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On (γ, γ′)-connected spaces

N. Rajesh and V. Vijayabharathi

Abstract. In this paper, we define (γ, γ′)-connected spaces and study their
properties in topological spaces.

1. Introduction

Generalized open sets play a very important role in General Topology and they
are now the research topic of many topologists worldwide. Indeed a significant
theme in General Topology and Real Analysis concerns the various modified forms
of continuity, seperation axioms etc. by utilizing generalized open sets. Kasahara
[5] defined the concept of an operation on topological spaces. Umehara et. al. [7]
introduced the notion of τ(γ,γ′) which is the collection of all (γ, γ′)-open sets in a
topological space (X, τ). Recently, G. S. S. Krishnan and K. Balachandran (see [1],
[3], [2]) studied in this field. In this paper, we introduce and study the concepts of
minimal (γ, γ′)-open and maximal (γ, γ′)-closed sets in topological spaces. In this
paper, we define (γ, γ′)-connected spaces and study their properties in topological
spaces.

2. preliminaries

Definition 2.1. Let (X, τ) be a topological space. An operation γ [5] on the
topology τ is function γ : τ → P (X) such that V ⊂ V γ for each V ∈ τ , where V γ

denotes the value of γ at V .

Definition 2.2. A subset A of a topological space (X, τ) is said to be (γ, γ′)-open
set [7] if for each x ∈ A there exist open neighbourhoods U and V of x such that
Uγ ∪ V γ′ ⊂ A. The complement of (γ, γ′)-open set is called (γ, γ′)-closed.

Definition 2.3. [4] Let A be a subset of a topological space (X, τ). A point x ∈ A
is said to be (γ, γ′)-interior point of A if there exist open neighbourhods U and V
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of x such that Uγ∪V γ′ ⊂ A and we denote the set of all such points by Int(γ,γ′)(A).
Thus Int(γ,γ′)(A) = {x ∈ A : x ∈ U ∈ τ, V ∈ τ and Uγ ∪ V γ′ ⊂ A. Note that A is
(γ, γ′)-open if and only if A = Int(γ,γ′)(A). A set A is called (γ, γ′)-closed if and
only if X\A is (γ, γ′)-open.

Definition 2.4. [7] A point x ∈ X is called a (γ, γ′)-closure point of A ⊂ X, if
(Uγ ∪ V γ′) ∩ A 6= ∅, for any open neighbourhoods U and V of x. The set of all
(γ, γ′)-closure points of A is called (γ, γ′)-closure of A and is denoted by Cl(γ,γ′)(A).
A subset A of X is called (γ, γ′)-closed, if Cl(γ,γ′)(A) ⊂ A. Note that Cl(γ,γ′)(A) is
contained in every (γ, γ′)-closed superset of A.

Definition 2.5. [6] An operation γ on τ is said to be regular if for any open
neighbourhoods U, V of x ∈ X, there exits an open neighbourhood W of x such
that Uγ ∩ V γ ⊇ W γ .

Definition 2.6. [6] An operation γ on τ is said to be open if for any open neigh-
bourhood U of each x ∈ X, there exists (γ, γ′)-open set B such that x ∈ B and
Uγ ⊇ B.

3. Properties of (γ, γ′)-connected spaces

Definition 3.1. A topological space (X, τ) is said to be (γ, γ′)-connected if there
does not exist a pair A, B of nonempty disjoint (γ, γ′)-open subset of X such that
X = A∪B, otherwise X is called (γ, γ′)-disconnected. In this case, the pair (A,B) is
called a (γ, γ′)-disconnection of X. A subset A of a space (X, τ) is (γ, γ′)-connected
if it is (γ, γ′)-connected as a subspace.

Example 3.1. Let X = {a, b, c}, τ = {∅, X, {a}, {b}, {a, c}, {a, b}}. For b ∈ X,
defined an operation γ : τ → P (X) such that

γ(A) =
{

A if a ∈ A,
Cl(A) if a /∈ A,

and

γ′(A) =
{

A if A = {a, c},
A ∪ {b} if A 6= {a, c}.

It is clear that X is (γ, γ′)-connected but not connected.

Theorem 3.1. A topological space (X, τ) is (γ, γ′)-disconnected (resp. (γ, γ′)-
connected) if and only if there exists a (resp. does not exist) nonempty subset
A of X which is both (γ, γ′)-open and (γ, γ′)-closed in X.

Proof. The proof is clear. ¤

Definition 3.2. A mapping f : (X, τ1) → (Y, τ2) is said to be ((γ, γ′), (β, β′))-
continuous if for each x ∈ X and each open set V containing f(x), there exists an
open set U such that x ∈ U and f(Uγ) ⊂ V β , where γ : τ1 → P (X); β : τ2 → P (Y )
are operations on τ1 and τ2, respectively.



ON (γ, γ′)-CONNECTED SPACES 61

A ((γ, γ′), (β, β′))-continuous mapping has be charachterized as:
If f : (X, τ1) → (Y, τ2) is a mapping and (β, β′) is open, then f is ((γ, γ′), (β, β′))-
continuous if and only if for each (β, β′)-open set V in Y , f−1(V ) is (γ, γ′)-open in
X. We use this characterization and prove:

Theorem 3.2. The ((γ, γ′), (β, β′))-continuous image of (γ, γ′)-connected spce is
(γ, γ′)-connected, where (β, β′) is open.

Proof. Let f : (X, τ1) → (Y, τ2) be ((γ, γ′), (β, β′))-continuous from a (γ, γ′)-
connected space (X, τ1) onto a space (Y, τ2). Suppose that Y is (γ, γ′)-disconnected
and (A, V ) is a (γ, γ′)-disconnection of Y . Since f is ((γ, γ′), (β, β′))-continuous,
therefore f−1(A), f−1(B) are both (γ, γ′)-open in X. Clearly f−1(A), f−1(B) is a
pair of (γ, γ′)-disconnection of X a contradiction. Hence Y is (γ, γ′)-connected. ¤
Definition 3.3. The (γ, γ′)-boundary of a subset A of (X, τ) is defined as

Cl(γ,γ′)(A) ∩ Cl(γ,γ′)(X\A).

Next we characterize (γ, γ′)-connectedness in terms of (γ, γ′)-boundary as.

Theorem 3.3. A topological space (X, τ) is (γ, γ′)-connected if and only if every
nonempty proper subspace has a nonempty (γ, γ′)-boundary.

Proof. Suppose that a nonempty proper subspace A of a (γ, γ′) - connected
space (X, τ) has empty (γ, γ′) - boundary. Then A is (γ, γ′)-open and Cl(γ,γ′)(A)∩
Cl(γ,γ′)(X\A) = ∅. Let p be a (γ, γ′)-limit point of A. Then p ∈ Cl(γ,γ′)(A) but
p /∈ Cl(γ,γ′)(X\A). In particular, p /∈ X\A and so p ∈ A. Thus A is (γ, γ′)-closed
and (γ, γ′)-open. By theorem 3.1, X is (γ, γ′)-disconnected. This contradicition
proves that A has a nonempty (γ, γ′)-boundary. Conversely, suppose X is (γ, γ′)-
disconnected. Then by Theorem 3.1, X has a proper subspace A which is both
(γ, γ′)-closed and (γ, γ′)-open. Then Cl(γ,γ′)(A) = A, Cl(γ,γ′)(X\A) = (X\A) and
Cl(γ,γ′)(A)∩Cl(γ,γ′)(X\A) = ∅. So A has empty (γ, γ′)-boundary, a contradiction.
Hence X is (γ, γ′)-connected. ¤
Definition 3.4. A two point discrete space D = {a, b} is called (γ, γ′)-discrete if
τ(γ,γ′) = τ .

Theorem 3.4. If a space (X, τ) is (γ, γ′)-connected, then there does not exist a
surjective ((γ, γ′), (β, β′)) - continuous function f from X onto two point (γ, γ′) -
discrete space, where (β, β′) is open.

Proof. Suppose there exits a ((γ, γ′), (β, β′)) - continuous from a (γ, γ′) -
connected space (X, τ) onto a two point (γ, γ′)-discrete space D = {a, b}. Then
((γ, γ′), (β, β′))-continuity of f impolies A = f−1{a} and B = f−1{b} are (γ, γ′)-
open in X. Clearly (A, B) is a (γ, γ′)-disconnection of X. This contradiction proves
the theorem. ¤
Definition 3.5. Let X be a space and A ⊂ X. Then the class of (γ, γ′)-open sets
in A is defined in a natural way as: τ(γ,γ′)A = {A ∩ O : O ∈ τ(γ,γ′)}, where τ(γ,γ′)
is the class of (γ, γ′)-open sets of X. That is, G is (γ, γ′)-open in A if and only if
G = A ∩O, where O is a (γ, γ′)-open set in X.
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Theorem 3.5. Let (A,B) be a (γ, γ′)-disconnection of a space (X, τ) and C be a
(γ, γ′)-connected subspace of X. Then C is contained in A or B.

Proof. Suppose that C is neither contained in A nor in B. Then C∩A,C∩B
are both nonempty (γ, γ′)-open subsets of C such that (C ∩A) ∩ (C ∩B) = ∅ and
(C ∩A)∪ (C ∩B) = C. This gives that (C ∩A, C ∩B) is a (γ, γ′)-disconnection of
C. This contradiction proves the theorem. ¤

Theorem 3.6. Let X = ∪
α∈I

{Xα}, where each Xα is (γ, γ′)-connected and ∩
α∈I

{Xα}
6= ∅. Then X is (γ, γ′)-connected.

Proof. Suppose on the contrary that (A,B) is a (γ, γ′)-disconnection of X.
Since each Xα is (γ, γ′)-connected, therefore by Theorem 3.5, Xα ⊂ A or Xα ⊂ B.
Since ∩Xα 6= ∅, thereore all Xα are contained in A or in B. This gives that, if
X ⊂ A, then B = ∅ or if X ⊂ B, then A = ∅. This contradictions proves that X is
(γ, γ′)-connected. ¤

Using Theorem 3.6, we characterize (γ, γ′)-connectedness as:

Theorem 3.7. A space (X, τ) is (γ, γ′)-connected if and only if for every pair of
points x, y in X, there is a (γ, γ′)-connected subset of X which contains both x and
y.

Proof. The necesity is immediate since the (γ, γ′)-connected space itself con-
tains these two points. For the sufficiency, suppose that for any two points x, y;
there is a (γ, γ′)-connected subspace Cx,y of X such that x, y ∈ Cx,y. Let a ∈ X
be a fixed point and {Ca,c, x ∈ X} be a class of all (γ, γ′)-connected subsets of X
which contain a and x ∈ X. Then X = ∪

x∈X
{Ca,x} and ∩

x∈X
{Ca,x} = ∅. Therefore

by Theorem 3.6, X is (γ, γ′)-connected. ¤

Theorem 3.8. Let C be a (γ, γ′)-connected subset of a space (X, τ) and A ⊂ X
such that C ⊂ A ⊂ Cl(γ,γ′)(C). Then A is (γ, γ′)-connected.

Proof. It is sufficient to show that Cl(γ,γ′)(C) is (γ, γ′)-connected. On the
contrary, suppose that Cl(γ,γ′)(C) is (γ, γ′)-disconnected. Then there exists a
(γ, γ′)-disconnection (H,K) of Cl(γ,γ′)(C). That is, there are H ∩C, K ∩C (γ, γ′)-
open sets in C such that (H∩C)∩(K∩C) = (H∩K)∩C = ∅, and (H∩C)∪(K∩C) =
(H ∪K) ∩C = C. This gies that (H ∩C, K ∩C) is a (γ, γ′)-disconnection of C, a
contradiction. This proves that Cl(γ,γ′)(C) is (γ, γ′)-connected. ¤

Definition 3.6. A maximal (γ, γ′)-connected subset of a space (X, τ) is called a
(γ, γ′)-component of X. If X is itself (γ, γ′)-connected, then X is the only (γ, γ′)-
component of X.

Example 3.2. Let X = {a, b, c}, τ = {∅, X, {a}, {b}, {a, c}, {a, b}}. For b ∈ X,
defined an operation γ : τ → P (X) such that

γ(A) =
{

A if A = {a},
Cl(A) if A 6= {a},
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and

γ′(A) =
{

A if A 6= {b},
Cl(A) if A = {b}.

It is clear that {a, c} is a maximal (γ, γ′)-connected set.

Theorem 3.9. Let X be a topological space. Then we have the following
(1) For each x ∈ X, there is exactly one (γ, γ′)-component of X containing

x.
(2) Each (γ, γ′)-connected subset of X is contained in exactly one (γ, γ′)-

component of X.
(3) A (γ, γ′)-connected subset of X which is both (γ, γ′)-open and (γ, γ′)-

closed is a (γ, γ′)-connected, if γ and γ′ are regular.
(4) Every (γ, γ′)-component of X is (γ, γ′)-closed in X.

Proof. (1) Let x ∈ X and {Cα : α ∈ I} a class of all (γ, γ′)-connected
subsets of X containing x. Put C = ∪

α∈I
C, then by Theorem 3.6, C is (γ, γ′)-

connected and x ∈ X. Suppose C ⊂ C∗ for some (γ, γ′)-connected subset C∗ of X.
Then x ∈ C∗ and hence C∗ is one of the Cα’s and hence C∗ ⊂ C. Consequently
C = C∗. This proves that C is a (γ, γ′)-component of X which contains x. (2).
Let A be a (γ, γ′)-connected subset of X which is not a (γ, γ′)-component of X.
Suppose that C1, C2 are (γ, γ′)-components of X such that A ⊂ C1, A ⊂ C2. Since
C1 ∩ C2 = ∅, C1 ∪ C2 is another (γ, γ′)-connected set which contains C1 as well as
that C2, a cotradiction to the fact that C1 and C2 are (γ, γ′)-components. This
proves that A is contained in exactly one (γ, γ′)-component of X. (3) Suppose that
A is (γ, γ′)-connected subset of X which is both (γ, γ′)-open and (γ, γ′)-closed. By
(2), A is contained is exactly one (γ, γ′)-component C of X. If A is a proper subset
of C, and since (γ, γ′) is regular, therefore C = (C ∩A)∪ (C ∩ (X\A)) is a (γ, γ′)-
disconnection of C, a contradiction. Thus A = C. (4) Suppose a (γ, γ′)-component
C of X is not (γ, γ′)-closed. Then by Theorem 3.8, Cl(γ,γ′)(C) is (γ, γ′)-connected
containing (γ, γ′)-component C of X. This implies C = Cl(γ,γ′)(C) and hence C is
(γ, γ′)-closed. ¤

4. (γ, γ′)-Locally connected spaces

Definition 4.1. A space (X, τ) is said to be (γ, γ′)-locally connected if for any
point x ∈ X and any (γ, γ′)-open set U containing x, there is a (γ, γ′)-connected
(γ, γ′)-open set V such that x ∈ V ⊂ U .

Example 4.1. Let X = {a, b, c}, τ = {∅, X, {a}, {b}, {a, b}, {a, c}}. For a ∈ X,
define an operation γ : τ → P (X) such that

γ(A) =
{

A if a ∈ A,
Cl(A) if a /∈ A,

and

γ′(A) =
{

A if A 6= {b},
Cl(A) if A = {b}.
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It is clear that ∅, X, {a}, {b}, {a, b} are the only (γ, γ′)-open sets. Clearly X is
(γ, γ′)-locally connected but not locally connected.

Theorem 4.1. If X is a (γ, γ′)-locally connected space, then X has a (γ, γ′)-
neighbourhood base comprising (γ, γ′)-connected (γ, γ′)-open sets.

Proof. Let (β, β′) be the class of all (γ, γ′)-connected (γ, γ′)-open subsets
of a (γ, γ′)-locally connected space (X, τ). We show that (β, β′) is a (γ, γ′)-
neighbourhood base for a topology τ on X. Let U be (γ, γ′)-open subset on X
and x ∈ U . Since X is (γ, γ′)-locally connected space, therefore there exists a
(γ, γ′)-connected (γ, γ′)-open set B ∈ β such that x ∈ B ⊂ U . This implies that
each (γ, γ′)-open set in X is the union of members of (β, β′). Consequently (β, β′)
is a (γ, γ′)-neighbourhood base for τ . ¤

The following theorem shows that (γ, γ′)-locally connectedness is a (γ, γ′)-open
hereditary property.

Theorem 4.2. A (γ, γ′)-open subset of (γ, γ′)-locally connected space is (γ, γ′)-
locally connected.

Proof. Let U be a (γ, γ′)-open subset of a (γ, γ′)-locally connected space
(X, τ). Let x ∈ U and V be a (γ, γ′)-open neighbourhood of x in U . Then V is a
(γ, γ′)-open neighbourhood of x in X. Since X is (γ, γ′)-locally connected, therefore
there exists a (γ, γ′)-connected, (γ, γ′)-open neighbourhood W of x such that x ∈
W ⊂ V . In this way W is also a (γ, γ′)-connected (γ, γ′)-open neighbourhood x in
U such that x ∈ W ⊂ U ⊂ V or x ∈ W ⊂ V . This proves that U is (γ, γ′)-locally
connected. ¤

Definition 4.2. A mapping f : (X, τ1) → (Y, τ2) is said to be ((γ, γ′), (β, β′))-
closed (resp. ((γ, γ′), (β, β′))-open) if for any (γ, γ′)-closed ((γ, γ′)-open) set A of
X, f(A) is (β, β′)-closed (resp. (β, β′)-open) in Y .

Theorem 4.3. A ((γ, γ′), (β, β′))-continuous, ((γ, γ′), (β, β′))-open surjective im-
age of (γ, γ′)-locally connected space is (γ, γ′)-locally connected space.

Proof. Let f : (X, τ1) → (Y, τ2) be ((γ, γ′), (β, β′))-continuous, ((γ, γ′), (β, β′))
- open from a (γ, γ′)-locally connected space (X, τ) to a space Y . We show that
Y = f(X) is (γ, γ′)-locally connected space. Let y ∈ Y and choose x ∈ X such
that f(x) = y. Let U be (β, β′)-open set containing x. Since X is (γ, γ′)-locally
connected, there exists a (γ, γ′)-connected, (γ, γ′)-open set V containing x such
that x ∈ V ⊂ f−1(U). This gives that f(x) ∈ f(V ) ⊂ f(f−1(U)) = U or
y ∈ f(V ) ⊂ U . Since f is ((γ, γ′), (β, β′))-continuous, f(V ) is (γ, γ′)-open. More-
over f(V ) is (γ, γ′)-connected. This proves that Y is (γ, γ′)-locally connected. ¤
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