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Abstract. Homogeneous multiprocessor systems are usually modelled
by undirected graphs. Vertices of these graphs represent the proces-
sors, while edges denote the connection links between adjacent pro-
cessors. Let G be a graph with diameter D, maximum vertex degree
Δ, the largest eigenvalue λ1 and m distinct eigenvalues. The prod-
ucts mΔ and (D + 1)λ1 are called the tightness of G of the first and
second type, respectively. In the recent literature it was suggested
that graphs with a small tightness of the first type are good mod-
els for the multiprocessor interconnection networks. We study these
and some other types of tightness and some related graph invariants
and demonstrate their usefulness in the analysis of multiprocessor in-
terconnection networks. A survey of frequently used interconnection
networks is given. Load balancing problem is presented. We prove
that the number of connected graphs with a bounded tightness is
finite and we determine explicitly graphs with tightness values not
exceeding 9. There are 69 such graphs and they contain up to 10 ver-
tices. In addition we identify graphs with minimal tightness values
when the number of vertices is n = 2, . . . , 10.
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1. Introduction

Usual models for multiprocessor interconnection networks [20] are (undirected,
connected) graphs [31, 33]. Vertices of these graphs represent the processors, while
edges denote the connection links between neighboring (adjacent) processors. The
processors within a multiprocessor system communicate by sending or receiving
messages through these communication links. The two main parameters of the
graph that play an important role in the design of multiprocessor topologies are
maximum vertex degree Δ and the diameter D. In other words, Δ directly corre-
sponds to the number of neighboring processors (adjacent vertices in the graph
model), while D represents the length of the longest path in processor graph,
i.e. maximum distance between two processors. The main drawback of multiproces-
sor systems is the communication overhead [4, 35], the time required to exchange
data between different processing units. Therefore, interconnection networks have
to satisfy two contradictory properties: to minimize the “number of wires” and to
maximize the data exchange rate. This means that the paths connecting each two
processors have to be as short as possible while the average number of connections
per processor has to be as small as possible.

Recently, the link between the design of multiprocessor topologies and the the-
ory of graph spectra [14] has been recognized [19]. The general idea of using graph
eigenvalues in multiprocessor interconnection networks can be also found in [30].
The main conclusion of [19] is that the product of the number m of distinct eigen-
values of a graph adjacency matrix and Δ has to be as small as possible. We
call this product the tightness of the first type for a graph. In [6] we introduced
the tightness of the second type as the product (D + 1)λ1, where λ1 is the largest
eigenvalue of the graph. Moreover, we defined some other types of graph tightness,
and investigated the relation between the tightness values and the suitability of
the corresponding multiprocessor architecture. We showed that the graphs with
a small tightness of the second type are suitable for the design of multiprocessor
topologies.

In the paper [5] we determined explicitly graphs with tightness values not ex-
ceeding a = 9. To explain why the value 9 has been chosen, note first that by
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Theorem 1 the number of connected graphs with a bounded tightness is finite. If
the selected upper bound a is high, the number of corresponding graphs could be
very big and some of these graphs may have large number of vertices. It turned
out that the value a = 9 is very suitable: i) it is big enough to include the Petersen
graph (Fig. 13), known to be a very good interconnection network (see, for exam-
ple, [37]), and ii) it is small enough so that only 69 graphs obey the bound with
the number of vertices in these graphs not exceeding 10.

For basic definitions and some general results in the theory of graph spectra the
reader is referred to the introductory chapter of this publication.

The paper is organized as follows. Section 2 is devoted to relations between
the load balancing problem and the theory of graph spectra. Definitions and basic
properties of various types of tightness are given in Section 3. Section 4 contains a
survey of frequently used multiprocessor interconnection networks. Some results on
a special class of trees in the role of interconnection networks are given in Section 5.
Graphs with small values for different types of tightness are classified in Section 6.
Graphs with smallest tightness values (among all graphs of the same order not
exceeding 10) are identified within Section 7.

2. Load balancing

The job which has to be executed by a multiprocessor system is divided into
parts that are given to particular processors to handle them. We can assume that
the whole job consists of a number of elementary jobs (items) so that each processor
gets a number of such elementary jobs to execute. Mathematically, elementary jobs
distribution among processors can be represented by a vector x whose coordinates
are non-negative integers. Coordinates are associated to graph vertices and indicate
how many elementary jobs are given to corresponding processors.

Vector x is usually changed during the work of the system because some ele-
mentary jobs are executed while new elementary jobs are permanently generated
during the execution process. Of course, it would be optimal that the number
of elementary jobs given to a processor is the same for all processors, i.e., that
the vector x is an integer multiple of the vector j whose all coordinates are equal
to 1. Since this is not always possible, it is reasonable that processors with a great
number of elementary jobs send some of them to adjacent processors so that the
job distribution becomes uniform if possible. In this way the so called problem
of load balancing is important in managing multiprocessor systems. The load bal-
ancing problem requires creation of algorithms for moving elementary jobs among
processors in order to achieve the uniform distribution.

We shall present an algorithm for the load balancing problem which is based on
the Laplacian matrix of a graph. A similar algorithm can be constructed using the
adjacency matrix.

Let G be a connected graph on n vertices. Eigenvalues and corresponding
ortonormal eigenvectors of the Laplacian L = D−A of G are denoted by ν1, ν2, . . . ,
νn = 0 and u1, u2, . . . , un, respectively. Any vector x from Rn can be represented
as a linear combination of the form x = α1u1 + α2u2 + · · ·+ αnun.
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Suppose now that G has distinct Laplacian eigenvalues μ1, μ2, . . . , μm = 0 with
multiplicities k1, k2, . . . , km = 1, respectively. Vector x can now be represented
in the form x = y1 + y2 + · · · + ym where yi belong to the eigenspace of μi for
i = 1, 2, . . . ,m. We also have ym = βj for some β.

Since Lx = L(y1 + y2 + · · ·+ ym) = μ1y1 + μ2y2 + · · ·+ μmym, we have x(1) =
x − 1

µ1
Lx =

(
I − 1

µ1
L
)
x =

(
1 − µ2

µ1

)
y2 + · · · + βj. We see that the component of

x in the eigenspace of μ1 has been cancelled by the transformation by the matrix
I − 1

µ1
L while the component in the eigencpace of μm remains unchanged. The

transformation I − 1
µ2
L will cause that the component of x(2) =

(
I − 1

µ2
L
)
x(1) in

the eigenspace of μ2 disappears. Continuing in this way

(1) x(k) =
(
I − 1

μk
L
)
x(k−1), k = 1, 2, . . . ,m− 1

we shall obtain x(m−1) = βj.
We have seen how a vector x can be transformed to a multiple of j using the

iteration process (1) which involves the Laplacian matrix of the multiprocessor
graph G. It remains to see what relations (1) mean in terms of load moving.

Let vector x(k) have coordinates x
(k)
1 , x

(k)
2 , . . . , x

(k)
n . Relations (1) can be rewrit-

ten in the form

(2) x
(k)
i = x

(k−1)
i − 1

μk

∑
i∗j

(
dix

(k−1)
i − x

(k−1)
j

)

where di is the degree of vertex i. This means that the current load at vertex i is
changed in such a way that vertex (processor) i sends 1

µk
-th part of its load to each

of its di neighbors and, because this holds for every vertex, also receives 1
µk

-th part

of the load from each of its di neighbors.
In this way we have defined a load flow on the edge set of G. First, particular

amounts of load flow should be considered algebraically, i.e., having in mind their

sign. So, if x
(k−1)
i is negative, then vertex i, in fact, receives the corresponding

amount. For each edge ij we have two parts of the flow: the part which is sent (or
received) by i and the part which is sent (or received) by j. These two amounts
should be added algebraically and in this way we get final value of the flow through
edge ij. This flow at the end has a non-negative value which is sent either from i
to j or vice versa.

Although the load flow plan defined in this way by relations (1) theoretically
solves the problem of load balancing, one should be careful when it has to be really
applied. This is not the only flow plan which solves the problem. For example, one
can apply relations (1) with various orders of eigevalues. Further, the flow plan that
we get could be such that the load is sent to final destinations via long paths. Also,
it is not clear that a flow plan is always realizable because it could happen that a
vertex has not enough elementary jobs to send which it should send according to the
flow plan. These facts indicate that one should further consider the load balancing
and find, if possible, flow plans which would be optimal according to some criteria.
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We shall not further elaborate the problem of load balancing and the interested
reader can consult the literature (see, for example, [19] and references given there).

Here we point out the obvious fact that the number of iterations in (1) is equal
to the number of non-zero distinct Laplacian eigenvalues of the underlying graph.
Hence we see that from the point of view of complexity of the load balancing algo-
rithms graphs with a small number of distinct Laplacian eigenvalues are suitable
for modelling multiprocessor interconnection networks. In addition, maximum ver-
tex degree Δ of G also affects computation of the balancing flow. Therefore, the
complexity of the balancing flow calculations essentially depends on the product
mΔ and that is why this quantity was proposed in [19] as a parameter relevant for
the choice and the design of multiprocessor interconnection networks.

Although graphs with few distinct eigenvalues allow a quick execution of load
balancing algorithms, it is not expected that infinite families of such graphs with
small tightness can be constructed.

A graph is called integral if its spectrum consists entirely of integers. Each
eigenvalue has integral eigenvectors and each eigenspace has a basis consisting of
such eigenvectors.

In integral graphs load balancing algorithms, which use eigenvalues and eigenvec-
tors, can be executed in integer arithmetics. The further study of integral graphs in
connection to multiprocessor topologies seems to be a promising subject for future
research (see [5, 9]).

See references [17, 18, 23, 26, 27] for a further study of the load balancing prob-
lem.

3. Various types of tightness of a graph

As we have already pointed out, the graph invariant obtained as the product of
the number of distinct eigenvalues m and the maximum vertex degree Δ of G has
been investigated in [19] related to the design of multiprocessor topologies. The
main conclusion of [19] with respect to the multiprocessor design and, in particular
to the load balancing within given multiprocessor systems was the following: if
mΔ is small for a given graph G, the corresponding multiprocessor topology was
expected to have good communication properties and has been called well-suited. It
has been pointed out that there exists an efficient algorithm which provides optimal
load balancing within m − 1 computational steps. The graphs with large mΔ
were called ill-suited and were not considered suitable for design of multiprocessor
networks.

Several families of graphs with a small product mΔ have been constructed. One
such family is based on hypercubes. It is interesting that the ubiquitous Petersen
graph appears also as a good candidate for multiprocessor interconnection networks.

On the other hand there are many known and widely used multiprocessor topolo-
gies based on graphs which appear to be ill-suited according to [19]. Such an
example is the star graph Sn = K1,n−1.

In order to extend and improve the application of the theory of graph spectra
to the design of multiprocessor topologies, some other types of graph invariants
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(under common name tightness) have been defined in [6] and their suitability for
describing the corresponding interconnection networks investigated.

As we can see, mΔ is the product of one spectral invariant m and one struc-
tural invariant Δ. Therefore, we will refer to this type of tightness as the mixed
tightness. In [6], we introduced two alternative (homogeneous) definitions of tight-
ness, the structural and the spectral one. Moreover, we introduced another mixed
tightness, and therefore we end up with type one mixed tightness and type two
mixed tightness. Here we recall all these definitions. New types of tightness in-
volve another structural invariant (diameter) and another spectral invariant (the
largest eigenvalue). Both invariants are important for communication properties of
a network in general.

Definition 1. The tightness t1(G) of a graph G is defined as the product of the
number of distinct eigenvalues m and the maximum vertex degree Δ of G, i.e.,
t1(G) = mΔ.

Definition 2. Structural tightness stt(G) is the product (D + 1)Δ where D is
diameter and Δ is the maximum vertex degree of a graph G.

Definition 3. Spectral tightness spt(G) is the product of the number of distinct
eigenvalues m and the largest eigenvalue λ1 of a graph G.

Definition 4. Second type mixed tightness t2(G) is defined as a function of the
diameter D of G and the largest eigenvalue λ1, i.e., t2(G) = (D + 1)λ1.

If the type of tightness is not relevant for the discussion, all four types of tightness
will be called, for short, tightness. In general discussions we shall use t1, t2, stt, spt
independently of a graph to denote the corresponding tightness. An alternative
term for tightness could be the word reach.

The use of the largest eigenvalue, i.e. the index, of a graph instead of the maxi-
mum vertex degree in description of multiprocessor topologies seems to be appro-
priate for several reasons. By Theorem 1.12 of [14] the index of a graph is equal
to a kind of mean value of vertex degrees, i.e. to the so called dynamical mean
value, which takes into account not only immediate neighbors of vertices, but also
neighbors of neighbors, etc. The index is also known to be a measure of the extent
of branching of a graph, and in particular of a tree (see [11] for the application in
chemical context and [10] for a treatment of directing branch and bound algorithms
for the travelling salesman problem). The index, known also as a spectral radius,
is a mathematically very important graph parameter as presented, for example, in
a survey paper [12].

According to the well-known inequality dmin � d̄ � λ1 � dmax = Δ, [14, p. 85]
we have that spt(G) � t1(G). Here dmin and dmax denote minimum and maximum
vertex degrees, respectively and d̄ is used to denote the average value of vertex
degrees.

The relation between stt(G) and t1(G) is t1(G) � stt(G), since m � 1 +D (see
Theorem 3.13. from [14]). For distance-regular graphs [3] m = 1 +D holds.

We also have t2(G) � spt(G) and t2(G) � stt(G).
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The two homogeneous tightness appear to be incomparable. To illustrate this,
let us consider star graph with n = 5 vertices (S5 = K1,4) given on Fig. 1a, and
the graph S̄5 obtained if new edges are added to the star graph as it is shown on
Fig. 1b.
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Figure 1. a) Star graph with n = 5 vertices and b) extended star graph

From [14, pp. 272–275, Table 1], we can see that for S5 it holds D = 2, Δ = 4,
m = 3 and λ1 = 2 and hence spt(S5) = mλ1 = 6 < 12 = (D + 1)Δ = stt(S5). On
the other hand for the graph S̄5 we have D = 2, Δ = 4, m = 4 and λ1 = 3.2361
yielding to spt(S̄5) > stt(S̄5).

The above mentioned table shows that this is not the only example. For n = 5,
21 different graphs exist. Only for 3 of them the two homogeneous tightness have
the same value, while stt(G) is smaller for 9 graphs, and for the remaining 9 graphs
spt(G) has a smaller value.

For two graph invariants α(G) and β(G) we shall say that the relation α(G) ≺
β(G) holds if α(G) � β(G) holds for any graph G. With this definition we have
the Hasse diagram for the ≺ relation between various types of tightness given on
Fig. 2.

stt(G) spt(G)

t2(G)

t1(G)

��

��

��

��

Figure 2. Partial order relation between different types of graph tightness

In order to study the behavior of a property or invariant of graphs when the
number of vertices varies, it is important that the property (invariant) is scalable.
Scalability means that for each n there exists a graph with n vertices having that
property (invariant of certain value).

A family of graphs is called scalable if for any n there exists an n-vertex graph in
this family. For example, in [19] the scalable families of sparse graphs (maximum
vertex degree O(log n)) with small number of distinct eigenvalues are considered.
Obviously, sometimes it is difficult to construct scalable families of graphs for a
given property.
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We present a theorem which seems to be of fundamental importance in the study
of the tightness of a graph.

Theorem 1. For any kind of tightness, the number of connected graphs with a
bounded tightness is finite.

Proof. Let t(G) � a for a given positive integer a, where t(G) stands for any kind
of tightness. In all four cases, we shall prove that there exists a number b such that
both diameter D and maximum vertex degree Δ are bounded by b. We need two
auxiliary results from the theory of graph spectra.

Having in view (1) and (2) from the introductory chapter of this publication,
t(G) � a implies

Case t(G) = t1(G). mΔ � a, m � a and Δ � a, D � a − 1, and we can adopt
b = a;

Case t(G) = stt(G). (D + 1)Δ � a, D � a− 1 and Δ � a, here again b = a;

Case t(G) = spt(G). mλ1 � a, m � a and λ1 � a, D � a− 1, and Δ � λ2
1 � a2,

and now b = a2;
Case t(G) = t2(G). (D + 1)λ1 � a, D � a− 1, and Δ � a2, and again b = a2.

It is well known that for the number of vertices n in G the following inequality
holds

(3) n � 1 + Δ +Δ(Δ− 1) + Δ(Δ− 1)2 + · · ·+Δ(Δ− 1)D−1.

To derive this inequality vertices of G are enumerated starting from a particular
vertex and adding maximum number of neighbors at particular distances from that
vertex. Based on this relation and assuming that both D and Δ are bounded by a
number b, we have

n < 1 + Δ +Δ2 +Δ3 + · · ·+ΔD � 1 + Δ+Δ2 +Δ3 + · · ·+Δb

� 1 + b + b2 + b3 + · · ·+ bb.

In such a way we proved that the number of vertices of a connected graph with
a bounded tightness is bounded. Therefore, it is obvious that there can be only
finitely many such graphs and the theorem is proved. �

Corollary 1. The tightness of graphs in any scalable family of graphs is unbounded.

Corollary 2. Any scalable family of graphs contains a sequence of graphs, not
necessarily scalable, with increasing tightness diverging to +∞.

The asymptotic behavior of the tightness, when n tends towards +∞, is of partic-
ular interest in the analysis of multiprocessor interconnection networks. Typically,
in suitable (scalable) families of graphs the tightness values have asymptotic behav-
ior, for example, O(log n) or O(

√
n). Several cases are studied in [6] and reviewed

also here in the next section.
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4. A survey of frequently used interconnection networks

In this section we survey the graphs that are often used to model multiprocessor
interconnection networks and examine the corresponding tightness values. Since
the tightness is a product of two positive quantities, it is necessary for both of
them to have small values to assure a small value of tightness.

1. An example of such a graph is the d-dimensional hypercube Q(d). It consists
of n = 2d vertices, each of them connected with d neighbors. The vertices are
labeled starting from 0 to n− 1 (considered as binary numbers). An edge connects
two vertices with binary number differing in only one bit. For these graphs we have
m = d+ 1, D = d, Δ = d, λ1 = d and all four types of the tightness are equal to
(d+ 1)d = O((log n)2).

Since the connection is fully symmetric, for the diameter we have D(Q(d)) = d.
The 1-, 2- and 3-dimensional hypercubes are illustrated on Fig. 3. �
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Figure 3. The examples of hypercube multiprocessor topologies

2. Another example is butterfly graph B(k) containing n = 2k(k + 1) vertices
(Fig. 4). The vertices of this graph are organized in k + 1 levels (columns) each
containing 2k vertices. In each column, vertices are labelled in the same way (from
0 to 2k − 1). An edge is connecting two vertices if and only if they are in the
consecutive columns i and i + 1 and their numbers are the same or they differ
only in the bit at the i-th position. The maximum vertex degree is Δ = 4 (the
vertices from the two outer columns have degree 2 and the vertices in k − 1 inner
columns all have degree 4). DiameterD equals 2k while the spectrum is given in [19,
Theorem 11]. Therefrom, the largest eigenvalue is λ1 = 4 cos(π/(k+1)). However,
it is not obvious how to determine parameter m. Therefore, we got only the values
stt = 4(2k+1) = O(log n) and t2 = 4(2k+1) cos(π/(k+1)) = O(k) = O(log n). �

Widely used interconnection topologies include some kind of trees, meshes and
toruses [28]. We shall describe these structures in some details.

3. Stars Sn = K1,n−1 are considered as ill-suited topologies in [19], since the
tightness t1(Sn) is large. However stars are widely used in the multiprocessor system
design, the so-called master–slave concept is based on the star graph structure. This
fact may be an indication that the classification of multiprocessor interconnection
networks based on the value for t1 is not always adequate.
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Figure 4. The examples of butterfly multiprocessor topologies

For Sn: m = 3, Δ = n− 1, D = 2, λ1 =
√
n− 1 and we have

t1(Sn) = 3(n− 1),

stt(Sn) = 3(n− 1), spt(Sn) = 3
√
n− 1,

t2(Sn) = 3
√
n− 1.

Stars are only the special case in more general class of bipartite graphs. The main
representative of this class are complete bipartite graphs Kn1,n2 having vertices
divided into two sets and edges connecting each vertex from one set to all vertices
in the other set. For Kn1,n2 we have m = 3, Δ = max{n1, n2}, D = 2, λ1 =

√
n1n2

and hence

t1(Kn1,n2) = stt(Kn1,n2) = 3max{n1, n2},
spt(Kn1,n2) = t2(Kn1,n2) = 3

√
n1n2.

In the case n1 = n2 = n/2 all tightness values are of order O(n). However, for
the star Sn we have t2(Sn) = O(

√
n). This may be the indication that complete

bipartite graphs are suitable for modelling multiprocessor interconnection networks
only in some special cases. �

4. Mesh (or grid) (Fig. 5a) consists of n = n1n2 vertices organized within layers.
We can enumerate vertices with two indices, like the elements of an n1×n2 matrix.
Each vertex is connected to its neighbors (the ones whose one of the indices is
differing from its own by one). The inner vertices have 4 neighbors, the corner
ones only 2, while the outer (but not corner ones) are of degree 3. Therefore,
Δ = 4, D = n1 + n2 − 2. Spectrum is given in [14, p. 74]. In particular, the largest
eigenvalue is λ1 = 2 cos(π/(n1 +1))+ 2 cos(π/(n2 +1)) and for the tightness of the
second type we obtain t2 = (n1 + n2 − 1)(2 cos(π/(n1 + 1)) + 2 cos(π/(n2 + 1))).
Hence, t2 = O(

√
n) if n1 ≈ n2. �



MULTIPROCESSOR INTERCONNECTION NETWORKS 45

�
�
�

�
�
�

�
�
�

�
�
�

a)

�
�
�

�
�
�

�
�
�

�
�
�� �

� �
� �

�

�

�

�

�

�

�

�
b)

Figure 5. a) Mesh of order 3× 4 and b) corresponding torus architecture

5. Torus (Fig. 5b) is obtained if the mesh architecture is closed among both dimen-
sions. We do not distinguish corner or outer vertices any more. The characteristics
of a torus are Δ = 4, D = [n1/2] + [n2/2]. Spectrum is given in [14, p. 75]. In
particular, the largest eigenvalue is λ1 = 2 cos(2π/n1) + 2 cos(2π/n2) and thus
t2 = ([n1/2]+ [n2/2]+1)(2 cos(2π/n1)+2 cos(2π/n2)). As in the previous case (for
mesh) we have t2 = O(

√
n) if n1 ≈ n2. �

All these architectures satisfy both requirements of designing the multiprocessor
topologies (small distance between processors and small number of wires). Those of
them which have a small value for t1 are called well-suited interconnection topologies
in [19]. Other topologies are called ill-suited. Therefore, according to [19], well-
suited and ill-suited topologies are distinguished by the value for the mixed tightness
of the first type t1(G).

The star example suggests that t2(G) is a more appropriate parameter for se-
lecting well-suited interconnection topologies than t1(G). Namely, the classification
based on the tightness t2 seems to be more adequate since it includes stars in the
category of well-suited structures.

The obvious conclusion following from the Hasse diagram given on Fig. 2, is
that the well-suited interconnection network according to the value for t1 remain
well-suited also when t2 is taken into consideration. In this way, some new graphs
become suitable for modelling multiprocessor interconnection networks. Some of
these “new” types of graphs are already recognized by multiprocessor system de-
signers (like stars and bipartite graphs). In the next section we propose a new
family of t2-based well-suited trees.

5. Complete quasi-regular trees

In this section we shall study properties of some trees and show that they are
suitable for our purposes.

The complete quasi-regular tree T (d, k)(d = 2, 3, . . . , k = 1, 2, . . . ) is a tree
consisting of a central vertex and k layers of other vertices, adjacencies of vertices
being defined in the following way.

1. The central vertex (the one on the layer 0) is adjacent to d vertices in the
first layer.
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2. For any i = 1, 2, . . . , k − 1 each vertex in the i-th layer is adjacent to d − 1
vertices in the (i + 1)-th layer (and one in the (i− 1)-th layer).

The graph T (3, 3) is given in Fig. 6.
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Figure 6. Quasi-regular tree T (3, 3)

The graph T (d, k) for d > 2, has n = 1+d((d−1)k−1)/(d−2) vertices, maximum
vertex degree Δ = d, diameter D = 2k and the largest eigenvalue λ1 < d. (The
spectrum of T (d, k) has been determined in [25]). We have k = O(log n) and,
since t2(T (d, k)) = (D + 1)λ1 < (D + 1)Δ = stt(T (d, k)) = (2k + 1)d, we obtain
t2(T (d, k)) = O(log n). This is asymptotically better than in the hypercube Q(d)
case, where t2(Q(d)) = O((log n)2) or in the case for star graph where t2(K1,n−1) =
O(

√
n) (see Section 4). Note that the path Pn with t2(Pn) = 2n cos(π/(n + 1)) =

O(n) also performs worse.
The coefficient of the main term in the expression for t2(T (d, k)) is equal to

d/ log(d− 1) with values of 4.328, 3.641, 3.607, 3.728, 3.907, 4.111, 4.328 and 4.551
for d = 3, 4, 5, 6, 7, 8, 9, 10, respectively. The coefficient is further an increasing
function of d. Therefore the small values of d are desirable and we shall discuss in
details only the case d = 3 since it is suitable for resolving the stability issues. The
other cases with small values for d can be analyzed analogously.

To examine the suitability of graphs T (3, k), we compared its tightness values
with the corresponding ones for two interesting classes of trees: paths Pn and stars
Sn = K1,n−1 containing the same number of vertices n = 3 · 2k − 2. The results
for small values of k are summarized in the Table 1. 5.

Since for paths and quasi-regular trees the mixed tightness of the second type
has almost the same value as the mixed tightness of the first type, we put only the
values for the first type mixed tightness for paths, while for T (n, k) the structural
tightness is given.

The last column (for stars) contains the values for two tightness, first for the
mixed tightness of the first type and then the value for the mixed tightness of the
second type in the parentheses.

As can be seen from the Table 1, the tightness values for paths Pn are significantly
larger than the values stt(T (3, k)). Star architecture seems to be better for small
values of k, but starting from k = 6, we have t2(T (3, k)) < stt(T (3, k)) < t2(Sn).
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Table 1. Tightness values for some trees

k n Pn T (3, k) Sn

t1(� t2) stt(� t2) t1 (t2)

1 4 4 · 2 3 · 3 3 · 3 (3 · √3)

2 10 10 · 2 5 · 3 3 · 9 (3 · √9 = 3 · 3)
3 22 22 · 2 7 · 3 3 · 21 (3 · √21 < 3 · 5)
4 46 46 · 2 9 · 3 3 · 45 (3 · √45 < 3 · 7)
5 94 94 · 2 11 · 3 3 · 93 (3 · √93 < 3 · 10)
6 190 190 · 2 13 · 3 3 · 189 (3 · √189 > 3 · 13)
7 382 382 · 2 15 · 3 3 · 381 (3 · √381 > 3 · 19)

The intention when comparing complete quasi-regular trees T (3, k) with paths
Pn and stars Sn is to examine their place between two kinds of trees, extremal
for many graph invariants. In particular, among all trees with a given number of
vertices, the largest eigenvalue λ1 and maximum vertex degree Δ have minimal
values for the path and maximal for the star, while, just opposite, the number
of distinct eigenvalues m and the diameter D have maximal values for the path
and minimal for the star. Since the tightness (of any type) is a product of two
graph invariants having, in the above sense, opposite behavior it is expected that
its extreme value is attained “somewhere in the middle”. Therefore, for a tree of
special structure (like the quasi-regular trees are) we expect both tendencies to be
in an equilibrium.

It is not difficult to extend the family of complete quasi-regular trees to a scalable
family. A quasi-regular tree is a tree obtained from a complete quasi-regular tree
by deleting some of its vertices of degree 1. If none or all vertices of degree 1
are deleted from a complete quasi-regular tree we obtain again a complete quasi-
regular tree. Hence, a complete quasi-regular tree is also a quasi-regular tree. While
a complete quasi-regular tree is unique for the given number of vertices, there are
several non-isomorphic quasi-regular trees with the same number of vertices which
are not complete. Therefore, there are several ways to construct a scalable family
of quasi-regular trees. The following way is a very natural one.

Consider a complete quasi-regular tree T (d, k) and perform the breadth first
search through the vertex set starting from the central vertex. Adding to T (d, k−1)
pendant vertices of T (d, k) in the order they are traversed in the mentioned breadth
first search defines the desired family of quasi-regular trees.

The constructed family has the property that each its member has the largest
eigenvalue λ1 among all quasi-regular trees with the same number of vertices [34].
At first glance this property is something what we do not want since we are looking
for graphs with the tightness t2 as small as possible. Instead we would prefer,
unlike the breadth first search, to keep adding pendant vertices to T (d, k − 1) in
such a balanced way around that we always get a quasi-regular tree with largest
eigenvalue as small as possible. Such a way of adding vertices is not known and its
finding represents a difficult open problem in the spectral graph theory.
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A scalable family of trees with O((log n)2) distinct eigenvalues has been stud-
ied in [19]. An open question remains to compare the performances of these two
families.

In our context interesting are also fullerene graphs corresponding to carbon
compounds called fullerenes. Mathematically, fullerene graphs are planar regu-
lar graphs of degree 3 having as faces only pentagons and hexagons. It follows
from the Euler theorem for planar graphs that the number of pentagons is exactly
12. Although being planar, fullerene graphs are represented (and this really cor-
responds to actual positions of carbon atoms in a fullerene) in 3-space with its
vertices embedded in a quasi-spherical surface.

A typical fullerene C60 is given in Fig. 7. It can be described also as a truncated
icosahedron and has the shape of a football.

Figure 7. a) Planar and b) 3D visualization of the icosahedral
fullerene C60

Without elaborating details we indicate the relevance of fullerene graphs to our
subject by comparing them with quasi-regular trees.

For a given number of vertices the largest eigenvalues of the two graphs are
roughly equal (equal to 3 in fullerenes and close to 3 in quasi-regular trees) while the
diameters are also comparable. This means that the tightness t2 is approximately
the same in both cases. In particular, the values of relevant invariants for the
fullerene graph C60 are n = 60, D = 9 (see [21]), m = 15 (see [22]), Δ = λ1 = 3.
Hence, stt = t2 = 30. A quasi-regular tree on 60 vertices has diameter D = 9 and
we also get stt = 30.

Note that the tightness t1 is not very small since it is known that fullerene graphs
have a large number of distinct eigenvalues [22].

It is also interesting that fullerene graphs have a nice 3D-representation in which
the coordinates of the positions of vertices can be calculated from the eigenvectors
of the adjacency matrix (the so called topological coordinates which were also used
in producing the atlas [22]).

6. Graphs with small tightness values

In this section we classify graphs with small tightness values. In particular, we
find graphs with tightness values not exceeding a = 9.
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As explained in Introduction, it turned out that the value a = 9 is very suitable:
we established that exactly 69 graphs obey the bound with the number of vertices in
these graphs not exceeding 10 (see [5, 9]). The obtained graphs should be considered
as reasonably good models for multiprocessor interconnection networks. A more
modest task, finding graphs with tightness values not exceeding 8 is solved in [8].

We are interested in the 69 graphs given in Figs. 8–13 under names Ωn,k, where
n (2 � n � 10) denotes the number of vertices and k � 1 (being a counter).

In Appendix, we give in Table 3 some data on these 69 graphs.
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Figure 8. Graphs up to 4 vertices with small tightness
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Figure 9. Graphs on 5 vertices with small tightness
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Figure 10. Graphs on 6 vertices with small tightness
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Figure 11. Graphs on 7 vertices with small tightness
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Figure 12. Graphs on 8 vertices with small tightness
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Figure 13. Graphs on 9 and 10 vertices with small tightness

The main result of [5] is the next theorem. In [5] only a sketch of a proof is
given. The proof is completed in [9].

Theorem 2. The only non-trivial connected graphs G such that t2(G) � 9 are the
69 graphs Ωn,k, depicted on Figs. 8–13.

Proof of Theorem 2. We have the following cases:

a◦: D = 1, λ1 � 4.5. We have complete graphs Ω2,1, Ω3,1, Ω4,3, Ω5,8.
b◦: D = 2, λ1 � 3. Denote the set of graphs satisfying these conditions by

A1. According to (2) from the introductory chapter we have Δ � λ2
1 � 9

and by formula (3) we get n � 1 + 9 + 9 · 8 = 82. For example, the star
Ω10,1 ∈ A1. The set A1 is completely determined in Lemma 2.

c◦: D = 3, λ1 � 2.25. Denote the set of graphs satisfying these conditions by
A2. Now, Δ � 5 since λ2

1 < 6, and we have n � 1 + 5+ 5 · 4 + 5 · 42 = 106.
Graphs belonging to the set A2 are listed in Lemma 3.

d◦: D = 4, λ1 � 1.8. It is easy to see that the only graph in this case is the
path Ω5,12 (see information on Smith graphs in Section 2 of the introductory
chapter).

e◦: D � 5, λ1 � 1.5. There are no graphs satisfying these conditions.

To treat the cases b◦ and c◦ in Lemmas 2 and 3 we need an auxiliary result.
Let R be the set of graphs satisfying the conditions D = 2, Δ = 3.
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Lemma 1. The set R consists of the following 17 graphs: Ω4,1, Ω4,5, Ω4,6, Ω5,4,
Ω5,6, Ω5,11, Ω6,2, Ω6,7, Ω6,9, Ω6,18, Ω6,19, Ω7,2, Ω7,9, Ω7,10, Ω8,6, Ω8,7 and Ω10,2.

Proof. By formula (3) graphs from R have at most 10 vertices. Consider a graph
G ∈ R. It has a vertex v of degree 3. Let f be the number of edges in the subgraph
of G induced by the three neighbours of v. We have the following possibilities:

If f = 3, we have G = Ω4,3 which is excluded since D = 1.
Consider f = 2. Now we start from vertex v and its neighbours and add new

vertices and edges in such a way that conditions D = 2, Δ = 3 are not violated.
We readily get G = Ω4,6, or G = Ω5,11 given on Fig. 9, or G is isomorphic to Ω6,9

from Fig. 10.
In the case f = 1 the obtained graphs up to 7 vertices are presented on Fig. 14.

Finally, we get the graph Ω8,6 from Fig. 12 on n = 8 vertices.
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Figure 14. Some graphs from the set R

If f = 0, we first have complete bipartite graphs Ω4,1, Ω5,4, and Ω6,19, and Ω6,2.
For n = 7 we again come across graph Ω7,2, and the graph Ω7,10. For n = 8 the
graphs Ω8,6, Ω8,7 from Fig. 12 appear. The Petersen graph Ω10,2 on 10 vertices
belongs here. There are no graphs on 9 vertices. �

Lemma 2. The set A1 consists of 52 graphs given below.

n = 3 : Ω3,2;

n = 4 : Ω4,1, Ω4,2, Ω4,6, Ω4,5;

n = 5 : Ω5,1, Ω5,2, Ω5,3, Ω5,4, Ω5,6, Ω5,7, Ω5,9, Ω5,11, Ω5,13, Ω5,15;

n = 6 : Ω6,1, Ω6,2, Ω6,3, Ω6,6, Ω6,7, Ω6,9, Ω6,10, Ω6,11, Ω6,12, Ω6,14,

Ω6,15, Ω6,16, Ω6,18, Ω6,19;

n = 7 : Ω7,1, Ω7,2, Ω7,4, Ω7,5, Ω7,6, Ω7,7, Ω7,9, Ω7,10, Ω7,11, Ω7,13;

Ω7,14, Ω7,15;

n = 8 : Ω8,1, Ω8,2, Ω8,3, Ω8,4, Ω8,5, Ω8,6, Ω8,7;

n = 9 : Ω9,1, Ω9,2;

n = 10 : Ω10,1, Ω10,2 (the Petersen graph).

Proof. We shall first prove that there are no graphs on n > 10 vertices with diameter
2 and index less than or equal to 3.
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Assume to the contrary that G is a graph on n > 10 vertices such that diam(G) =
2 and λ1(G) � 3.

We first claim that Δ(G) � 8. Otherwise, if Δ(G) � 9 then λ1(G) > λ1(SΔ+1) =√
Δ � 3, a contradiction. If δ(G) = 1, let v be a pendant vertex G, and w its

neighbour. Since the eccentricity of v is at most 2, w must be adjacent to all
vertices of G, but then n � 10, a contradiction.

Therefore, we can assume further on that δ(G) > 1 and Δ(G) < 9. Let e be the
number of edges of G. Then,

3 � λ1(G) � 2e

n
= d̄

and the average vertex degree is less than or equal to 3, with equality if and only
if G is regular. If G is 3-regular graph with diameter 2, by (4) G can have at most
1 + 3 + 3 · 2 = 10 vertices, a contradiction.

So the average vertex degree of G is less than 3, and since none of them is of
degree 1, nor all are of degree 3, there exists at least one vertex in G, say u, of
degree 2. Denote with v and w its neighbours. Let the remaining vertices (n − 3
in total) be partitioned as follows: A contains the vertices that are adjacent only
to v; B contains the vertices that are adjacent only to w; C contains the vertices
that are adjacent to both, v and w. If so

|A|+ |C| � 7 and |B|+ |C| � 7.

Since |A|+ |B|+ |C| = n− 3 and n > 10, we have |A| > 0 and |B| > 0.

Let all edges incident to v or w be coloured in blue, while the other edges, non-
incident to v or w (incident only to vertices from A ∪ B ∪ C) be coloured in red.
Let eb and er be the number of blue and red edges in G, respectively. Clearly,
eb � n− 1 + |C|.

We now claim that er � |A| + |B| − 1. To see this, assume first that H =
〈A ∪ B ∪ C〉 (the subgraph induced by the vertex set A ∪ B ∪ C) is connected.
Then, er � |A|+ |B|+ |C| − 1 � |A|+ |B| − 1 and we are done. Let x and y be the
vertices belonging to different components of H . Since G is of diameter 2, there is
a vertex z adjacent to both vertices x and y. Clearly, z 
= u (otherwise, if z = u
then x = v and y = w, a contradiction). If z ∈ A ∪B ∪C, then x and y are not in
different components of H . So z = v or z = w. If z = v then x, y ∈ A ∪C; while if
z = w then x, y ∈ B ∪ C. It follows that all vertices from the sets A and B are in
the same component of H (since x and y cannot belong to A ∪ B), and therefore
er � |A|+ |B| − 1, as required.

Consequently, we have

3n

2
� e = eb + er � (n− 1 + |C|) + (|A|+ |B| − 1) = 2n− 5.

But this is equivalent to n � 10, a contradiction.
Hence, there are no graphs on n > 10 vertices with diameter 2 and index less

than or equal to 3.
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By an exhaustive search of connected graphs up to ten vertices one can verify that
only the 52 graphs, quoted in the statement of the lemma fulfill the requirements.

�

Remark 1. (i) The exhaustive search in [5] was performed by the program nauty.
We used publicly available library of programs nauty [29] to generate all con-

nected graphs with up to 10 vertices. nauty is a program for computing auto-
morphism groups of graphs and digraphs. It can also produce a canonical graph
labelling. nauty is an open source available function library written in a portable
subset of C, and runs on a considerable number of different systems. We used
its functions for generating all connected graphs on a given number of vertices.
The implemented algorithm for generation of graphs is very efficient and provides
a compact representation which is not readable by ordinary users. nauty library
also provides several functions for converting this compact representation into “user
friendly” form.

(ii) Another possibility to find the 52 graphs from Lemma 2 is to use computer
assisted reasoning.

Graphs up to 7 vertices can be found using existing graph tables [15, 16] (up to
6 vertices), [13] (7 vertices).

Using an interactive graph package we follow the effect of adding vertices and
edges to the largest eigenvalue λ1. (We have used the package newGRAPH available
at the address http://www.mi.sanu.ac.rs/newgraph/.)

If Δ = k, then there exists a subgraph in the form of the star Sk+1.
If Δ = 9, the only solution is Ω10,1 = S10, in all other cases λ1 > 3.
If Δ = 8, only one edge can be added and we get Ω9,1 = S9 and Ω9,2. Adding a

vertex yields λ1 > 3.
If Δ = 7, at most two edges can be added and we get Ω8,1 = S8, Ω8,2 and Ω8,5.
If Δ = 6, addition of at most three edges is possible and we get Ω7,1 = S7, Ω7,5,

Ω7,7, Ω7,11, Ω7,15.
If Δ = 5, again by adding at most three edges we get Ω6,1 = S6, Ω6,3, Ω6,6,

Ω6,12, Ω6,15. Now adding vertices in a specific way is possible and we get Ω8,4.
If Δ = 4, we get Ω8,3 and graphs with less than 8 vertices can be found by graph

tables.
The case Δ = 3 is covered by Lemma 1, while the cases Δ < 3 are trivial.

Lemma 3. The set A2 consists of 12 graphs listed below.

n = 4 : Ω4,4; n = 5 : Ω5,5, Ω5,10, Ω5,14;

n = 6 : Ω6,4, Ω6,5, Ω6,8, Ω6,13, Ω6,17; n = 7 : Ω7,3, Ω7,8, Ω7,12.

Proof. By Table 3 given in Appendix the above 12 graphs clearly belong to the set
A2. We shall show that no other graphs H belong to A2.

Maximal degree of H cannot be at least 5 since in this case H would contain S6

with an additional vertex (since D = 3). Such a subgraph would have λ1 > 2.25
which is forbidden.

If Δ = 4, H contains a subgraph isomorphic to S5. We cannot add an edge to
S5, since then we obtain Ω5,3 with λ1 > 2.25 (see Table 3). However, S5 can be



MULTIPROCESSOR INTERCONNECTION NETWORKS 55

extended with new vertices to graphs Ω6,8 and Ω7,8. No other extensions of vertices
and edges are feasible.

Next we have to consider the case Δ � 3. Now formula (3) gives that H can
have at most 10 vertices which completes the proof using Lemma 1. �

This completes the proof of Theorem 2.

Let Gc be the set of connected graphs with at least two vertices. Let us introduce
the following notation:

T a
1 = {G : G ∈ Gc, t1(G) � a}, T a

stt = {G : G ∈ Gc, stt(G) � a},
T a
spt = {G : G ∈ Gc, spt(G) � a}, T a

2 = {G : G ∈ Gc, t2(G) � a}.
It is obvious that T a

1 ⊆ T a
stt ⊆ T a

2 and T a
1 ⊆ T a

spt ⊆ T a
2 because of the partial order

between tightness values given on Fig. 2.
Using Table 3 from Appendix we can immediately verify the following corollaries

of Theorem 2.

Corollary 3. The only non-trivial connected graphs G such that t1(G) � 9 are 14
graphs Ωi,j, where (i, j) is:

(2, 1), (3, 1), (3, 2), (4, j) (j ∈ {1, . . . , 4}),
(5, j) (j ∈ {2, 4, 8}), (6, 4), (6, 19), (7, 3), (10, 2).

Corollary 4. The only non-trivial connected graphs G such that stt(G) � 9 are 27
graphs Ωi,j, where (i, j) is:

(2, 1), (3, 1), (3, 2), (4, j) (j ∈ {1, . . . , 6}), (5, j) (j ∈ {2, 4, 6, 8, 11},
(6, j) (j ∈ {2, 4, 7, 9, 18, 19}), (7, j) (j ∈ {2, 3, 9, 10}), (8, 6), (8, 7), (10, 2).

Corollary 5. The only non-trivial connected graphs G such that spt(G) � 9 are
21 graphs Ωi,j, where (i, j) is:

(2, 1), (3, 1), (3, 2), (4, j) (j ∈ {1, . . . , 5}), (5, j) (j ∈ {1, 2, 4, 8, }),
(6, j) (j ∈ {1, 4, 14, 19}), (7, 1), (7, 3), (8, 1), (10, 2).

Corollaries 1–3 have been proved in [5] in another way.

Remark 2. In fact in [5] we have proved that T 9
2 = Q∪R′∪S′∪V ′, where T 9

1 = Q,
T 9
stt = Q ∪R′, T 9

spt = Q ∪ S′ and |T 9
2 | = 69.

Here we have

Q = {K2,K3,K4,K5, P3, P4, C4, C5, C6, C7,K1,3,K2,3,K3,3, PG},
S′ = {P5,K1,4,K1,5,K1,6,K1,7,K1,8,K1,9},
R′ = {Ω4,5,Ω4,6,Ω5,6,Ω5,11,Ω6,2,Ω6,7,Ω6,9,Ω6,18,Ω7,2,Ω7,9,Ω7,10,Ω8,6,Ω8,7}

and V ′ consists of the remaining 35 graphs. Here, PG denotes the Petersen graph.
We see that the sets Q and S′ (related to tightness t1 and spt) contain only the
standard graphs. When considering stt and t2, the graphs with non-standard names
occur.
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7. Graphs with smallest tightness values

One of the goals in this work is to identify graphs with smallest tightness values
for all four types of tightness.

Based on Corollary 1 of Theorem 2 we are in a position to find the best config-
urations w.r.t. t1 up to 10 vertices.

Theorem 3. Among connected graphs G on n (n � 10) vertices the value t1(G) is
minimal for the following graphs:

K2 for n = 2, C5 for n = 5, C8 for n = 8,

K3 for n = 3, C6 for n = 6, C9 for n = 9,

K4 for n = 4, C7 for n = 7, the Petersen graph for n = 10.

Proof. By Theorem 2, all connected graphs G with t1(G) at most 9 are known.
Among them it is easy to identify graphs with minimal tightness for n � 7 and
n = 10. The cases n = 8, 9 remain. Since m and Δ are both integers, the next
unexamined value for t1 is ten. We easily find that for C8 and C9, having m = 5
and Δ = 2, tightness value t1 = 10. �

In a similar way we can identify extremal graphs for other types of tightness
based on the results presented in the previous section. The obtained graphs are
summarized in Table 2. Together with extremal graphs, the corresponding tightness
values are given in parentheses.

Table 2. Minimal graphs with their tightness values

n t1 stt spt t2
2 K2 (2) K2 (2) K2 (2) K2 (2)
3 K3 (4) K3 (4) K3 (4) K3 (4)
4 K4, C4 (6) K4, C4 (6) S4 (5.196) S4 (5.196)
5 C5 (6) C5 (6) C5, S5 (6) C5, S5 (6)
6 C6 (8) C6 (8) S6 (6.708)) S6 (6.708))
7 C7 (8) C7 (8) S7 (7.348) S7 (7.348)
8 C8 (10) N(8, 6660), N(8, 8469) (9) S8 (7.937) S8 (7.937)
9 C9 (10) C9 (10) S9 (8.485) S9 (8.485)
10 PG (9) PG (9) PG, S10 (9) PG, S10 (9)

Several interesting observations can be made.
For n = 2 and n = 3 complete graphs (in a trivial way) are minimal graphs

for all four types of tightness. Starting from n = 4, tightness spt and t2 start to
suggest stars as best interconnection networks while tightness t1 and stt start to
suggest circuits as the best ones. Surprises come for n = 8 and n = 10.

For n = 8 according to the tightness stt we get two cubic graphs N(8, 6660) and
N(8, 8469) (graphs in which all vertex degrees are equal to 3) of diameter 2. These
graphs break the circuit sequence of minimal graphs for stt. They also represent
the only case (among small graphs) when t1 and stt have different minimal values.
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For n = 10 the Petersen graph (PG) appears in all four cases. It is also a cubic
graph of diameter 2. In addition, it is strongly regular, which means that any
two adjacent vertices have a fixed number (0 in this case) of common neighbors
and any two non-adjacent vertices have a fixed number (1 in this case) of common
neighbors. Such an extraordinary structure is the reason why the Petersen graph
appears frequently in graph theory as example or counterexample in numerous
studies. Here it appears that the Petersen graph should be considered as a very
good multiprocessor interconnection network. It is also remarkable that tightness
t1 and stt cannot be smaller than 10 for n = 9 and that only with one vertex more,
when n = 10 their value can become 9 for the Petersen graph.

However, by tightness spt and t2, the star on 10 vertices is as equally good
topology as the Petersen graph.

The results for spt and t2 perhaps suggest that stars are candidates for optimal
topologies in general. However, such a conclusion is correct only for small graphs.
In [6] it was shown that stars have tightness spt and t2 asymptotically equal to
O(

√
n) while hypercubes have equal values for all four types of tightness with

asymptotical behavior O((log n)2). On the other hand, 3-dimensional hypercube
seems to be less suitable not only than the star S8; N(8, 6660), N(8, 8469), C8 and
some other graphs also have smaller tightness values. Moreover, graphs N(8, 6660)
and N(8, 8469) provide a smaller diameter with the same maximum vertex degree.

The problem of finding graphs with the smallest tightness values for a given
number of vertices remains open in general.
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[6] D. Cvetković and T. Davidović, Application of some graph invariants to the analysis of

multiprocessor interconnection networks, Yugosl. J. Oper. Res. 18(2):173–186, 2008.
[7] D. Cvetković and T. Davidović, Exhaustive search for multiprocessor interconnection net-

works with small tightness value, in: D. Teodorović, editor, Proc. SYM-OP-IS 2008, Soko
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Appendix

The Table 3 given below contains some relevant data about 69 graphs with
second type mixed tightness not exceeding 9.

Graphs are ordered first by n (the number of vertices), and within the groups
with fixed n, by t2. Columns of the table provide graph name, the number of
vertices n, the number of edges e, the name(s) under which the graph appeared in
[5], diameter D, maximum vertex degree Δ, the number of distinct eigenvalues m,
the spectrum starting with the largest eigenvalue λ1. Last four columns contain
the values of the four types of tightness t1, stt, spt, t2.

As “the old names” we used different notation. First we distinguish the well
known graphs such as complete graphs, circuits, stars, complete bipartite graphs,
and so on. For graphs up to 5 vertices we used the notation from [14], while graphs
on n = 6 vertices are marked primarily as in [15]. N(n, j) denotes the j-th graph
on n vertices generated by program nauty. PG denotes the well known Petersen
graph.
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