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This paper is a survey of certain results around Tukey reducibility. It is not a
comprehensive survey and I will concentrate only on what seems to be the theo-
retical core of the structure of Tukey reduction among definable directed orders.
Consequently, I will only touch very lightly on nondefinable directed orders and on
various applications of Tukey reduction. Discussions of these topics can be found,
for example, in [3, 4, 21], and the literature cited in these papers.

I will start with defining Tukey reduction. I will then describe convenient do-
mains for the study of Tukey reduction among definable directed orders, starting
with the broadest one and ending with six concrete representative examples. Then
I will move on to describe what is known and unknown about the structure of
Tukey reductions within these domains.

The reader can find a diagram illustrating some of the surveyed material in
Figure 1 in Section 4.

1. Tukey reduction

By a directed order (D,6), we understand a partial order such that for each
x, y ∈ D there is z ∈ D with x, y 6 z. Abusing notation somewhat, we will write
D for the directed order (D,6). A set A ⊆ D is called bounded if there is x ∈ D
such that y 6 x for each y ∈ A. The notion dual to bounded set is that of cofinal
set. A set A ⊆ D is cofinal if for each x ∈ D there y ∈ A with x 6 y.

Let D and E be directed orders. A function f : D → E is called Tukey if
preimages under f of sets bounded in E are bounded in D. We write D 6T E
if there is a Tukey function from D to E. There is a notion of morphism among
directed orders that is dual to Tukey morphism and that is defined as follows. A
function g : E → D is convergent if images under g of sets cofinal in E are cofinal
in D. It was already noted by Tukey that for two directed orders D and E, there
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is a Tukey function from D to E if and only if there is a convergent function from
E to D.

If two directed orders are Tukey reducible to each other, we say that they are
Tukey equivalent. We write D ≡T E if both D 6T E and E 6T D. As shown
by Tukey [24], this condition can be phrased in a way that does not involve Tukey
reduction.

Theorem 1.1. [24] Let D and E be directed orders. Then D ≡T E if and only if

there is a directed order F such that D and E embed into F as cofinal subsets.

Tukey reduction was originally introduced [24] in the theory of net convergence
in general topological spaces in order to formulate the important notion of subnet.
Later Isbell [7] realized that Tukey reduction can be fruitfully used to compare
directed orders coming from topology and analysis. Building on this insight and on
the insight of Schmidt [16], who connected Tukey reduction with the cardinals of
additivity and cofinality of a directed order, Fremlin [4] employed Tukey reduction
to explain inequalities between certain cardinal invariants of the continuum. This
explanation is based on the following observation. LetD be a directed order. Define
additivity of D

add(D)

to be the minimal cardinality of an unbounded subset of D, and let cofinality of D

cof(D)

be the minimal cardinality of a cofinal subset of D. Now, it is an observation going
back to Schmidt [16] that if D 6T E, then

add(E) 6 add(D) and cof(D) 6 cof(E).

In applications to cardinal invariants of the continuum, a notion slightly weaker
than Tukey reduction is also of interest. Let D and E be directed orders. We write
D 6ω

T E if there is a function f : D → E such that preimages of σ-bounded sets are
σ-bounded. (A set is σ-bounded if it is a countable union of bounded sets.) It is
clear that D 6T E implies D 6ω

T E. We define addω(D) as the smallest cardinality
of a non-σ-bounded subset of D. It is now easy to see [4] that D 6ω

T E implies that

addω(E) 6 addω(D) and cof(D) 6 max(ω, cof(E)).

We write D ≡ω
T E if both D 6ω

T E and E 6ω
T D.

Using Tukey reduction as a means of comparison among directed orders occurring
in topology or analysis has some interesting advantages. On the one hand, Tukey
reduction is an abstract and general notion, so it makes it possible to compare
very diverse directed orders and, even in situations when it is applied to compare
directed orders related to each other, it puts such comparisons in a broad context.
For example, one class of directed orders studied quite extensively consists of ideals
of sets of natural numbers taken with inclusion as the directed order relation. There
are several useful notions that allow comparison between such ideals: the Rudin–
Keisler, Rudin–Blass, or Katětov reductions. All of them, however, depend on the
fact that the ideals are defined on the set of natural numbers. Tukey reduction
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provides a “coordinate free” way of comparing such ideals and places such com-
parisons against a larger backdrop. On the other hand, remarkably, despite Tukey
reduction being an abstract notion, in controlled situations, the existence of an
abstract Tukey reduction implies the existence of a definable such reduction; see
Theorem 2.2.

2. Basic orders, ideals, six examples

2.1. Basic orders. The theory of Tukey reduction can be nicely developed in a
class of directed orders whose underling sets are appropriately topologized. This
class contains the main examples of definable directed orders. The following defi-
nition is due to Solecki and Todorcevic and comes from [19]. A directed order D is
called basic if

– D is a separable metric space;
– each two elements of D have the least upper bound and the operation of
taking the least upper bound is a continuous function from D ×D to D;

– each bounded sequence has a convergent subsequence;
– each convergent sequence has a bounded subsequence.

It was pointed out by Fremlin [5, Proposition 513K] that the topology on a basic
order is determined by the order relation.

Basic orders whose underlying topology is analytic are called analytic basic or-

ders. (A metric separable space is analytic if it is a continuous image of a Polish
space.) There are two “self-improvement” results for analytic basic orders. The
first one of which concerns the topology on a basic order.

Theorem 2.1. [19] Let D be a basic order. If the topology on D is analytic, then

it is Polish.

The above theorem was anticipated in the results of Christensen [2, Theorem 3.3]
and of Kechris–Louveau–Woodin [8], who proved that each analytic σ-ideal of com-
pact subsets of a compact metric space is Gδ.

The second of the “self-improvement” results concerns morphisms and shows
that Tukey reducibility among analytic basic orders can be always witnessed by
definable functions.

Theorem 2.2. [19] Let D and E be analytic basic orders. Assume D 6T E. Then

there exist a Tukey function from D to E that is measurable with respect to the

σ-algebra generated by analytic sets.

Below we will be interested exclusively in analytic basic orders. (Note, how-
ever, that nonanalytic basic orders have been investigated in the literature; see for
example [3].) This class is described by imposing a definability condition but, as
stated in the next theorem, it forms an initial set of basic orders; so the definable
limitation turns out to be a complexity limitation as well.

Theorem 2.3. [19] Let D and E be basic orders with D 6T E. If E is analytic,

then so is D.
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To concentrate on nontrivial basic orders, we will be interested in analytic basic
orders that are not locally compact. This class has a minimal element. Anticipat-
ing Subsection 2.3, we introduce here an analytic nonlocally compact basic order.
Consider the set N

N of all functions from N to N with the product topology and
the pointwise inequality between functions.

Theorem 2.4. [19] Let D be an analytic nonlocally compact basic order. Then

N
N 6T D.

The special case of the above theorem for analytic P-ideals was proved earlier
by Todorcevic [22].

2.2. Ideals. We shift our attention to two subclasses of analytic basic orders from
which most natural examples come. Each of these two classes consist of ideals taken
with inclusion as directed order. The reader may consult two recent surveys [6] and
[10] for more background information on ideals.

First, we note, somewhat academically, that there is no loss of generality in
considering only ideals rather than general directed orders, as each directed order is
easily seen to be Tukey equivalent to the ideal of its bounded subsets. However, we
will not consider ideals in full generality but rather limit our attention to ideals that
are also analytic basic orders. As is often the case in mathematics, this domain of
investigation splits into the compact and the discrete subdomains. More precisely,
we will be interested in analytic σ-ideals of compact sets and analytic P-ideals
of subsets of N, both taken with inclusion as partial order and with appropriate
topologies. We describe the two classes in turn.

Consider a compact metric space X and equip the space K(X) of all compact
subsets of X with the usual Vietoris topology, which makes K(X) into a compact
metric space. A set I ⊆ K(X) is a σ-ideal of compact sets if it is closed under
taking compact subsets and countable compact unions. It is easy to see that a
σ-ideal of compact sets with inclusion and the topology inherited from K(X) is a
basic order. It is an analytic basic order if the Vietoris topology on it is analytic.
It was proved by Kechris–Louveau–Woodin [8], and follows also from Theorem 2.1,
that in that case I is a Gδ subset of K(X). In certain situations, a somewhat more
general notion of a relative σ-ideal of compact sets is natural and useful; see [19] or
[13]. However, we will not consider this generalization below.

To describe the other class of ideals, consider the powerset P(N) of N identified
with 2N = {0, 1}N and through this identification equipped with the usual compact
product topology. A set I ⊆ P(N) is an ideal if it is closed under taking finite
unions and subsets. It can be checked that I taken with inclusion and with the
topology inherited from P(N) is an analytic basic order precisely when I = P(x) for
some x ⊆ N, so it would appear that this class contains only trivial examples. As it
turns out, this is because we were too simple-minded in our choice of topology. One
does get a large number of important examples of ideals of subsets of N that are
analytic basic orders as follows. An ideal I is called a P-ideal if for each sequence
xn ∈ I, n ∈ N, there is x ∈ I such that xn r x is finite for each n. It was proved in
[17] that an ideal I is a P-ideal that is analytic with the topology inherited from
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2N if and only if there exists a lower semicontinuous submeasure φ : P(N) → [0,∞]
such that

I = Exh(φ) =
{

x ∈ P(N) : lim
n

φ(x r {0, 1, . . . , n}) = 0
}

.

We can always assume that 0 < φ({n}) < ∞ for each n ∈ N. It is easy to see
that such an I becomes a Polish space with the submeasure topology given by the
metric

dφ(x, y) = φ((y r x) ∪ (xr y)).

It is easy to see that if Exh(φ) = Exh(φ′) for two lower semicontinuous submeasures
φ and φ′, then for each ǫ > 0 there is ǫ′ > 0 such that φ′(x) < ǫ′ implies φ(x) < ǫ
for each subset x of N and vice versa. Consequently, the submeasure topology does
not depend on a particular choice of φ; it is determined by I. It is easy to check
that I with inclusion and with this topology is an analytic basic order.

This definition may strike the reader not acquainted with the area as not entirely
natural. However, first, many important examples are of this form and, second,
this is the only way of making ideals of subsets of N into analytic basic orders.
Indeed, it was proved in [19] that if an ideal I ⊆ P(N), taken with inclusion and
with a topology τ containing the topology inherited from P(N), is an analytic basic
order, then I is an analytic P-ideal and τ is the submeasure topology.

2.3. Examples. We move now to a description of some concrete examples of ideals.
They come from different important classes of ideals. We omit many interesting
other examples, which can be easily found in the literature cited below.

The first four examples were already considered by Isbell [7].

1. The basic order NN was introduced when stating Theorem 2.4. This partial
order can be considered as both an analytic σ-ideal of compact subsets of a compact
metric space and an analytic P-ideal of subsets of N. So N

N is Tukey equivalent
with the σ-ideal of all compact subsets of [0, 1] not containing rational numbers and
it is also Tukey equivalent with the P-ideal consisting of subsets of N×N contained
in the subgraph of a function from N to N.

2. Let

Z0 =
{

x ∈ P(N) : lim
n

|x ∩ {0, 1, . . . , n}|

n+ 1
= 0

}

.

This is the P-ideal consisting of density zero subsets of N. It is easy to see that the
following lower semicontinuous submeasure

φ0(x) = sup
n

|x ∩ {0, 1, . . . , n}|

n+ 1

is such that Z0 = Exh(φ0).

3. Let

ℓ1 =

{

x ∈ P(N) :
∑

n∈x

1

n+ 1
< ∞

}

.

Again it is easy to check that ℓ1 is a P-ideal. Moreover, one checks that the
lower semicontinuous submeasure φ1(x) =

∑

n∈x
1

n+1
gives ℓ1 = Exh(φ1). The

ideal ℓ1 is Tukey equivalent with the directed order of all summable sequences of
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nonnegative real numbers taken with pointwise inequality as the order relation [4].
This observation explains the symbol used to denote the ideal.

4. Let NWD be the ideal of all compact nowhere dense subsets of 2N. A straight-
forward argument shows that the ideal NWD is an analytic σ-ideal.

5. A new type of an analytic σ-ideal of compact subsets of 2N was discovered
recently by Mátrai [11]. We present a σ-ideal of this type below. This particular
σ-ideal comes from [18] and is easier to describe than the original σ-ideal from [11].

We consider sequences s̄ = (s0, s1, . . . ) that are infinite or finite with an even
number of entries, where each si is a function from a nonempty finite subset of N
to 2 = {0, 1}, and where for each i each element of the domain of si is less than
each element of the domain of si+1. Let R be the set of all such sequences. For
s̄ ∈ R, define

[s̄] = {x ∈ 2N : s2i ⊆ x or s2i+1 ⊆ x for each i}.

Define

I0 = {K ∈ K(2N) : K ∩ [s̄] is nowhere dense in [s̄] for each s̄ ∈ R }.

One checks that I0 is an analytic σ-ideal [18].
The examples listed above represent all the classes of ideals relevant in the sequel:

NWD is an analytic σ-ideal of compact sets with property (∗), I0 is an analytic
σ-ideal of compact sets without (∗), Z0 is a density-like analytic P-ideal of subsets
of N, ℓ1 is an analytic P-ideal of subsets of N that is not density-like. (Property
(∗) and density-like will be defined later.) Additionally, NN is the unique up to
Tukey equivalence, nonlocally compact basic order that is both an analytic σ-ideal
of compact sets and an analytic P-ideal of subsets of N; see Theorem 3.1.

There exist, however, many natural basic orders that were omitted from the list
above. One of them has been carefully studied and for this reason we will have it
here as our last example.

6. Let Eµ be the analytic σ-ideal of all compact Lebesgue measure zero subsets
of the unit interval taken with inclusion.

We should point out that other natural partial orders that are not themselves
P-ideals or σ-ideals or even basic orders can be analyzed in the set-up described
above. For example, one of those is the directed order whose underlying set is the
family MGR of meager subsets of [0, 1] and whose order is inclusion. As shown
in [4] we have MGR ≡ω

T NWD . And, by the remarks in Section 1, the study
of cardinal invariants of additivity and cofinality of meager sets boils down to
the study of cardinal invariants of NWD. Similarly, consider the set NULL of all
Lebesgue null subsets of the interval [0, 1] taken with inclusion. Building on earlier
work of Bartoszyński [1] and Raisonnier–Stern [15], Fremlin showed in [4], that
NULL ≡ω

T ℓ1. And again the study of additivity and cofinality of NULL is reduced
to the study of these cardinal invariants of the analytic basic order ℓ1.

3. Structure of the classes of σ-ideals and P-ideals

Analytic σ-ideals of compact sets and analytic P -ideals of subsets of N are locally
compact with the topologies that make them basic orders only in trivial situations.
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Indeed, it was proved in [8] that a σ-ideal of compact subsets of a compact metric
spaceX is locally compact with the Vietoris topology precisely when it is the family
of all compact subsets of U for a fixed open subset U ofX . It was proved in [17] that
an analytic P-ideal is locally compact with its submeasure topology precisely when
it is of the form {x ⊆ N : x ∩ a is finite} for some fixed a ⊆ N. In both situations
the resulting directed orders are Tukey equivalent to the one element order or to N

taken with the usual inequality relation. To avoid these trivial situations, from this

point on, we consider only nonlocally compact analytic σ-ideals of compact subsets

of a compact metric space and nonlocally compact analytic P-ideals of subsets of N.

For simplicity, we refer to the former as σ-ideals and to the latter P-ideals.
The following theorem due to Solecki and Todorcevic [19] shows that there are

essentially no Tukey reductions from the P-ideal side to the σ-ideal side. On the
other hand, we will see later that there do exist Tukey reductions in the opposite
direction.

Theorem 3.1. [19] Let I be a P-ideal and let I be a σ-ideal. Then I 66T I unless

I is isomorphic to the P-ideal of subsets of N × N contained in the subgraph of a

function from N to N, so I ≡T N
N.

A particular instance of the above theorem, namely Z0 66T NWD, was proved
earlier by Fremlin in [4].

Louveau and Veličković [9] and, independently, Todorcevic [23] noticed that the
following theorem is a consequence of a general result of Fremlin [4] on producing
Tukey reduction to ℓ1 and the representation of P-ideals as Exh(φ) from [17].

Theorem 3.2. [9, 23] ℓ1 is largest with respect to Tukey reduction among all P-

ideals, that is, I 6T ℓ1 for each P-deal I.

It is not known if the class of σ-ideals has a largest element with respect to
Tukey reduction.

There are important subclasses of σ-ideals and P-ideals that exhibit a higher
degree of additivity. They are in some sense analogous to each other. We describe
them below.

On the side of σ-ideals we find the following notion introduced in [18]. Let I be
a σ-ideal. Let X be the compact metric space underlying I. We say that I has
property (∗) if for each sequence (Kn) of sets in I there is a Gδ subset G of X such
that

⋃

n Kn ⊆ G and all compact subsets of G are in I. One checks that NWD and
Eµ have property (∗) and that I0 does not; see [11] and [18]. As argued in [18] all
“naturally occurring” σ-ideals have property (∗). In fact, the σ-ideal constructed
in [11] was the first example of a σ-ideal without (∗).

On the P-ideal side, the following definition was introduced by Solecki and Todor-
cevic in [19]. Let I = Exh(φ) be a P-ideal for a lower semicontinuous submeasure φ.
We call I density-like if for each ǫ > 0 there is δ > 0 such that for each sequence
(xn) of sets in I with φ(xn) 6 δ there is an infinite set b ⊆ N with φ(

⋃

n∈b xn) 6 ǫ.
Whether or not I is density-like depends only on I and not on the choice of φ with
I = Exh(φ). One checks without difficulty that Z0 is density-like and that ℓ1 is
not.
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It was proved by Solecki [18] that among σ-ideals with (∗) there is a top element.

Theorem 3.3. [18] NWD is largest with respect to Tukey reduction among all

σ-ideals with property (∗), that is, I 6T NWD for each σ-ideal with (∗) I.

It is not know if there is a largest density-like P-ideal.
The following theorem, due to Louveau and Veličković [9] and Mátrai [13], illus-

trates richness of Tukey reduction among P-ideals.

Theorem 3.4. (i) [9] The partial order P(N)/Fin with almost inclusion embeds

into the class of density-like P-ideals with 6T .

(ii) [13] The partial order P(N)/Fin with almost inclusion embeds into the class

of nondensity-like P-ideals with 6T .

Strictly speaking, in [13], it is shown that the class of P-ideals that are Fσ subsets
of 2N is rich in the way described in point (ii), but it is proved in [19] that P-ideals
that are Fσ are not density-like.

The corresponding result for σ-ideals are not known, though some progress on
this question was made in [13]. In fact, one of the most interesting problems in the
area may be the challenge of sorting out the structure of Tukey reduction among
the many mathematically natural σ-ideals with property (∗). A list of such ideals
can be found in [18, Section 2].

4. Tukey reductions among the examples

We now go back to the concrete examples from Section 2: NN, Z0, ℓ1, NWD, I0,
and Eµ. The structure of Tukey reduction among these ideals has been completely
determined. The first theorem shows the Tukey comparisons between elements of
the same class: P-ideals and σ-ideals.

Theorem 4.1. (i) [4, 12, 13, 14, 20] N
N <T Eµ <T NWD <T I0.

(ii) [4, 7, 9] N
N <T Z0 <T ℓ1

In point (i), N
N <T Eµ and Eµ 6T NWD were proved by Fremlin [4] with

strictness of the latter inequality following from Theorem 4.2(ii) and (iii) below
and established in [4], [13], and [20]. The inequality NWD <T I0 in point (i) was
proved independently by Mátrai [12] and by Moore and Solecki [14]. In point (ii),
N

N <T Z0 is due to Isbell [7], Z0 6T ℓ1 to Fremlin [4], and ℓ1 66T Z0 to Louveau
and Veličković [9]. In point (ii), strictness of the inequality Z0 <T ℓ1 also follows
from the general Theorems 4.5 and 4.4 as Z0 is density-like.

Now we take a look at comparisons between elements of different classes. It
follows from the general Theorem 3.1 that Z0 and ℓ1 are not Tukey reducible to
NWD, I0, or Eµ. In the opposite direction, we have the following theorem.

Theorem 4.2. (i) [4] NWD <T ℓ1 (ii) [4] Eµ <T Z0;

(iii) [13, 20] NWD 66T Z0 (iv) [12] I0 66T ℓ1

In the above theorem, points (i) and (ii) are due to Fremlin [4]. Point (iii) was
proved independently by Mátrai [13] and Solecki–Todorcevic [20]. Point (iv) was
proved by Mátrai in [12]. Strictly speaking, it was not proved there for I0, but for
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the σ-ideal defined in [11]. This proof can be adapted to yield point (iv) for the
σ-ideal I0 described here in Subsection 2.3. Note that strictness of the inequalities
in points (i) and (ii) follows also from the general Theorem 3.1.

Theorems 4.1 and 4.2 together determine all inequalities and lack thereof among
the examples. Note also that by the discussion earlier on Theorem 4.2(i) implies
that

(4.1) add(NULL) 6 add(MGR) and cof(MGR) 6 cof(NULL) .

The diagram below shows the basic orders considered in this paper and their
placement within subclasses of basic orders. Tukey reductions among them exist
precisely when indicated by arrows or compositions of arrows.

N
N

NWD

I0

Eµ

Z0

ℓ1

property
(∗) de

ns
ity
-li
ke

σ-ideals P -ideals

1

Figure 1. Basic orders

Partly because of application (4.1) to cardinal invariants, Theorem 4.2(i) ap-
pears to be the most intriguing Tukey reduction among the ideals considered here.
It immediately leads to the problem of characterizing those P-ideals I for which
NWD 6T I. The first step in this direction is the following theorem due to Solecki
and Todorcevic [20] that extends Theorem 4.2(iii).

Theorem 4.3. [20] Let I be a density-like P-ideal. Then NWD 66T I.

We report below some results related to the problem of characterizing those P-
ideals I for which I 6T NWD. These results were obtained by Todorcevic and the
author.

We define a new rank with values in ω1 + 1 on P-ideals. Note that a rank with
values in ω1 + 1 on σ-ideals was described in [18]. Let a P-ideal I be represented
as I = Exh(φ) for a lower semicontinuous submeasure φ. Given a sequence (xn) of
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sets in I and ǫ > 0, the set

Kǫ =

{

b ⊆ N : φ

(

⋃

n∈b

xn

)

6 ǫ

}

⊆ 2N

is compact. There are two possibilities for the iteration of the Cantor–Bendixson
derivative applied to this set. Either there is a smallest countable ordinal α such
that the α+1 Cantor–Bendixson derivative of Kǫ is empty or all Cantor–Bendixson
derivatives of Kǫ are nonempty. In the first case, let height(Kǫ) be equal to α; in
the second case, let it be equal to ω1. Let now ǫ, δ > 0 and α < ω1 be given. We
say that Pǫ,δ(α) holds for I if for every sequence (xn) of sets in I with φ(xn) 6 δ

height

({

b ⊆ N : φ

(

⋃

n∈b

xn

)

6 ǫ

})

> α.

Define ht(I) = min{α ∈ ω1 : ∃ǫ > 0 ∀δ > 0 Pǫ,δ(α) fails} if the set on the right-hand
side is nonempty, and let ht(I) = ω1 otherwise.

Proposition 4.1 (Solecki–Todorcevic). Let I be a P-ideal. Then

(i) ht(I) does not depend on the choice of a lower semicontinuous submeasure

φ with I = Exh(φ);
(ii) ht(I) = ωωα

, for some α < ω1, or ht(I) = ω1.

The following result, essentially proved in [20] (where, however, the notion of
ht was missing), gives a characterization of P-ideals with the largest and smallest
values of height. The proof of point (i) uses ideas of Fremlin [4].

Theorem 4.4 (Solecki–Todorcevic). Let I be a P-ideal. Then

(i) ht(I) = ω if and only if I ≡T ℓ1;

(ii) ht(I) = ω1 if and only if I is density-like.

The next result shows that height is an invariant of Tukey reduction.
Theorem 4.5 (Solecki–Todorcevic). Let I, J be P-ideals. If I 6T J , then ht(J) 6
ht(I).

It follows from Theorem 4.5 and Theorem 4.4(ii) that the class of density-like
P-ideals is closed downward, a result established already in [20].

It is clear from what was said above that there is a minimal ordinal β such that
NWD 6T I for all P-ideals I with ht(I) < β and that we have ωω 6 β 6 ω1 for
this ordinal. It seems likely that β is equal to one of the two extreme values.
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