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Abstract. The energy E = E(G) of a graph G is the sum of the
absolute values of the eigenvalues of G. The motivation for the in-
troduction of this invariant comes from chemistry, where results on
E were obtained already in the 1940’s. A graph G with n vertices is
said to be “hypoenergetic” if E(G) < n. In this chapter we outline
some selected topics from the theory of graph energy. The main part
of this chapter is concerned with the characterization of graphs sat-
isfying the inequalities F(G) < n and E(G) > n, that, respectively,
are "hypoenergetic” and “non-hypoenergetic”.
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1. Introduction: the chemical connection

Researches on what we call the energy of a graph can be traced back to the 1940s
or even to the 1930s. In the 1930s the German scholar Erich Hiickel put forward a
method for finding approximate solutions of the Schrédinger equation of a class of
organic molecules, the so-called “unsaturated conjugated hydrocarbons”. Details
of this approach, often referred to as the “Hiickel molecular orbital (HMO) theory”
can be found in appropriate textbooks [1, 2, 3].

The Schrédinger equation (or, more precisely: the time-independent Schrédinger
equation) is a second-order partial differential equation of of the form

(1) HU =V

where VU is the so-called wave function of the system considered, H the so-called
Hamiltonian operator of the system considered, and £ the energy of the system
considered. When applied to a particular molecule, the Schrédinger equation en-
ables one to describe the behavior of the electrons in this molecule and to establish
their energies. For this one needs to solve Eq. (1), which evidently is an eigenvalue—
eigenvector problem of the Hamiltonian operator. In order that the solution of (1)
be feasible (yet not completely exact), one needs to express ¥ as a linear combina-
tion of a finite number of pertinently chosen basis functions. If so, then Eq. (1) is
converted into:

HUV=FVv

where now H is a matrix - the so-called Hamiltonian matrix.
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The HMO model enables to approximately describe the behavior of the so-called
m-electrons in an unsaturated conjugated molecule, especially of conjugated hydro-
carbons. In Fig. 1 is depicted the chemical formula of biphenylene — a typical con-
jugated hydrocarbon H. It contains n = 12 carbon atoms over which the n = 12
m-electrons form waves.

i A , 7
C C 2 12
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FIGURE 1. Biphenylene H is a typical unsaturated conjugated hy-
drocarbon. Its carbon—atom skeleton is represented by the molec-
ular graph GG. The carbon atoms in the chemical formula H and
the vertices of the graph G are labelled by 1,2,...,12 so as to be
in harmony with Egs. (2) and (3).

In the HMO model the wave functions of a conjugated hydrocarbon with n
carbon atoms are expanded in an n-dimensional space of orthogonal basis functions,
whereas the Hamiltonian matrix is a square matrix of order n, defined so that:

a, ifi=j
[H];; = < 8, if the atoms i and j are chemically bonded
0, if there is no chemical bond between the atoms ¢ and j.
The parameters o and (§ are assumed to be constants, equal for all conjugated
molecules. Their physical nature and numerical value are irrelevant for the present

considerations; for details see in [1, 2, 3].
For instance, the HMO Hamiltonian matrix of biphenylene is:

« B0 0 0 B8 000 O0O0 0
B a B 00 O0O0O0O0O0O0 B8
0B a B 0 O0O0O0O0O0 3 0
00 B a B 0OO0O0O0O030
000 B a B 00000 0
30008 a«a 000000
2) H=1000000aa 8000 3
00 00O0O0S Ba B 000
0000 O0O0TO0S B alp 00
0000 O0O0TO OO0 B aljo
00300000023 alyp
0 800005 00 0 8 af
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which can be written also as

3)

100000000000 010001000000
010000000000 101000000001
001000000000 010100000010
000100000000 001010000010
000010000000 000101000000
g (000001000000 5100010000000
000000100000 000000010001
000000010000 000000101000
000000001000 000000010100
000000000100 000000001010
000000000010 001000000101
000000000001 01000010001 0]

The first matrix on the right-hand side of Eq. (3) is just the unit matrix of order
n = 12, whereas the second matrix can be understood as the adjacency matrix of a
graph on n = 12 vertices. This graph is also depicted in Fig. 1, and in an evident
manner corresponds to the underlying molecule (in our example: to biphenylene).

From the above example it is evident that also in the general case within the
HMO model one needs to solve the eigenvalue—eigenvector problem of an approxi-
mate Hamiltonian matrix of the form

(4) H=ol, +5A(G)

where o and [ are certain constants, I,, is the unit-matrix of order n, and A(G)
is the adjacency matrix of a particular graph G on n vertices, that corresponds to
the carbon-atom skeleton of the underlying conjugated molecule.

As a curiosity we mention that neither Hiickel himself nor the scientists who
did early research in HMO theory were aware of the identity (4), which was first
noticed only in 1956 [4].

As a consequence of (4), the energy levels E; of the m-electrons are related to the
eigenvalues A; of the graph G by the simple relation E; = a+8A;; 7 =1,2,...,n.

In addition, the molecular orbitals, describing how the m-electrons move within
the molecule, coincide with the eigenvectors 1; of the graph G.

In the HMO approximation, the total energy of all m-electrons is given by

n
Er=> g;E;
j=1

where g; is the so-called “occupation number”, the number of 7-electrons that move
in accordance with the molecular orbital ¢;. By a general physical law, g; may
assume only the values 0, 1, or 2.

Details on F, and the way in which the molecular graph G is constructed can be
found in the books [5, 6, 7] and reviews [8, 9, 10]. There also more information on
the chemical applications of E, can be found. For what follows, it is only important
that because the number of 7-electrons in the conjugated hydrocarbon considered
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is equal to n, it must be g1 + g2 + - - - + g, = n which immediately implies

n
Eﬁzozn—l—ﬁz:gj)\j.

Jj=1

In view of the fact that o and (3 are constants, and that in chemical applications n
is also a constant, the only non-trivial part in the above expression is

(5) E=Y g .
j=1

The right-hand side of Eq. (5) is just what in the chemical literature is referred to
as “total m-electron energy”; if necessary, then one says “total mw-electron energy in
[-units”.

If the m-electron energy levels are labelled in a non-decreasing order: Fy < Fo <
-+ < FE, then the requirement that the total m-electron energy be as low as possible
is achieved if for even n,

)2, forj=1,2,...,n/2
T7Y0, forj=n/2+1,n/242,....n

whereas for odd n,

2, forj=1,2,...,(n—1)/2
g =41, forj=(n+1)/2
0, forj=mn+1)/2+1,(n+1)/242,...,n.

For the majority (but not all!) chemically relevant cases,

)2, whenever A; >0
9= 0, whenever \; <O0.

If so, then Eq. (5) becomes: £ = E(G) =2 >, A; where ), indicates summation
over positive eigenvalues. Because for all graphs, the sum of eigenvalues is equal to
zero, we can rewrite the above equality as

(6) E=E@G) =) I\l
j=1

2. The energy of a graph

In the 1970s one of the present authors noticed that practically all results that
until then were obtained for the total m-electron energy, in particular those in the
papers [11, 12, 13, 14], tacitly assume the validity of Eq. (6) and, in turn, are not
restricted to the molecular graphs encountered in the HMO theory, but hold for all
graphs. This observation motivated one of the present authors to put forward [15]
the following
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Definition 1. If G is a graph on n vertices, and A1, g, ..., A, are its eigenvalues,
then the energy of G is

(7 E=E(G)= YAl

The difference between Eq. (6) and Definition 1 is that Eq. (6) has a chemical
interpretation and therefore the graph G in it must satisfy several chemistry-based
conditions (e.g., the maximum vertex degree of G must not exceed 3). On the other
hand, the graph energy is defined for all graphs and mathematicians may study it
without being restricted by any chemistry-caused limitation.

Initially, the graph-energy concept did not attract any attention of mathemati-
cians, but somewhere around the turn of the century they did realize its value, and
a vigorous and world-wide mathematical research of E started. The current activ-
ities on the mathematical studies of E are remarkable: According to our records,
in the year 2006 the number of published papers was 11. In 2007 this number
increased to 28. In 2008 (until mid October!) already 42 papers on graph energy
were published.

Details on graph energy can be found in the reviews [16, 17] and in the references
cited therein. A regularly updated bibliography on graph energy (covering only the
21st century) is available at the web site http://www.sgt.pep.ufrj.br/.

In this chapter we are going to outline only a single aspect of the theory of graph
energy, namely the results pertaining the condition E(G) < n.

3. Hypoenergetic graphs
Definition 2. A graph G on n vertices is said to be hypoenergetic if

(8) EG)<n.
Graphs for which
(9) EG)=n

are said to be non-hypoenergetic.

In the chemical literature it has been noticed long time ago that for the vast ma-
jority of (molecular) graphs the energy exceeds the number of vertices. In 1973 the
theoretical chemists England and Ruedenberg published a paper [18] in which they
asked “why is the delocalization energy negative?”. Translated into the language of
graph spectral theory, their question reads: “why does the graph energy exceed the
number of vertices?”, understanding that the graph in question is “molecular”.

Recall that in connection with the chemical applications of E, a “molecular
graph” means a connected graph in which there are no vertices of degree greater
than three [6]. The authors of [18] were, indeed, quite close to the truth. Today
we know that only five such graphs violate the relation (9), see below.

On the other hand, there are large classes of graphs for which the condition (9)
is satisfied. We first mention three elementary results of this kind.
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Theorem 3.1. If the graph G is non-singular (i.e., no eigenvalue of G is equal to
zero), then G is non-hypoenergetic.

Proof. By the inequality between the arithmetic and geometric means,

n 1/n
1 1/n
e > (J! w) |det A(G))

The determinant of the adjacency matrix is necessarily an integer. Because G is
non-singular, | det A(G)| > 1. Therefore, also | det A(G)[*/™ > 1, implying (9). O

Theorem 3.2. If G is a graph with n vertices and m edges, and if m > n?/4, then
G is non-hypoenergetic.

Proof. Tt is known [19] that for all graphs, E > 2y/m. Theorem 3.2 follows from
2/m > n. |

Theorem 3.3. [20] If the graph G is regular of any non-zero degree, then G is
non-hypoenergetic.

Proof. Let A1 be the greatest graph eigenvalue. Then A; |A;| > A? holds for i =
1,2,...,n, which summed over all 4, yields E > 2m/A;. For a regular graph of
degree 7, A1 =71 and 2m = nr. O

In the case of regular graphs, the equality F(G) = n is attained if and only if G
consists of a copies of the complete bipartite graph Kj p, where a > 1 and n = 2ab.

Without proof we state here a few other, recently obtained, results related to
the inequalities (8 and (9).

Theorem 3.4. [21] For almost all graphs E(G) = [4/(37) + O(1)] n®/? and there-
fore almost all graphs are non-hypoenergetic.

Theorem 3.5. [22] All hexagonal systems are non-hypoenergetic.

Theorem 3.6. [23, 24, 25] Denote by A = A(G) the mazimum vertex degree of
the graph G.

(a) Among trees with A < 3, there are exactly four hypoenergetic species, depicted
in Fig. 2.

(b) Among trees with A = 4, there are infinitely many hypoenergetic species.
The same holds also if A > 4.

(¢c) Among connected quadrangle-free graphs with A < 3, exactly those four de-
picted in Fig. 2, are hypoenergetic.

Conjecture 3.7. K3 is the only hypoenergetic connected quadrangle-containing
graph with A < 3. There are exactly four connected graphs with A < 3 for which
the equality E(G) = n holds; these are depicted in Fig. 2.

In connection with Theorem 3.6 it must be mentioned that if the maximum
vertex degree (A) is sufficiently large, then it is not difficult to find hypoenergetic
graphs. For instance, the n-vertex star (with A = n—1) is hypoenergetic for all n >
3. In view of this, the recently reported result [26] that there exist hypoenergetic
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FIGURE 2. G1,G2,Gs, Gy are the only hypoenergetic trees with
maximum vertex degree A not exceeding 3 [23, 24, 25]. It is
conjectured that Gs = K3 3 is the only hypoenergetic connected
cyclic graph with A < 3. It is also conjectured that Gg, G7,Gs, Gg
are the only connected graphs with A < 3, having the property
E(GQ) =n.

connected unicyclic graphs for all n > 7 and hypoenergetic connected bicyclic
graphs for all n > 8 is no surprise whatsoever.

By Theorem 3.3, the problem considered in this chapter has been completely
solved for regular graphs [20]. Hexagonal systems (mentioned in Theorem 3.5)
have vertex degrees equal to 2 and 3, and therefore belong to a special class of
biregular graphs. From the proof of Theorem 3.5 [22] it can be seen that also
other types of biregular graphs have the same property, i.e., satisfy inequality (9).
Work along these lines has recently been extended [27, 28, 29]. In what follows
we report our researches on biregular and triregular graphs in due detail. These
considerations may be of particular value for beginners in the field. Namely, these
show how by means of relatively elementary graph-theoretic and algebraic reasoning
one can obtain not quite trivial results on graph energy.

4. A lower bound for energy and its applications

In this section we obtain a lower bound for graph energy, which will be needed in
the subsequent considerations. Our starting point is the Cauchy—Schwarz inequality

n n n
Zﬂ?i Yi < Z(%)Q Z(yi)Q
i=1 i=1 i=1
which holds for any real numbers z;,y;, i = 1,2,...,n. Setting z; = |\;|"/? and

yi = |\il*/?, we get

i=1 i=
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By another application of the Cauchy—Schwarz inequality,

(Ao)*

n n
=1

ST =TI )7 < (D)2
i=1 i=1 i=1 3

which substituted back into the previous inequality yields

(10) <Z()\i)2> < (Z |)‘i|> D2 ().
i=1 i=1 i=1 i=1
The k-th spectral moment of a graph G with eigenvalues A1, Ay ..., A, is
My = Mi(G) =Y _(A)" .
i=1
In view of this and the definition of graph energy, Eq. (7), the inequality (10) can
be rewritten as

(11) E > My~/My/My .

The lover bound (11) was independently discovered several times: two times
for general graphs [30, 31] and two times for bipartite graphs [32, 33]. Recently a
generalized version thereof was obtained [34].

The importance of the bound (11) lies in the fact that the structure-dependency
of the spectral moments My and My is well known. If G is a graph with n vertices

and m edges, if its vertex degrees are d1, do, . . ., d,,, and if it possesses ¢ quadrangles,
then
(12) My (G) =2m
n
(13) My(G) =2 (d:)* — 2m + 8.
i=1

Combining (11), (13), and (12), we arrive at:

Theorem 4.1. Let G be a graph with n vertices and m edges, possessing q quad-
rangles, and let dy,ds,...,d, be its vertex degrees. If the condition

Mo(G 2m

is obeyed, then G is non-hypoenergetic.

The application of Theorem 4.1 will be the basis for all the considerations that
follow. Therefore it should be always kept in mind that condition (14) is a sufficient,
but not a necessary condition for the validity of the inequality (9).

5. On the energy of biregular graphs

Let a and b be integers, 1 < a < b. A graph is said to be (a, b)-biregular if the
degrees of its vertices assume exactly two different values: a and b. A few examples
of biregular graphs are shown in Fig. 3.
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FIGURE 3. Examples of biregular graphs: a (1,2)-biregular tree
(the 3-vertex path), a (1,6)-biregular tree (the 7-vertex star), a
(3,4)-biregular graph, and a (2,3)-biregular graph (a hexagonal
system).

5.1. Biregular trees. Let T be an (a,b)-biregular tree. Since trees necessarily
possess vertices of degree 1 (pendent vertices), it must bea=1and 1 <b<n—1,
where n is the number of vertices. This tree has at least 3 vertices and m =n —1
edges. With k& we denote the number of pendent vertices. (Condition n > 3 is clear
since the smallest biregular tree has exactly 3 vertices. See Fig. 3.)

From now on we will search for necessary and sufficient conditions under which
the inequality (14) holds.

For trees, of course, ¢ = 0. We begin with the equalities

(15) k+ny=n
and
(16) 1-k4+b-np=2m=2(n-1),
where ny, is the number of vertices of T' of degree b. From (15) and (16) we have
24+n(b-2 n—2
b= %; =
Further,
if;d?— 12k 4+ b2y = 2+b”£b1_2) b27;_12 n(b+2)—2(b+1) .
By Egs. (13) and (12), for a biregular tree T' we have
(17) My =2(n—-1)
and

(18) My=2nb+2)-20b+1)]—-2(n—-1)=2bn—-2)+2(n—1) .
Substituting the expressions (17) and (18) back into (14) we get

Aln — 1)
(19) \/b(n—2)+(n—1) Zn

From (19) we obtain

3nd —11n? +12n — 4
n2(n —2)

b<
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or simplified

3n2 —5n+2

(20) b< .

n
Bearing in mind that b > 2, the right-hand side of the latter inequality must be at
least 2, so n > 5. If we examine the function

322 — 5+ 2
fla) =" fi 400> R
and its first derivative 5 A
/ _ T —
fllo)=—3—

we will see that f(x) > 0 Vx € [5,400), so f is a monotonically increasing
function. Further, upper bound for f is 3 because lim,_, ;o f(2) = 3, and lower
bound for f is f(5) = 52/25 = 2.08.

Inequality (20) holds if and only if b = 2 and n > 5. We have the following:

Theorem 5.1. Let T be a (1,b)-biregular tree with n vertices. Then (14) holds if
and only if b=2 andn > 5.

Note that according to Theorem 5.1 the only biregular trees that satisfy condition
(14) are the paths with at least 5 vertices.

5.2. Unicyclic biregular graphs. For connected unicyclic (a, b)-biregular graphs
we have m =n, a = 1, and b > 3. Further, My = 2n whereas M, we obtain in the
following way. We have k +np =n and 1-k + b - n, = 2n, from which

~ n(b—2) . on
S LT
and
- 2 _ 12 2 _n(b-2) 2 N
dDodi =1k by = b =n(b+2)

i=1
It follows that My =231  d? —2n+8q =2n(b+2) — 2n+ 8¢ = 2n(b+1) + 8¢ .

Now, the inequality (14) becomes

8n3 <
on(1+0)+8¢°

and we obtain b < 3 — 4¢g/n. Because the graph G is unicyclic, the number of
quadrangles ¢ can be either 0 or 1. For ¢ = 0 we obtain b < 3, and with condition
b > 3 we conclude b = 3. For ¢ = 1 we obtain b < 3 —4/n. Considering that n > 8
(the smallest unicyclic biregular graph with ¢ = 1 has exactly 8 vertices) we obtain
b < 3. We conclude that there is no unicyclic biregular graph with ¢ = 1, for which
the inequality (14) holds.

Theorem 5.2. Let G be a connected unicyclic (a,b)-biregular graph with n vertices.
Then (14) holds if and only if a =1, b= 3, and ¢ = 0.

A few examples of biregular graphs that satisfy Theorem 5.2 are shown in Fig. 4.
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FIGURE 4. Examples of connected quadrangle-free (1,3)-biregular

unicyclic graphs.
5.3. Bicyclic biregular graphs. For bicyclic (a, b)-biregular graphs we have m =
n+ 1 and the inequality (14) becomes

4(n+1)3
Zn.
(2a42b—1)(n+1) — abn + 4q

(21)
There are three possible cases (cf. Fig. 5):
(a) the cycles are disjoint (they have no common vertices),
(b) the cycles have a single common vertex
(c) the cycles have two or more common vertices.
//’ \\\ //’ \\\ e N e N ’/»‘ ~‘./¢ .\‘
/ \ / \ / \ \ » I \
1 e---8 1 ! 1 ' 1 '
\ ] \ 1 \ n 1 \\ 1 /‘
\\ /// \\ /// \\\ /// \\\ /// . "\\ ’//
() ()

F1cURE 5. Types of bicyclic graphs.
5.3.1. Biregular bicyclic graphs with disjoint cycles. If we have a bicyclic

(a, b)-biregular graph with disjoint cycles, then there are two types of such graphs

with a =1, b > 3, and with a = 2, b = 3, see Fig. 6.
If a =1 and b > 3, then inequality (21) becomes

4(n+1)3 .
b(n+2)+n+1+4q "

from which
3nd + (11 — 4¢)n? + 12 4
(22) b < n° + ( q)n® +12n + .
n3 + 2n?
For ¢ = 0 we obtain
3nd +11n?2 +12n+4
b < -
n3 + 2n?2
or simplified
2
b< 3n°+on+2 .
n2

(23)
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FIGURE 6. Sketches of (1,b)-, and (2, 3)-biregular bicyclic graphs
with disjoint cycles. The vertices that connect cycles in a (1,b)-
biregular graph (b > 3) are connected also with b — 3 pendent
vertices, whereas all other vertices in such a graph are connected
with b — 2 pendent vertices. In a (2, 3)-biregular graph there are
only two vertices of degree 3, those that connect cycles, while every
other vertex is of degree 2.

For b > 3, the right-hand side of the latter inequality must be at least 3. Another
condition is n > 10, since the smallest bicyclic (1,b)-biregular graph with disjoint
cycles has exactly 10 vertices.

If we examine the function

322 4+ 5z + 2
fla)= ————

2 Y
and its first derivative f'(x) = —(5z +4)/2® we conclude that f'(z) < 0, Vx €
[10,4+00). Thus f is a monotonically decreasing function. The lower bound for f is
3 because lim,_, 4 f(z) = 3, and the upper bound for f is f(10) = 88/25 = 3.52.
We conclude that it must be b = 3.
For ¢ = 1 we have

. f:[10,4+00) = R

3n2+ T2+ 12n+4
24 b <
(24) n3 + 2n?2

Analogously, and by taking into account that n > 12 we conclude that b = 3.
For ¢ = 2 we have

3n3 +3n? +12n+4
P b<
(25) n3 + 2n?
For n > 14 the right-hand side of the inequality (25) is less than 3 and thus there
is no bicyclic (1, b)-biregular graph with ¢ = 2, such that the inequality (14) holds.
For bicyclic (2, 3)-biregular graphs we have

3
4n+1) >n
3n+944q
which implies n3 + (3 — 4¢q)n? + 12n +4 > 0.
For ¢ =0, 1,2 we have
n®+3n2+12n+4 >0,
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n®—n?+12n+4>0,
n® —5n% +12n+4> 0

respectively. Fach of these three inequalities holds for arbitrary n € N.

Theorem 5.3. Let G be a connected bicyclic (a,b)-biregular graph with disjoint
cycles and let n be the number of its vertices. Then the inequality (14) holds if and
only if eithera=1,0=3,¢q=0o0ra=1,b=3,g=10ra=2,b=3.

Some of the graphs satisfying the Theorem 5.3 are depicted in Fig. 7.

AAL LAY

ZANIVANEVANE B B S

FIGURE 7. Connected bicyclic (1, 3)-biregular graphs with disjoint
cycles, with ¢ = 0 and ¢ = 1, and bicyclic (2, 3)-biregular graphs
with disjoint cycles, with ¢ = 0, ¢ = 1, ¢ = 2. In all these examples
the number of vertices is as small as possible.

5.3.2. Biregular bicyclic graphs whose cycles have a common vertex. If
in a bicyclic (a,b)-biregular graph, the cycles share one common vertex, then we
have two types of such graphs: with a =1, b > 4, and with a = 2, b = 4, see Fig. 8.
For the first type of such graphs, the inequalities (23), (24), and (25) together
with the condition b > 4 are not fulfilled.
For bicyclic (2, 4)-biregular graphs we have

A(n + 1)3
In+1144q° "

which is equivalent to n® + (1 — 4¢)n? + 12n +4 > 0. Taking ¢ = 0, 1, 2, we obtain
inequalities that are satisfied for arbitrary n € N. This implies:

Theorem 5.4. Let G be a connected bicyclic (a,b)-biregular graph with n vertices
in which the cycles share a single common vertex. Then condition (14) is obeyed if
and only if a =2 and b = 4.

A few examples graphs specified in Theorem 5.4 are shown in Fig. 9.
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FIGURE 8. Connected bicyclic (1,b > 4)- and (2,4)-biregular
graph in which cycles have one common vertex. For the (1,b)-
biregular graph, b > 4, every vertex except the one belonging to
both cycles is connected with b — 2 pendent vertices. The vertex
belonging to both cycles is connected with b — 4 pendent vertices.
So, every vertex belonging to the cycles has degree b. In the (2,4)-
biregular graphs there are no pendent vertices, so there is only one
(common) vertex of degree 4 and every other vertex is of degree 2.

AN S My

FIGURE 9. Bicyclic (2,4)-biregular graphs in which the cycles have
one common vertex, with ¢ = 0, 1,2 quadrangles. In these exam-
ples the number of vertices is as small as possible.

5.3.3. Biregular bicyclic graphs whose cycles have several common ver-
tices. If the cycles of a bicyclic (a, b)-biregular graph posses two or more common
vertices, then we have two types of such graphs: with a = 1, b > 3, and with a = 2,
b = 3, see Fig. 10.

For the graphs depicted in Fig. 10 we obtain the same results as for bicyclic
graphs with disjoint cycles, but we must add the case when ¢ = 3 because there
exists a unique bicyclic biregular graph in which the number of quadrangles is
exactly 3. This is the complete bipartite graph on 2 + 3 vertices, K> 3, shown in
Fig. 11. From (22) for b = 3, we get the inequality —7n3 + 12n + 4 > 0 that is not
fulfilled for n = 5.

Theorem 5.5. Let G be a connected bicyclic (a,b)-biregular graph with n vertices,
whose cycles have two or more common vertices. Then inequality (14) holds if and
onlyifa=1,6=3,¢q=0,10ra=2,b=3,¢q=0,1,2.

Examples of graphs for which Theorem 5.5 holds are shown in Fig. 12.
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FIGURE 10. Connected bicyclic (1,b > 3)- and (2,3)-biregular
graphs in which the cycles have two or more common vertices.
Notice that the graphs of first type have only two common ver-
tices, whereas the graphs of the second type can have arbitrarily
many common vertices (but more than one, of course).

FI1GURE 11. The only bicyclic biregular graph in which the number
of quadrangles ¢ is 3. For this graph inequality (14) is violated.

e e

>

FIGURE 12. Bicyclic (1, 3)-biregular graphs in which cycles have
two common vertices and ¢ = 0,1, and bicyclic (2, 3)-biregular
graphs with ¢ = 0,1, 2.

6. On the energy of triregular graphs

6.1. Triregular graphs. Let x, a, and b be integers, 1 < < a < b. A graph is
said to be (z, a, b)-triregular if its vertices assume exactly three different values: x,
a, and b. A few examples of triregular graphs are shown in Fig. 13.
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Ficure 13. (1,2,3)-, (1,2,5)-, (2,3,4)-, and (2,3,5)-triregular
graph, respectively.

As we did for biregular graphs, we will investigate the validity of the inequality
(14) for triregular trees and connected triregular unicyclic and bicyclic graphs.
For a connected (z, a, b)-triregular graph with n vertices and m edges we have

(26) Ng +MNg +1Mp =0
and
(27) TNg + ang + bny = 2m

where n, is the number of vertices of degree x, n, is the number of vertices of
degree a and ny, is the number of vertices of degree b. From (26) and (27) follows

(28) Ny = nx(a?—bltgm—Zm) : np = nx(a—xzj:ian—Zm) .

Again, by d; we denote the degree of i-th vertex. Then

n
de:x2-ng¢+a2-na+62-nb

i=1

which combined with Eqgs. (28) yields
Zd? =ng(a—z)(b—1x)+ 2m(a+0b) —abn .

From this,

My =2[ng(a—2)(b—x) + 2m(a+b) — abn] — 2m + 8¢
=2[nz(a—z)(b—x) + m(2a +2b—1) — abn + 4q| .

Together with My = 2m, inequality (14) becomes

4m3 S
ng(a—x)(b—z)+m2a+2b—1)—abn+4q ~ "

from which
4m3 + n2labn — 4q — m(2a + 2b — 1)]
n?(a —x)(b — x)

(29) Ng <
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Theorem 6.1. Let G be connected (x,a,b)-trireqgular graph with n vertices and m
edges. Let n, be the number of vertices of degree x. Then inequality (14) holds if
and only if
. 4m3 + n2labn — 4q — m(2a + 2b — 1)]
Ne X
n?(a —x)(b —x)
6.2. Triregular trees. Let T be a triregular n-vertex tree with vertex degrees 1,
a,and b, 1 <a <b<n—2. Then n > 5 and the number of edges is m =n — 1.
Condition n > 5 is necessary because the smallest triregular tree has 5 vertices,
a =2 and b = 3, see Fig. 13.
Now, by applying Theorem 1.1 we get
5+ ab— 2a — 2b)n® + (2a + 2b — 13)n? + 12n — 4
n2(a—1)(b—1)
and since for every triregular tree ny > a+b—2, the right-hand side of the inequality
must be greater than a 4+ b — 2. Thus, we require
5+ ab—2a — 2b)n® + (2a + 2b — 13)n* 4+ 12n — 4
5+a a n? 4+ (2a + n*+12n Sa4b_2.
n2(a—1)(b—1)

For (1,2, 3)-triregular tree the relation (30) yields

n3—3n2+12n—4

2n?

which implies n3 — 9n? + 12n — 4 > 0 and this inequality holds for every n > 8.

nlg(

(30)

>3

=

Theorem 6.2. Let T be a (1,a,b)-triregular tree, 1 < a < b, and let n be the
number of its vertices. Then relations (14) holds if and only if
(54 ab — 2a — 2b)n> + (2a + 2b — 13)n? + 12n — 4
n2(a—1)(b—1)

Za+b—2.

Corollary 6.3. Let T be a (1,2, 3)-triregular tree and let n be the number of its
vertices. Then (14) holds if and only if n > 8.

The next figure shows all (1,2,3)-triregular trees with n < 8. According to
Corollary 6.3, these trees do not satisfy inequality (14).

D G S
D 0 U GV S,

FIGURE 14. (1,2, 3)-triregular trees not satisfying inequality (14).

As another example, if we consider (1,3, 4)-triregular trees, then from (30) we
obtain 3n3 —29n2 +12n—4 > 0, and this holds for n > 10. Since the smallest such
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FIGURE 15. (1,2,4)-triregular trees not satisfying inequality (14).

tree has exactly 7 vertices, we conclude that inequality (14) is not true for such
trees with n = 7,9, which are depicted in Fig. 15.

In the same way for (1,3, 5)-triregular trees we will have 4n3 —45n2+12n—4 > 0,
which holds for n > 11. We conclude that (14) is violated for such tree with
n = §, 10, see Fig. 16.

sanlieanaliies an

FIGURE 16. (1,3, 5)-triregular trees not satisfying inequality (14).

In the case of (1,4,5)-, (1,4,6)-, (1,4,7)-, and (1,5 6) triregular trees, the anal-
ogous conditions under which (14) holds are n > 12, n > 13, n > 14, and n > 14,
respectively.

6.3. Triregular unicyclic graphs. For unicyclic (z,a, b)-triregular graph it must
be x = 1, m = n and the number of quadrangles ¢ is either 0 or 1.
Inequality (29) together with conditions m = n and z = 1 yields
5 b—2a—2b) —
< n(b+a a )
(a—1)(b-1)
Now, in order to proceed, we will need a lower bound for n; in any unicyclic
triregular graph:

Lemma 6.4. Let G be a unicyclic (1,a,b)-triregular graph with n vertices and ny
pendent vertices. Then ny > b — a+ N(a — 2), where N is the size (= number of
vertices) of the (unique) cycle of G.

Notice that for a = 2 the lower bound for n; does not depend on N. We then
have n1 > b — 2.

Proof. Consider first the case a = 2, b > 3. We construct a graph specified in
Lemma 6.4 with minimal number of pendent vertices. Start with the N-vertex
cycle, in which each vertex is of degree 2 as shown in Fig. 17a. Choose only one
vertex in the cycle and connect it with b — 2 vertices, each of degree 1 as shown
in Fig. 17b. By this we obtain a unicyclic (1,2, b)-triregular graph with minimal
number of pendent vertices, equal to b — 2.

For a > 2, to each vertex in a cycle we must add another a — 2 pendent vertices,
so at the moment we have N (a —2) pendent vertices and each vertex of the cycle is
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(@)

FI1GURE 17. Details related to the proof of Lemma 6.4 for a = 2.

of degree a, see Fig. 18a. Then we choose only one vertex of the cycle and connect
it with additional b — a pendent vertices. This vertex is of degree b and any other
vertex of the cycle is of degree a as shown in Fig. 18b. By this we constructed a

graph with minimal number of pendent vertices, equal to b — a + N(a — 2). O
12 a-2 12 a2 12 ba
AN 1 1 AT 1
; / \ 2 2 f>/ \‘é 2
a-2 N /// a-2 ey \\\ /// a2
(a) (b)

FIGURE 18. Details related to the proof of Lemma 6.4 for a > 2.

For ¢ = 0 we have
n(5+ ab — 2a — 2b)

(a—1)(b-1)

n x
and from Lemma 6.4 it follows

n(5 + ab — 2a — 2b)
(a—1)(b—1)

>b—a+N@a—2), N#4

that is
(a—1)(b-1)
(5+ab—2a—2b)

n>[b—a+ N(a—2)

Theorem 6.5. Let G be an n-vertex unicyclic (1,a,b)-trireqular graph, 2 < a < b.
Let G be quadrangle-free and its cycle be of size N, N # 4. Then inequality (14)
holds if and only if

n=b—a+ N(a—2)] (5(—? ;bl—)(;a_—l)%) .




HYPOENERGETIC GRAPHS 85

Corollary 6.6. Let G be an n-vertex unicyclic (1,2,b)-trireqular graph, b > 3. Let
G be quadrangle-free and its cycle be of size N, N # 4. Then inequality (14) holds
if and only if n = (b—1)(b—2).

For example, for a (1,2,4)-triregular unicyclic graph with n = 5 this inequality
does not hold, but it is true for every unicyclic quadrangle-free (1,2,3)-triregular
graph, see Fig. 19.

o

(@) (b) () (d)

FIGURE 19. Diagram (a) represents the unique unicyclic
quadrangle-free (1,2,4)-triregular graph for which inequality (14)
does not hold. Diagrams (b), (c), and (d) pertain to the smallest
unicyclic (1,2, 3)-triregular graphs with N = 3,5, 6, respectively.

For ¢ = 1 we have
n(5+ ab — 2a — 2b) — 4
@-D-1)

This time N = 4 and, by lemma 6.4, we have the condition n; > 3a + b — 8 so the
right-hand side of the above inequality must be at least 3a + b — 8. In view of this

ny x

n(5+ ab—2a —2b) — 4

@-D06-1) >3a+b-8.

Expressing n in the above inequality we arrive at:

Theorem 6.7. Let G be an n-vertex unicyclic (1, a,b)-triregular graph, 2 < a < b,
whose cycle is of size 4. Then inequality (14) holds if and only if
S (a—1)(b-1)Ba+b—-8)+4
(a—1)b—-1)4+4—(a+D)

Corollary 6.8. Let G be an n-vertex unicyclic (1,2,b)-trireqular graph, 2 < b,
whose cycle is of size 4. Then inequality (14) holds if and only if n > (b—1)(b—2)-+4.

Corollary 6.9. Let G be an n-vertex unicyclic (1,2,3)-triregular graph, whose
cycle is of size 4. Then inequality (14) holds if and only if n > 6.

A few examples illustrating Theorem 6.7 and its corollaries are given in Fig. 20.
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(a) (b) (c)

FIGURE 20. Diagram (a) represents the unique unicyclic (1,2, 3)-
triregular graph with ¢ = 1 for which inequality (14) does not hold.
Diagrams (b) and (c) are the unique unicyclic (1,2,4)-triregular
graphs with ¢ = 1 and with number of vertices n = 6,8, respec-
tively for which inequality (14) does not hold.

6.4. Triregular bicyclic graphs. The examination of the validity of condition (14)
in the case of triregular bicyclic graphs turns our to be quite complicated, and we
have to proceed case-by-case. The lengthy analysis that follows may be a good
example for a beginner of how by slightly modifying a graph-theoretic problem (in
our case, by moving from “bicyclic” to “tricyclic”) it may gain much on difficulty.
The same analysis shows how graph-theoretic problems are (usually) solved by
separately considering particular cases and subcases.

For a bicyclic (z,a,b)-triregular graph, m = n + 1, = 1, and the number
of quadrangles ¢ can be 0, 1, 2, or 3. Inequality (29) together with conditions
m=n+1and x = 1 yields
(5+ ab — 2a — 2b)n® + (13 — 2a — 2b — 4q)n? + 12n + 4

n?(a—1)(b—1) '
As outlined earlier in connection with bicyclic biregular graphs, there are three

types of bicyclic graphs; for details see Fig. 5. Each of these types will be considered
separately. In cases (a) and (b), ¢ € {0, 1,2} whereas in case (c) ¢ € {0,1,2,3}.

(31) ny <

6.4.1. Triregular bicyclic graphs with disjoint cycles. Again, we will need
a lower bound for the number of pendent vertices:

Lemma 6.10. Let G be a bicyclic (1, a,b)-trireqular graph, 2 < a < b, with disjoint
cycles and with n, pendent vertices. Then

1, if a=2,b=3
ny > 4200 3), if a=2,b>3
(a—2)(N+M—-2)+(b—3)+ (a—3), otherwise
where N and M are the sizes of the two cycles of G.

Proof. In order to construct a graph G with disjoint cycles and minimal number of
pendent vertices, we first connect the cycles with just one edge, so that all vertices
belong to cycles, see Fig. 21a.
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For a = 2 and b = 3 we choose one vertex of degree 2 and attach to it one
pendent vertex, see Fig. 21b.

(b)

FI1GURE 21. Details related to the proof of Lemma 6.10 for a =
2,b=3.

For a = 2 and b > 3 we attach b — 3 pendent vertices to the vertices of degree
3. Since there are exactly two such vertices, we will have 2(b — 3) pendent vertices,
see Fig. 22.

12 b3

FI1IGURE 22. Details related to the proof of Lemma 6.10 for a =
2,b> 3.

For 2 < a < b we have to connect each vertex of degree 2 with a — 2 pendent
vertices. There are N + M — 2 vertices of degree 2 so we arrive at (a — 2)(N +
M —2) pendent vertices. Then, we have to look at the vertices of degree 3. At the
beginning, there are two such vertices. So, if a = 3 we leave one vertex alone and
connect the other one with b — 3 pendent vertices in order to obtain one vertex of
degree b > 3 (Fig. 23a). If a > 3, we connect each vertex of degree 2 with a — 2
pendent vertices, and to the remaining two vertices of degree 3 we attach a — 3 and
b — 3 pendent vertices (Fig. 23b). In this way we obtain a (1, a, b)-triregular graph
with minimal number of pendent vertices, equal to (a —2)(N +M —2)+ (b—3) +
(a —3). O

Consider first (1,2, 3)-triregular graphs. From (31) it follows that
e < n® + (3 —4q)n? + 12n + 4 .
2n?
By Lemma 6.10, the right hand side of this inequality must be at least 1. Therefore,
n®+ (3 —4q)n? + 12n +4
>1
2n2
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1 2 a2 12 a2

12 b3 ! /

FI1GURE 23. Details related to the proof of Lemma 6.10 for a >
2,b>3.

and we obtain n3 + (1 — 4¢)n? + 12n+4 > 0. For ¢ = 0, 1, 2 this yields
713—|—nQ—|—12n—|—4>O7
n® —3n?+12n+4 >0,
n3—7n2+12n+420

)

respectively, and all these inequalities hold for arbitrary n € N. Thus we obtain:

Theorem 6.11. Inequality (14) is obeyed by all bicyclic (1,2,3)-trireqular graphs
with disjoint cycles.

In Fig. 24 are some examples of graphs specified in Theorem 6.11.

FIGURE 24. Bicyclic (1, 2, 3)-triregular graphs with disjoint cycles,
with ¢ = 0,1,2, and with minimal number of vertices.

Next, we consider the case a = 2, b > 4. From (31) it follows that
n®+(9—2b—4g)n? +12n + 4
ny S .
n2(b—1)

By Lemma 6.10, the right-hand side of the above inequality must be at least 2(b—3),
which implies

n® 4+ (9 — 2b — 4q)n? + 12n + 4
n2(b—1)
and we obtain n3 + (3 +6b— 2b> — 4q)n? +12n+4 > 0. For ¢ = 0, 1, 2 this becomes
nd+12n+4
n2
nd+12n+4
n2

> 2(b— 3)

202 —6b— 3 <

)

202 —6b+1 <

)



HYPOENERGETIC GRAPHS 89

S +12n+4
202 —6b+5 < % ,
n
respectively, resulting in:

Theorem 6.12. Let G be a bicyclic (1,2,b)-triregular graph with disjoint cycles,
b > 4. Let n be the number of its vertices and q the number of its quadrangles.
Then inequality (14) if and only if

34+ 12n+4
262—6b—3<% if ¢q=0,

34+ 12n+4
2w—6b+1<ﬁéipii— if g=1,

34+12n+4
262—6b+5<% if q=2.

For example, for arbitrary bicyclic (1,2,4)-triregular graphs the first two in-
equalities hold for all values of n (for which such graphs exist), whereas the third
one is not true only for n = 10, see Fig. 25.

Yo Moo o

FIGURE 25. Examples of bicyclic (1,2,4)-triregular graphs with
disjoint cycles. Only the graph with ¢ = 2 and n = 10 violates
inequality (14).

In the case 2 < a < b, from (31) and Lema 6.10 it follows that
(5+ ab—2a —2b)n3 + (13 — 2a — 2b — 4q)n® + 12n + 4
n2(a—1)(b—1)
For ¢ = 0 we have N, M # 4, and we obtain
(32)
3 2
(54 ab—2a QbZLTQL(a—k_(ll?))(bEal) 2b)n® +12n+4 > (=N +M)+b—a—2.
For ¢ =1 we have N =4 and M # 4, and we obtain
(5 + ab — 2a — 2b)n® + (9 — 2a — 2b)n? + 12n + 4
n?(a—1)(b—1)

> (a=2)(N+M)+b—a-2.

(33) > (a—2)(4+M)+b—a—2.

For ¢ = 2 we obtain

(5 + ab — 2a — 2b)n3 + (5 — 2a — 2b)n? + 12n + 4
n2(a—1)(b—1)

(34) >Ta+b-18.
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Theorem 6.13. Let G be a bicyclic (1,2,b)-triregular graph with disjoint cycles,
b > 4. Let n be the number of its vertices and q the number of its quadrangles.
Then (14) holds if and only if for ¢ =0, ¢ = 1, and q¢ = 2, the inequalities (32),
(33), and (34), respectively, are satisfied.

Consider now some special cases of Theorem 6.13.
Ifa=3,b=4,and N = M = 3, then
3_ .2
3n° —n“+12n+4 > 5
6n2
and this holds for n > 10. On the other hand, the smallest such graph has 11
vertices so the condition is obeyed by all considered graphs.
Ifa=3,b=5and N = M = 3, then
4n —3n? 4+ 12n+ 4
z
8n2
and this holds for n > 13, so it is not true only for such graphs with 12 vertices,
see Fig. 26.

L E

FIGURE 26. The only bicyclic (1, 3, 5)-triregular graphs with two
disjoint cycles of size 3, which do not satisfy condition (14).

ie., 3nd—-3In +12n4+4>0

6 ie, 4n®—51n’+12n+4>0

Ifa=3,b=4,and N =4, M = 3, then

3_ k.2
3n® —on°+12n+4 > 6
6n?
and this holds for n > 14. Consequently, it is not obeyed only by such graphs with
13 vertices, see Fig. 27a.

(a) (b)

FIGURE 27. Some bicyclic triregular graphs violating condition (14).

ie, 3n®—41n®+12n+4>0
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Ifa=3,b=>5 and N =4, M = 3, then
4n3 —Tn? 4+ 12n + 4
=
8n?
and this holds for n > 16. Consequently, it is not obeyed only by such graphs with
14 vertices, see Fig. 27b.
Ifa=3,b=4,and N = M =4, then
3n3 —9n? +12n+ 4
6n?
and this holds for n > 17. Consequently, it is not obeyed only by such graphs with
15 and 16 vertices, see Fig. 28a and 28b.
Ifa=3,b=5and N = M =4, then
An® —Tn? + 12n + 4 S8
8n?
and this holds for n > 18. Consequently, it is not obeyed only by such graphs with
n = 16, see Fig. 28c.

(a) (b) (c)

FIGURE 28. Some further bicyclic triregular graphs violating con-
dition (14).

7 ie., 4An®—63n2+12n4+4>0

>7  ie, 3nP—5n’+12n+4>0

ie, 4n®—TIn’+12n+4>0

6.4.2. Triregular bicyclic graphs whose cycles have a common vertex.
For any triregular graph considered in this section it must be b > 4. In analogy to
Lemma 6.10 we can prove:

Lemma 6.14. Let G be a bicyclic (1, a,b)-triregular graph, 2 < a < b, in which
cycles share a single vertex. Let ny be the number of pendent vertices. Then

s 2, if a=2,b=4
Lz (a—2)(N+M—-2)+b—4, otherwise,

where N and M are the sizes of the cycles.

Proof. Again, we begin with two cycles with one common vertex. Each cycle has,
counting independently, N i.e., M vertices.

For a = 2 and b = 4, since we need to arrive at a graph with vertices of degree
1, 2, and 4, we have to add pendent vertices. We can do this by choosing only one
vertex of degree 2 in a cycle and connect it with 2 pendent vertices. No matter how
big the graph G is, 2 will be the minimal number of pendent vertices, see Fig. 29.
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FI1GURE 29. Details related to the proof of Lemma 6.14 for a =
2,b=4.

F1GURE 30. Details related to the proof of Lemma 6.14 for a =
2,b> 4.

For a = 2 and b > 4 we choose the vertex common to the two cycles and connect
it with b — 4 pendent vertices, see Fig. 30.

For 2 < a < b we take every vertex of degree 2 in a cycle and connect it with a —2
pendent vertices to get vertices of degree a. There are exactly N + M — 2 vertices
of degree 2 so we must add altogether (a — 2)(N + M — 2) pendent vertices. Then
we take the vertex common to the two cycles and connect it with b — 4 pendent
vertices to get a vertex of degree b, see Fig. 31. Now, we have (a — 2)(N + M —
2) + b — 4 pendent vertices and from the construction it is clear that this number
is minimal. O

12 b4

FIGURE 31. Details related to the proof of Lemma 6.14 for a >
2,b>3.
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The simplest case is a bicyclic (1, 2, 4)-triregular graph. From (31) it follows that
n? 4+ (1 —4q)n® + 12n + 4
3n? '
The right-hand side of this inequality must be at least 2, so we have
n®+ (1 —4g)n?* + 12n+ 4
3n?2
For ¢ = 0 we have

(35) n3—5n’4+12n+4>0

TL1<

X

>2 e, nP4(-5-4dgn*+12n+4>0.

and if we look at the left-hand side of the inequality as a real function with real
arguments from [7, 400 > and its first derivative, we will conclude that (35) holds
for any n > 7. (Why 7 as a lower bound? Because the smallest bicyclic (1,2,4)-
triregular graph G in which cycles have one common vertex and with q=0 has
exactly 7 vertices.) So, this inequality holds for any such graph.

For ¢ = 1 we have

(36) nd—9n®4+12n+4>0.

In a same way as for ¢ = 0 we conclude that (36) holds for every n > 8, that is,
for any bicyclic (1,2,4)-triregular graph G in which cycles have one common vertex
and with ¢ = 1.

For g = 2 we have

(37) n®—13n? +12n+4>0

Inequality (37) is true only for n > 12, but there are such graphs having fewer
vertices. Consequently (37), and therefore also (14), is not true for such graphs
with 9 and 11 vertices. These graphs are shown in Fig. 32.

FIGURE 32. Bicyclic (1,2,4)-triregular graphs on 9 and 11 vertices.
These violate inequality (14).

Theorem 6.15. Let G be a bicyclic (1,2,4)-triregular graph with cycles sharing a
single vertex. Let n be the number of its vertices and N, M the size of its cycles, of
which q cycles are quadrangles. Then (14) holds if and only if the inequalities

n®—b5n?+12n+4>0,
n®—9n?+12n+4>0,
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n® —13n? +12n+4>0
are satisfied for g =0, ¢ =1, and q = 2, respectively.
Consider the case of (1,a,b)-triregular graph, 2 < a < b, b > 4. For ¢ = 0,
inequality (31) becomes
e < (54 ab — 2a — 2b)n> + (13 — 2a — 2b)n? + 12n + 4
b n?(a—1)(b—1)

and from Lemma 6.14 it follows that
(5 + ab—2a —2b)n3 + (13 — 2a — 2b)n? + 12n + 4 -
n2(a—1)(b—1) -

(a—2)(N+M)—2a+b

where N, M # 4.

For example, if a =3, b =4, and N = M = 3, we have

3n? —n?+12n+4
6n2

and this holds for n > 8. The smallest such graph has 9 vertices so this is true for
every graph of the considered type.

Ifa=3,b=5and N = M = 3, then 4n3 — 43n? + 12n + 4 > 0 and this holds
for n > 11, so it is not true only for such graph with 10 vertices, see Fig. 33.

>4 e, 3n®P—25n4+12n+4>0

]
FIGURE 33. A 10-vertex graph for which condition (14) does not hold.

For ¢ = 1, inequality (31) becomes
< (5 + ab — 2a — 2b)n® + (9 — 2a — 2b)n? + 12n + 4
b n?(a—1)(b—1)
and from Lemma 6.14 it follows that
(5+ ab—2a —2b)n3 + (9 — 2a — 2b)n? + 12n + 4 o
n2(a—1)(b—1) -
where we took into account that N =4 and M # 4.
For example, if a = 3, b =4, and M = 3, then we have
3n3 —5n% +12n+4 55
6n?
and this holds for n > 12. Thus it does not hold only for such a graph with 11
vertices, see Fig. 34a.
Ifa=3,b=05, and M = 3, then 4n3 — 55n2 + 12n 4+ 4 > 0 which holds for
n 2 14. So this condition is violated only for a graph with 12 vertices, see Fig. 34b.

(a—2)4+M)—2a+b

e, 3n%—3m%+12n+4>0
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(a) (b)

FIGURE 34. A bicyclic (1,3,4)-triregular graph on 11 vertices and a
bicyclic (1,3,5)-triregular graph on 12 vertices for which condition
(14) does not hold.

For ¢ = 2 inequality (31) becomes
(5+ab—2a—2b)n +(5—2a—2bn?+12n+4
S n2(a—1)(b—1)
and from Lemma 6.14, since N = M = 4, it follows that
(5+ ab—2a — 2b)n® + (5 — 2a — 2b)n? + 12n + 4

>6a+b— 16 .
n2(a—1)(b—1) @t
For example, if a = 3, b = 4, then
3_9n2+12 4
SO lIntd o e s 241204430

6n?
and this holds for n > 15. Therefore graphs with n = 13 and n = 14 do not obey
the above condition, see Fig. 35.

oA

FIGURE 35. A 13- and a 14-vertex bicyclic (1,3,4)-triregular graph
for which condition (14) does not hold.

If @ = 3, b = 5, we have 4n> — 67n% + 12n + 4 > 0, which holds for n > 17.
Therefore graphs with n = 14 and n = 16 do not obey the above condition, see
Fig. 36.
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FIGURE 36. A 14- and a 16-vertex bicyclic (1,3,5)-triregular graph
for which condition (14) does not hold.

Theorem 6.16. Let G be a bicyclic (1, a,b)-trireqular graph with cycles sharing a

single vertex, 2 < a < b. Let n be the number of its vertices, and N, M the size

of its cycles, of which q cycles are quadrangles. Then (14) holds if and only if the

inequalities

(5 + ab — 2a — 2b)n> + (13 — 2a — 2b)n? + 12n + 4 -

n?(a—1)(b—1) -

(5 + ab — 2a — 2b)n3 + (9 — 2a — 2b)n? + 12n + 4 o

n2(a—1)(b—1) -

(5 + ab — 2a — 2b)n3 + (5 — 2a — 2b)n? + 12n + 4
n?(a—1)(b—1)

are satisfied for g =0, ¢ =1, and q = 2, respectively.

(a—2)(N+M)—2a+b

(a—2)(4+M)—2a+b

>6a+b—16

6.4.3. Triregular bicyclic graphs whose cycles have several common ver-
tices. Graphs of this type contain three cycles and only two of them are indepen-
dent. As a consequence, the number ¢ of quadrangles may assume also the value 3.
Any two of the three cycles may be chosen as independent. We will always choose
those having the smallest size. These cycle sizes will be denoted by N and M. In
analogy to Lemma 6.14 we now have:

Lemma 6.17. Let G be a bicyclic (1,a,b)-trireqular graph, 2 < a < b, in which
the cycles have two or more common vertices. Let ny be the number of its pendent
vertices. Then
1, if a=2,b=3
ny = ¢ 2(b—3), if a=2,];0>3
(a—2)(N+M—-4)+(b—3)+ (a—3), otherwise

where N, M are the sizes of its independent cycles.

Proof. We begin with two cycles with arbitrary number of vertices in each, and
connect them in a way so that they have two or more common vertices. Now, only
two common vertices are of degree 3 and every other common vertex is of degree 2.
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For a = 2 and b = 3 it is easy. We just add one pendent vertex to a vertex of
degree 2 in a cycle, see Fig. 37.

FIGURE 37. Details related to the proof of Lemma 6.17 for a =
2,b=3.

For a =2 and b > 3 we add b — 3 pendent vertices to vertices of degree 3. There
are two such vertices, so we have to add altogether 2(b — 3) pendent vertices, see
Fig. 38.

FIGURE 38. Details related to the proof of Lemma 6.17 for a =
2,b> 3.

For 2 < a < b, the cycles must be connected so that they have only two common
vertices (i.e., one common edge). We connect each of N+ M —4 vertices of degree 2
with a — 2 pendent vertices, in order to obtain vertices of degree a. Then, if a = 3,
we add b — 3 pendent vertices to only one vertex of degree 3, to obtain a vertex of
degree b (see Fig. 39a), but if a > 3 we add a — 3 pendent vertices to one vertex of
degree 3 and b — 3 pendent vertices to another vertex of degree 3, see Fig. 39b.

We conclude that the minimal number of pendent vertices is (a — 2)(N + M —4)
+(b—3)+ (a—3). O

For (1,2,3)-, (1,2,b)- and (1, a,b)-triregular graphs, 2 < a < b, b > 4, we get
results analogous to those for graphs with disjoint cycles, except that we must
consider also the possibility ¢ = 3.

The cycles of (1,2, 3)-triregular graphs with ¢ = 3 must have three common
vertices and N = M = 4. From inequality (31) and Lemma 6.17 we obtain n3 +
(1 —4q)n? +12n+4 > 0, which for ¢ = 3 becomes n® — 11n? + 12n+4 > 0 . This
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12 a2 12 @3 12 a2

FI1GURE 39. Details related to the proof of Lemma 6.17 for a >
2,b> 3.

inequality holds for n > 10. Therefore graphs with 6, 7, 8, and 9 vertices violate
it, see Fig. 40.

Theorem 6.18. Let G be a bicyclic (1,2,3)-trireqular graph in which cycles have
two or more common vertices and let n be the number of its vertices. Then inequality
(14) holds for every G, except if ¢ = 3 and if the number of vertices is 6,7,8, or 9.

Theorem 6.19. Let G be an n-vertex bicyclic (1,2, b)-trireqular graph with cycles
sharing two or more common vertices, b > 4. Let q be the number of its quadrangles.
Then inequality (14) holds if and only if

2b2—6b—3<% if ¢q=0,
2b2—6b+1<% if ¢q=1,
2b2—6b+5<% if ¢q=2,
2b2—6b+9<% if ¢q=3.

For (1, a, b)-triregular graphs, 2 < a < b, from (31) and Lemma 4 it follows that
(54 ab —2a — 2b)n> + (13 — 2a — 2b — 4q)n* + 12n + 4
> (a—2)(N+M)+b—3a+2.
2101 (a=2)(N+M)+b—3a+
For ¢ =0 and N, M # 4, we obtain
(54 ab — 2a — 2b)n> + (13 — 2a — 2b)n? + 12n + 4 .
n?(a—1)(b—1) -
For example, if g =0,a=3,b=4, and N =3, M =5, we have
3t —n?+12n+4
>
6n2
and this holds for n > 10. Since the smallest such graph has 11 vertices, this
condition is satisfied by all graphs of this kind.

(a=2)(N+M)+b—3a+2.

5  ie, 3n3=31n%’+12n+4>0
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o
H<}>ﬂ <}>-ﬁ
e e
e

—~P P
el e
el e

FIGURE 40. All bicyclic (1,2,3)-triregular graphs with ¢ = 3, for
which condition (14) does not hold. These have 6, 7, 8, and 9
vertices.

If¢g=0,a=3,b=5,and N =3, M =5, we will have

4n3 —3n? 4+ 12n+4
8n2
and this holds for n > 13. Thus, it is not true only for such graph with 12 vertices,
see Fig. 41. The next larger graph has 14 vertices and for it (as well as all other
graphs of this kind) the inequality is satisfied.
Ifg=1,then N=4, M #4or N=M = 3. For N =4 and M # 4 we have
(5+ab—2a —2b)n® + (9 — 2a — 2b)n* + 12n + 4 .
n?(a—1)(b—1) -
whereas for g =1and N = M = 3,
(5+ ab—2a — 2b)n® + (9 — 2a — 2b)n? + 12n + 4
n2(a—1)(b—1)

>6 ie, 4An®—5In’+12n+4>0

(a—2)(4+ M)+b—3a+2

>3a+b-10.
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FIGURE 41. A 12-vertex bicyclic (1,3,5)-triregular graph for which
condition (14) does not hold.

For example, if g =1, a =3, b=4, and N =4, M = 3, we have
3n® —b5n? +12n+4
6n?
and this holds for n > 10. Therefore only for such graphs with 9 vertices it is not
true, see Fig. 42.

< T T

FIGURE 42. Bicyclic (1,3,4)-triregular graphs on 9 vertices for
which condition (14) does not hold.

>4 ie, 3n3—20n%+12n+4>0

Ifg=1,a=3,b=5, N =4, and M = 3, then we have

nd—mm?+12n+4 > 5
8n?2
This inequality holds for n > 12, and therefore the graphs with 10 vertices violate
it, see Fig. 43.
Ifg=1,a=3,b=4,and N = M = 3, then we have
3n® —5n?2+12n+4
6n2
This inequality holds for n > 8, and therefore the graph with 7 vertices violates it,
see Fig. 44.
Ifa=3,b=5and N = M = 3, we will have
4nd — 24+ 12n+4
8n2

ie., An®—4?+12n+4>0.

>3  ie, 3nP—-23n2+12n+4>0.

>4 de, 4An®—-39n%+12n+4>0
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FIGURE 43. Bicyclic (1,3,5)-triregular graphs on 10 vertices for
which condition (14) does not hold.

.

FIGURE 44. A T-vertex bicyclic (1,3,4)-triregular graph for which
condition (14) does not hold.

which holds for n > 10. Therefore, it is not true only for the graph of this kind on

8 vertices, see Fig. 45.

FIGURE 45. An 8-vertex bicyclic (1,3,5)-triregular graph for which
condition (14) does not hold.

For ¢ = 2 we obtain
(5 + ab — 2a — 2b)n3 + (5 — 2a — 2b)n? + 12n + 4
n2(a—1)(b—1)
For example, if a = 3, b = 4, we have
3Ind —on?2 4+ 12n+4
6n2

>5a+b—14.

>5  ie, 3n°=3m%2+12n+4>0
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which holds for n > 13 and is thus violated by graphs with n = 11 and n = 12, see
Fig. 46.

.

FIGURE 46. Bicyclic (1,3,4)-triregular graphs on 11 and 12 ver-
tices, with ¢ = 2, for which condition (14) does not hold.

If a =3, b =25, then
An® —Tn?2 4+ 12n+4
P
8n?

which holds for n > 14, and is thus violated by only two graphs with n = 12, see
Fig. 47.

6 ie., 4n®—55m24+12n+4>0

Theorem 6.20. Let G be an n-vertex bicyclic (1, a,b)-triregular graph with cycles
sharing at least two vertices, 2 < a < b, b > 4. Let N, M be the sizes of its two
independent cycles and q the number of its quadrangles. Then (14) holds if and
only if the following conditions (a), (b), (c), or (d) are satisfied:
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FIGURE 47. Two 12-vertex bicyclic (1,3,5)-triregular graphs with
q = 2 for which condition (14) does not hold.

(a) g =0 and
(54 ab — 2a — 2b)n> + (13 — 2a — 2b)n? + 12n + 4 N
n?(a—1)(b—1) -
(b)g=1, N=4, M #4, and
(5 + ab — 2a — 2b)n3 + (9 — 2a — 2b)n? + 12n + 4 -
n?(a—1)(b—1) -
(¢)g=1, N=M =3, and
(54 ab—2a — 2b)n> + (9 — 2a — 2b)n? + 12n + 4
n2(a—1)(b—1)

(a—2)(N+M)+b—3a+2

(a—2)(4+ M)+b—3a+2

> 3a+b—10

(d) ¢g=2 and
(5+ ab—2a — 2b)n® + (5 — 2a — 2b)n® + 12n + 4

>5a+b—14.
n?(a—1)(b—1) bat

7. Epilogue

In Sections 5 and 6 we established necessary and sufficient conditions for the
validity of the inequality (14), for a great variety of types of acyclic, unicyclic, and
bicyclic graphs. In these two sections the graph energy was not mentioned at all.
Therefore, at this point it seems to be purposeful to re-state Theorem 4.1:

Theorem 4.1.bis. If the graph G satisfies the inequality (14), then the energy
of G is greater than (or, exceptionally, equal to) the number of vertices of G, i.e.,
inequality (9) holds. Therefore G is necessarily not hypoenergetic. If, however, the
graph G does not satisfy the inequality (14), then it may be hypoenergetic, but
need not. Anyway, the search for hypoenergetic graphs must be done among those
which violate inequality (14).
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