac{1}{k}}\right)^{m}
$$

and

$$
F_{A x, S x}^{m}(u)=\left(\frac{u}{u+\left(x^{\frac{1}{2}}-1\right)}\right)^{m}<\left(\frac{u}{u+2}\right)^{m}
$$

So, in (3.2.3), L.H.S \geqslant R.H.S when $\frac{1}{k} \leqslant 2$, that is $k \geqslant \frac{1}{2}$.
Clearly 0 is the unique common fixed point of A, B, S and T.
(Observe that S is not continuous on X.)

References

[1] G. Jungck, Commuting mappings and fixed points, Amer. Math. Monthly., 83(1976), 261-263.
[2] G. Jungck and B. E. Rhoades, Fixed points for set valued functions without continuity, Indian J. Pure Appl. Math., 29(1998), 227-238.
[3] S.N.Mishra, Common fixed point theorem of compatible mappings in PM-spaces, Math. Japan, 36(1991), 283-289.
[4] B. Schweizer and A. Sklar, Statistical metric space, North-Halland Series in Probability and Applied Math 5, North-Holland, Amsterdam 1983.
[5] S. Sessa, On a weak compatativity condition of mappings in fixed point consideration, Publ. Inst. Math. (Beogrand)(N.S), 32(1982), 149-153.

Received 09.03.2012; available on internet 03.05.2012
${ }^{1}$ Sr. Prof. \& Director, G.V.P. College for Degree and P.G. Courses, Rushikonda, Visakhapatnam-45, India.

E-mail address: ihnrao@yahoo.com
${ }^{2}$ Asst. Prof., G.V.P. College for Degree and P.G. Courses, School of Engineering, Rushikonda, Visakhapatnam-45, India.

E-mail address: srajeshmaths@yahoo.co.in
${ }^{3}$ Associate Prof., Sri Prakash College of Engineering, Tuni, India.
E-mail address: venkatarao.guntur@yahoo.com

[^0]: 2000 Mathematics Subject Classification. A.M.S.: 47H20, 54H25.
 Key words and phrases. Menger space; t-norm; weakly compatible mappings; common fixed point.

