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and Vera Kovačević-Vujčić
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Abstract. It is known that graph invariants, which contain a great quantity
of information on graph structure (for example, spectral invariants), are ob-
tained by solving some extremal problems on graphs. Recently, such highly
informative graph invariants are applied in solving optimization problems on
graphs (e.g., the travelling salesman problem (TSP)). Using these paradigms,
several relations, interconnections and interactions between graph theory and
mathematical programming are described in this study. A model of TSP based
on semidefinite programming and algebraic connectivity of graphs is described.
A class of relaxations of this TSP model is defined and some solution tech-
niques based on this class are proposed. Several examples of graph invariants
defined by some kind of optimization tasks are also presented. Using several
spectrally based graph invariants we treat the graph isomorphism problem.

1. Introduction

In this study we want to elaborate the following two assertions:

Assertion 1. Graph invariants, which contain a great quantity of information
on graph structure, are obtained by solving some extremal problems on graphs.

Assertion 2. Highly informative graph invariants are useful in solving opti-
mization problems on graphs.

If these assertions were mathematical statements, they should be proved in math-
ematical sense. We believe that they are true in an informal sense. Our experience
in research shows much evidence of their validity. In this study we shall present
several mathematical results which support them. Using these paradigms, several
relations, interconnections and interactions between graph theory and mathemati-
cal programming are described.

In this introductory section we present some of the basic results from mathe-
matical programming and graph theory which are necessary for the presentation
of main ideas in Sections 2 and 3. In 1.1 an important optimization problem, the
travelling salesman problem, is introduced. A highly informative graph invariant,
the spectrum of a graph, is described in 1.2. Subsection 1.3 is devoted to semidefi-
nite programming, a recently developed optimization technique and an important
branch of mathematical programming.

Section 2 elaborates Assertion 2 while Section 3 elaborates Assertion 1.

Key words and phrases. Graph spectra, Algebraic connectivity, Graph isomorphism problem,
Semidefinite programming, Travelling salesman problem, Branch-and-bound methods, Complexity
indices, Clustering problems.
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1.1. Travelling Salesman Problem. There is partly a joke, partly an advice in
mathematics saying that if you do not know how to solve a problem you should
find the first derivative and make it equal to zero. The point is that a great number
of mathematical problems are optimization problems or can be reduced to them.

We shall begin with an exception.
Suppose that a salesman, starting from his home city, is to visit exactly once

each city on a given list of cities and then to return home. It is reasonable for him
to select the order in which he visits the cities so that the total of the distances
travelled in his tour is as small as possible. This problem is called the travelling
salesman problem (TSP).

TSP is a typical problem of combinatorial optimization. There is an extensive
literature on and an impressive theory of TSP. The theory includes algorithms and
heuristics (with an emphasis on complexity questions) for solving TSP as well as
several variations and related problems. There are applications of TSP in operations
research and engineering. A nice monograph [51] summaries various aspects of the
work that has been done concerning TSP. See also expository articles [49], [50].

Finding the travelling salesman’s shortest route to pass n cities in such a way that
each city is visited exactly once represents the traditional formulation of TSP. It is
assumed that non-negative distances dij between the cities i, j (1 6 i < j 6 n) are
given and also that the travelling salesman starts his trip from an arbitrary city.
If the travelling salesman does not return to the starting city, then the minimal
traversed route is called an open route or simply a path.

This problem cannot be solved using derivatives. This is because the problem
has a discrete character: we have to minimize a function defined on a finite set
(the set of permutations of n cities in this case). Such problems belong to the area
of combinatorial optimization. There is the obvious brute force method to solve
such optimization problems: to calculate the value of the objective function for
all points in the domain and to select minimum values. However, in the case of
TSP and of many other combinatorial optimization problems the execution time
of a brute force algorithm on best computers would last for thousands of years for
quite modest dimensions of the problem instances (say a couple of dozens of cities
in the case of TSP). Since applications require solving large scale problems, many
“clever” algorithms and heuristics have been developed and a theory of complexity
of algorithms and problems has been established.

One of most popular among algorithms which avoid total search is branch and
bound. We shall describe branch and bound technique in a general framework with
emphasis on the relevant details concerning the solving of the TSP.

For the sake of simplicity, we restrict ourselves to the following optimization
(minimization or maximization) problem on weighted graphs (networks), which is
still very general:

Let A be the set of all subgraphs of a graph G (with weights inherited from
G). Let F ⊆ A be the set of all subgraphs of G which posses some additional
properties. The subgraphs from F are called feasible. We seek in F the elements
with extremal (minimal or maximal) weights.
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Let us assume that our optimization problem is a minimization problem. In the
case of maximization the procedure would be similar.

In order to solve such a problem by a branch and bound algorithm, let R (F ⊆
R ⊆ A) be a set of subgraphs for which there exists a polynomial time algorithm
(say α) for finding the optimal element inR. The setR corresponds to some relaxed
variant of our problem (some feasibility conditions need not hold anymore).

To describe the algorithm (search procedure), we first introduce a search tree T
as an auxiliary tool. T is a rooted tree with the root at a vertex r; all other vertices
are the descendants of r. If f is any vertex, then its out-neighbors (called sons of
f , f being their father) are denoted by s1, . . . , sn. Each vertex, say f , corresponds
to some subset R(f) of R and to a subproblem of the original problem (usually
obtained by including and/or excluding some edges of G from the solution). The
root r corresponds to the whole set R. If f is a father and the solution of the
relaxation task on the corresponding subproblem is not feasible and its length is
smaller than the current lower bound (set at the beginning), then after branching
at f by some branching rules (which “destroy” some “unfeasible details” in the
solution of the relaxation task), the set R(f) is split into mutually disjoint subsets
R(s1), . . . ,R(sn) yealding new subproblems and new vertices in the search tree T .
By solving the relaxation problem at some tree vertex with the use of the algorithm
α, we obtain a lower bound for a feasible solution at this vertex. A global upper
bound is provided at the beginning by taking any feasible subgraph (usually found
by some quick heuristic). The branch and bound algorithm terminates when all
subproblems in the search tree T are exhausted.

The above described general scheme of a branch and bound algorithm can be
specified to solve the TSP by taking F to be the set of all Hamiltonian paths (or
cycles or circuits – depending on the variant considered).

For a more detailed treatment of branch and bound algorithms see for example
[51, pp. 361–401].

1.2. Graph Spectra and Other Graph Invariants. The adjacency matrix of a
(multi)(di)graph G, with vertex set {1, 2, . . . , n}, is the n × n matrix A = (aij)
whose (i, j)-entry aij is equal to the number of edges, or arcs, originating at the
vertex i and terminating at the vertex j. Two vertices of G are said to be adjacent
if they are connected by an edge or arc. Unless we indicate otherwise we shall
assume that G is an undirected graph without loops or multiple edges. The degree
of a vertex is the number of vertices adjacent to that vertex.

The characteristic polynomial det(λI − A) of the adjacency matrix A of G is
called the characteristic polynomial of G and denoted by PG(λ). The eigenvalues
of A (i.e., the zeros of det(λI − A)) and the spectrum of A (which consists of the
n eigenvalues) are also called the eigenvalues and the spectrum of G, respectively.
The spectrum of G is denoted by spec G. These notions are independent of vertex
labelling because a reordering of vertices results in a similar adjacency matrix.
The eigenvalues of G are usually denoted by λ1, . . . , λn; they are real because A is
symmetric. Unless we indicate otherwise, we shall assume that λ1 > λ2 > · · · > λn
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and use the notation λi = λi(G) for i = 1, 2, . . . , n. Clearly, isomorphic graphs
have the same spectrum.

The eigenvalues of A are the numbers λ satisfying Ax = λx for some non-zero
vector x ∈ Rn. Each such vector x is called an eigenvector of the matrix A (or of
the labelled graph G) belonging to the eigenvalue λ. The relation Ax = λx can
be interpreted in the following way: if x = (x1, x2, . . . , xn)T , then λxu =

∑
v∼u xv

where the summation is over all neighbours v of the vertex u. If λ is an eigenvalue
of A then the set {x ∈ Rn : Ax = λx} is a subspace of Rn, called the eigenspace of
λ and denoted by E(λ) or EA(λ). Such eigenspaces are called eigenspaces of G. Of
course, relabelling of the vertices in G will result in a permutation of coordinates
in eigenvectors (and eigenspaces).

The largest eigenvalue λ1 of a graph G is called the emphindex of G; since
adjacency matrices are non-negative there is a corresponding eigenvector whose
entries are all non-negative.

Next we present certain notation, definitions and results from graph theory.
As usual, Kn, Cn and Pn denote respectively the complete graph, the cycle and

the path on n vertices.
mG denotes the union of m disjoint copies of G. We write V (G) for the vertex

set of G, and E(G) for the edge set of G.
If uv is an edge of G we write G−uv for the graph obtained from G by deleting

uv. For v ∈ V (G), G− v denotes the graph obtained from G by deleting the vertex
v and all edges incident with v. More generally, for U ⊆ V (G), G − U is the
subgraph of G induced by V (G)r U .

A function defined on a family G of graphs is called a graph invariant for graphs in
G if it is the same for isomorphic graphs in G. Usually, graph invariants are numbers
(integers, reals, etc.) but can be more complex objects (families of numbers, vectors,
matrices, etc.).

Highly informative graph invariants from the title have not been defined pre-
cisely; we use this term informally. We shall say that a graph invariant is highly
informative if it can be obtained quickly (possibly by a polynomial time algorithm)
and if it contains a lot of information on the graph structure. It would be de-
sirable that the invariant fully determines the graph (up to isomorphism as it is
usually said). Such invariants would be obviously useful in solving the graph iso-
morphism problem, i.e., the problem of deciding whether or not two given graphs
are isomorphic.

Let us consider some examples of graph invariants

1. Vertex degrees. The family of vertex degrees can be quickly calculated. How-
ever, the degree of a vertex is a kind of local invariant; it does not depend on the
structure of the whole graph. Only neighbors of the vertex in question contribute
to the value of its degree. It is not surprising that the family of vertex degrees does
not say much on the graph structure, i.e. usually there are several graphs having a
given family of vertex degrees. For example, a graph on 8 vertices having all vertex
degrees equal to 2 can be one of the following three graphs: C8, C5 ∪ C3, C4 ∪C4.
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2. Spectrum. Family of graph eigenvalues is obtained by considering extremal
values of the Rayleigh quotient of the adjacency matrix. Eigenvalues depend in
general case on all details on graph structure. Therefore more can be said on graph
structure in the case that we know graph eigenvalues than in the case of knowing
vertex degrees. Let us analyze the situation with graphs in which the vertex degrees
are equal to 2. Such graphs are called regular graphs of degree 2.

Regular graphs of degree 2 are unions of cycles. One can verify by direct cal-
culation that eigenvalues of the cycle Cn are real parts of the n-th roots of 2n,
i.e.,

spec Cn = {Re
n
√

2n} =
{

2 cos
2π

n
j

∣∣∣ j = 0, 1, . . . , n− 1
}

The largest eigenvalue is λ1 = 2 (j = 0) and the next one is two-fold: λ2 = λ3 =

2 cos 2π
n (for j = 1 and j = n− 1). Suppose now that G =

k⋃
i=1

Cni
. Then

spec G =
k⋃

i=1

{
2 cos

2π

ni
j

∣∣∣ j = 0, 1, . . . , ni − 1
}

Given spec G, we can first establish that G is regular (by Theorem 3.22 of [31]) of
degree 2. This is already information contained in the family of vertex degrees. But
here we have more. Finding the second largest eigenvalue in modulus in spec G,
we can determine the size ni of the largest cycle in G. Gradually, by analyzing the
whole spectrum we can determine the sizes of all cycles of G, i.e., determine G up
to isomorphism.

In this way we have proved the following theorem (see [12] or [31, p. 167]).

Theorem 1.1. A regular graph of degree 2 is characterized by its spectrum.

The reader might think that unions of cycles are not so interesting graphs to jus-
tify the space devoted to their spectral characterizations. However, the importance
of this theorem will be shown in Subsection 2.1.

It seems that graph theoretical invariants, which contain a lot of information
about the graph structure and thus are useful for the graph isomorphism problem,
are obtained by solving some kind of optimization problem. Eigenvalues are also
obtained in this way (as extrema of the Rayleigh quotient). The same holds for
angles of a graph [17]. See 3.3 for other examples.

3. A binary number. A graph G can be characterized by the largest (or least)
binary number obtained by concatenation of rows (or rows of the upper triangle) of
adjacency matrices of G. The ordering of vertices which yields the characterizing
binary number can be considered as a canonical vertex ordering. One can consider
several variations of this idea but it turns out that the known algorithms for finding
the graph characterizing quantity are exponential (cf. [62], [4]). Here a high price
has been paid. We have an invariant which tells everything about the graph but
it is time consuming to determine it. (However, this does not mean that under
certain circumstances the extremal binary number has not been successfully used
in recognizing graphs).
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From the point of view of practical computation it is not very important to
decide whether the graph isomorphism problem is NP-complete or belongs to P .
Experience has shown that any reasonable algorithm for graph isomorphism testing
performs well in average. However, the problem has great theoretical significance.
Leaving aside the implications in the theory of complexity of algorithms and prob-
lems, one can say that the understanding of the kind of difficulties arising in the
graph isomorphism problem enables the understanding of difficulties that appear
in treating graph theory problems in general.

After having got equanted with these three examples we might be inclined to
believe that spectral type graph invariants represent a good compromise between
different reqirements on graph invariants. Therefore we describe another variant in
defining graph eigenvalues.

Let G = (V,E) be an undirected simple graph, where V = {1, . . . , n} is the set
of vertices and E is the set of edges. The Laplacian L(G) of graph G is a symmetric
matrix defined as L(G) = D(G) − A(G), where D(G) is the diagonal matrix with
vertex degrees on the diagonal and A(G) is the adjacency matrix of G.

The matrix L(G) is positive semidefinite. If µ1 6 · · · 6 µn are eigenvalues of
L(G), then µ1 = 0 with the corresponding eigenvector e = (1, . . . , 1). All other
eigenvalues have eigenvectors which belong to the set

S =
{

x = (x1, . . . , xn) ∈ Rn
∣∣∣

n∑

i=1

xi = 0,

n∑

i=1

x2
i = 1

}

According to Fiedler, the second smallest eigenvalue µ2 of L(G), is called the
algebraic connectivity of G and denoted by a(G). In [37] the following results are
proved:

Theorem 1.2. The algebraic connectivity a(G) has the properties:
(i) a(G) = min

x∈S
xT L(G)x

(ii) a(G) > 0, a(G) > 0 if and only if G is connected.

Fiedler shows that the notion of the Laplacian and the algebraic connectivity
can be generalized to graphs with positively weighted edges.

A C-edge-weighted graph GC = (V, E,C) is defined by a graph G = (V, E) and a
symmetric nonnegative weight matrix C such that cij > 0 if and only if {i, j} ∈ E.
Now the Laplacian L(GC) is defined as L(GC) = diag(r1, . . . rn) − C, where ri is
the sum of the i-th row of C. The Laplacian L(GC) has similar characteristics as
L(G). Namely it is symmetric, positive semidefinite with the smallest eigenvalue
µ1 = 0 and the corresponding eigenvector e. As before, the algebraic connectivity
a(GC) is the second smallest eigenvalue of L(GC), which enjoys similar properties
to those in Theorem 1.2.

Theorem 1.3. (M. Fiedler [37]) The generalized algebraic connectivity a(GC) has
the following properties:

(i) a(GC) = min
x∈S

xT L(GC)x

(ii) a(GC) > 0, a(GC) > 0 if and only if GC is connected.
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1.3. Semidefinite Programming. Semidefinite programming (SDP) has been one
of the most active research areas in mathematical programming during the last
decade. It is related to minimization of a linear function on the set of positive
semidefinite matrices subject to linear constraints.

Recall that a symmetric matrix is called positive semidefinite (positive definite)
if its eigenvalues are nonnegative (positive).

In order to define a semidefinite program, we need to introduce the appropriate
notation. Let Sn×n denote the set of symmetric n×n matrices and let Sn×n

+ denote
the set of positive semidefinite n× n matrices, Then Sn×n

+ is a closed convex cone
in Rn×n of dimension n(n− 1)/2. We write X > 0 (X > 0) to denote that X is a
symmetric positive semidefinite (positive definite) matrix, and we write X > Y to
denote that X − Y > 0. For A,B ∈ Rn×n the Frobeinus product is defined by

A ◦B = tr(AT B) =
n∑

i=1

n∑

j=1

aijbij

If A,B ∈ Sn×n it follows that A ◦B = tr(AB).
If A,B ∈ Sn×n

+ it can be proved that A ◦ B > 0 and that A ◦ B = 0 implies
AB = 0 (see [65]).

Now a semidefinite program (SDP) can be formulated as:

minimize C ◦X

subject to Ai ◦X = bi, i = 1, . . . , m(1)
X > 0

where C, A1, . . . , Am ∈ Sn×n, b = (b1, . . . , bm) ∈ Rm are given parameters and the
unknown n × n matrix X is symmetric positive semidefinite. In the sequel P and
P ◦ will denote the feasible set of problem (1) and its relative interior, i.e.,

P = {X ∈ Rn×n | Ai ◦X = bi, i = 1, . . . , m, X > 0}
P ◦ = {X ∈ Rn×n | Ai ◦X = bi, i = 1, . . . , m, X > 0}

Without loss of generality we may assume that matrices A1, . . . , Am are linearly
independent. It is easy to see that then (1) can be written in the form

minimize c0 + cT z

subject to F0 +
p∑

i=1

zi Fi > 0(2)

where z ∈ Rp is the unknown vector, p = n(n + 1)/2 − m, and Fi ∈ Sn×n,
i = 0, . . . , p, c0 ∈ R, c ∈ Rp are the corresponding parameters. Indeed, problem
(1) has n2 scalar variables and m + n(n− 1)/2 linear equations (m given explicitly
and n(n − 1)/2 following from the fact that X is symmetric). Hence there are
n2−m−n(n− 1)/2 = n(n+1)/2−m = p free variables which uniquely determine
the remaining ones, i.e., there exist (symmetric) matrices F0, F1, . . . , Fp such that

{X ∈ Sn×n | Ai ◦X = bi, i = 1, . . . , m} = {X = F0 + z1 F1 + · · ·+ zp Fp | z ∈ Rp}
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This implies that the feasible sets of (1) and (2) are equal. Moreover,

C ◦X = C ◦ (F0 + z1 F1 + · · ·+ zp Fp) = C ◦ F0 + z1 C ◦ F1 + · · ·+ zp C ◦ Fp

and we can take c0 = C ◦ F0, c = (C ◦ F1, . . . , C ◦ Fp).
Theoretical properties of the SDP problem have been studied in sixties, seventies

and early eighties by several authors, e.g. Bellman, Fan [7], Craven, Mond [11],
Fletcher [38], Rockafellar [63] Wolkowicz [67], etc. We shall state here only the
main results. The dual problem associated to (1) is the following SDP problem of
the type (2):

maximize bT y

subject to

m∑

i=1

yi Ai 6 C,

which can be equivalently reformulated as:

maximize bT y

subject to

m∑

i=1

yi Ai + Z = C(3)

Z > 0

The feasible set of (3) and its relative interior will be denoted by D and D◦,
respectively, i.e.

D =
{

(Z, y) ∈ Rn×n × Rm
∣∣∣

m∑

i=1

yi Ai + Z = C, Z > 0
}

D◦ =
{

(Z, y) ∈ Rn×n × Rm
∣∣∣

m∑

i=1

yi Ai + Z = C, Z > 0
}

It is easy to prove the following week duality theorem.

Theorem 1.4. If X ∈ P , (Z, y) ∈ D, then C ◦X > bT y.

Proof. We have

(4) C ◦X =
m∑

i=1

yi Ai ◦X + Z ◦X =
m∑

i=1

yi bi + Z ◦X = bT y + Z ◦X

As Z, X ∈ Sn×n
+ it follows that Z ◦X > 0 and (4) implies C ◦X > bT y. ¤

Let p∗ and d∗ be the optimal values of primal (1) and dual (3), i.e.,

p∗ = inf
X∈P

C ◦X, d∗ = sup
(Z,y)∈D

bT y

Theorem 1.4 implies p∗ > d∗. Let P ∗ and D∗ be the corresponding sets of optimal
solutions, i.e.,

P ∗ = {X ∈ P | C ◦X = p∗}, D∗ = {(Z, y) | bT y = d∗}.
It is easy to construct examples demonstrating that the sets P ∗ (D∗) can be empty
even if p∗ (d∗) is finite, which is not the case in linear programming. The next
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theorem gives conditions which guarantee that P ∗ and D∗ are nonempty and that
the duality gap p∗ − d∗ is equal to zero.

Theorem 1.5. (i) Suppose that one of the following conditions hold: 1◦ P ◦ 6= ∅,
2◦ D◦ 6= ∅. Then p∗ = d∗.

(ii) Suppose that 1◦ and 2◦ hold. Then P ∗ 6= ∅, D∗ 6= ∅.
The proof is an application of the duality theory from convex analysis (see e.g.,

[59], [63]).
If both conditions 1◦ and 2◦ hold it is easy to see that the set P ∗ ×D∗ is equal

to the set of solutions to the system

(5)

(a) X Z = 0

(b)
m∑

i=1

yi Ai + Z − C = 0

(c) Ai ◦X − bi = 0, i = 1, . . . , m

(d) X > 0, Z > 0

Indeed, if X and (Z, y) are optimal solutions of problems (1) and (3) their feasibility
implies conditions (5b)–(5d). Moreover, C ◦ X = p∗ = d∗ = bT y. Since by (4)
Z ◦X = C ◦X − bT y it follows that Z ◦X = 0, which implies X Z = 0, i.e., (5a)
holds.

Let now (X, Z, y) ∈ Rn×n×Rn×n×Rm be a solution of (5a)–(5d). Then X and
(Z, y) are feasible solutions of (1) and (3) and hence, by Theorem 1, C ◦X > p∗ >
d∗ > bT y. As X Z = 0 implies Z ◦ X = 0 from (4) it follows C ◦ X = bT y, i.e.,
C ◦X = p∗, bT y = d∗.

A strong impulse to further development of semidefinite programming was given
by Nesterov and Nemirovski in a series of papers [55, 56, 57, 58, 59] written between
1988 and 1991 and by Alizadeh [2], who have shown independently that interior
point methods for linear programming can be directly extended to SDP. For exam-
ple, the parametrized logarithmic barrier problem for linear programming extends
to SDP as:

minimize C ◦X − t ln(det X)
subject to Ai ◦X = bi, i = 1, . . . , m(6)

X > 0

where ln(det X) replaces the logarithmic barrier function
n∑

j=1

ln xj . The optimality
conditions for this problem can be written as

(7)

(a) X Z − tI = 0

(b)
m∑

i=1

yi Ai + Z − C = 0

(c) Ai ◦X − bi = 0, i = 1, . . . , m

(d) X > 0, Z > 0
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which in fact is a parametrization of optimality conditions (5a)–(5d). Under the
assumptions 1◦ and 2◦ from Theorem 1.5 it can be shown that for each t > 0
system (7a)–(7d) has the unique solution (Xt, Zt, yt). Moreover, lim

t→0+
(Xt, Zt, yt) =

(X∗, Z∗, y∗), where X∗ solves (1) and (Z∗, y∗) solves (3) (for a proof see [46]).
The key idea of interior-point methods for SDP is to use Newton method in

order to get approximate solutions of the parametrized system (7a)–(7d). A typical
algorithm can be described as follows:

Algorithm:
Input: X0 ∈ P ◦, (Z0, y0) ∈ D◦, ε > 0
Initialization: Set k = 0, t0 = X0 ◦ Z0/n
Repeat until tk < ε do

(1) Set in (7a)–(7d) t = tk
(2) Compute the Newton direction (4Xk,4Zk,4yk) at (Xk, Zk, yk).
(3) Choose αk > 0 such that
(Xk+1, Zk+1, yk+1) = (Xk, Zk, yk) + αk(4Xk,4Zk,4yk) ∈ P ◦ ×D◦

(4) Set tk+1 = Xk+1 ◦ Zk+1/n, k ← k + 1
End.
It should be noted that (7a) can be represented in many different ways, includ-

ing for example (X Z +Z X)/2− t I = 0, resulting in many different nonequivalent
Newton directions, and hence different SDP methods. In terms of theoretical perfor-
mance, the best SDP methods are guaranteed to reduce duality gap of the iterates
by a fixed proportion in O(

√
n) iterations. This is identical to the complexity result

for linear programming with n variables, even though the number of scalar variables
in SDP is much larger (there are n(n + 1)/2 entries in the symmetric matrix X).
More precisely, the algorithm stops in O(

√
n log X0◦Z0

nε ) iterations, while the com-
plexity of a single iteration of the algorithm is typically O(max{m2n2,mn3,m3}).
This gives the overall complexity bound O(max{m2n2.5,mn3.5,m3no.5}).

There are many active research areas in semidefinite programming varying from
development of different interior point algorithms and investigating their proper-
ties to writing efficient SDP codes capable of handling large sparse SDP problems.
Special attention is payed to applications of SDP, which are very wide. The types
of constraints that can be modelled in the SDP framework include linear inequal-
ities, convex quadratic inequalities, lower bounds on matrix norms, lower bounds
on determinants of symmetric positive semidefinite matrices, lower bounds on the
geometric mean of a nonnegative vector, etc. Using these and other constructions
the following problems can be stated as SDP problems: optimizing a convex qua-
dratic form subject to convex quadratic inequalities, minimizing the volume of an
ellipsoid that covers a given set of points and ellipsoids, maximizing the volume of
an ellipsoid that is contained in a given polytope, a variety of maximum eigenvalue
and minimum eigenvalue problems, etc. In particular, there is a growing interest
in applications of SDP in combinatorial optimization where it is used in order to
get satisfactory lower bounds on the optimal objective function value. Some exam-
ples are SDP relaxations for the max-cut problem, graph coloring problem and the
travelling salesman problem. The next section gives a detailed description of SDP
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approach to the travelling salesman problem. A comprehensive survey of theory,
algorithms and applications of semidefinite programming can be found in a recently
published monograph [68].

2. Using Spectral Invariants in Problems
of Combinatorial Optimization

In this section we elaborate Assertion 2 by describing the use of algebraic con-
nectivity of a graph in solving TSP and in some clustering problems. In Subsection
2.1 we describe a model of TSP based on semidefinite programming and algebraic
connectivity of graphs. Another way of using graph spectra in treating TSP is given
in Subsection 2.2, where we introduce complexity indices for TSP. Subsection 2.3
describes some problems of clustering binary vectors and provides another example
of using highly informative graph invariants in solving optimization problems.

2.1. Discrete Semidefinite Programming Model for TSP. Let G = (V, E)
be a complete undirected graph, where, as before, V = {1, . . . , n} is the set of
vertices and E is the set of edges. To each edge {i, j} ∈ E a distance (cost)
dij is associated such that the distance matrix D = (dij)n×n is symmetric and
dii = 0, i = 1, . . . , n. Now the symmetric travelling salesman problem (TSP) can
be formulated as follows: find a Hamiltonian circuit of G with minimal cost.

Algebraic connectivity of a Hamiltonian circuit is well known in the theory of
graph spectra (see e.g. [31]). Since the graph is regular of degree 2, we have
L = 2I −A. Hence, the Laplacian of a circuit with n vertices has the spectrum

2− 2 cos(2πj/n), j = 1, . . . , n

and the second smallest eigenvalue is obtained for j = 1 and j = n − 1, i.e., µ2 =
µ3 = 2− 2 cos(2π/n). This value will be denoted by hn, i.e., hn = 2− 2 cos(2π/n).

Now, Theorem 1.1 of Section 1.2 will be transformed into a form which is very
useful in solving TSP. The next theorem, which gives a basis for the discrete semi-
definite programming model of TSP, has been proved in [24] as a consequence of a
more general result. For the sake of completeness we supply here a self-contained
proof following [25].

Theorem 2.6. Let H be a spanning subgraph of G such that d(i) = 2, i = 1, . . . , n,
where d(i) is the degree of vertex i with respect to H, and let L(H) = (lij)n×n

be the corresponding Laplacian. Let α and β be real parameters such that α >
hn/n, 0 < β 6 hn. Then H is a Hamiltonian circuit if and only if the matrix
X = L(H) + αJ − βI is positive semidefinite, where J is the n× n matrix with all
entries equal to one and I is the unit matrix of order n.

Proof. Let 0 = µ1 6 µ2 6 · · · 6 µn be the eigenvalues of L(H) and let x1 = e and
xi ∈ S, i = 2, . . . , n, be the corresponding eigenvectors which form a basis for Rn.
It is easy to check that J has two eigenvalues: 0, with multiplicity n − 1 and the
corresponding eigenvectors x2, . . . , xn, and n with e as its eigenvector. Therefore

Xe = (L + αJ − βI)e = (αn− β)e

Xxi = (L + αJ − βI)xi = (µi − β)xi, i = 2, . . . , n
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which means that αn − β and µi − β, i = 2, . . . , n are eigenvalues of X with
eigenvectors e, x2, . . . , xn, respectively.

The conditions of Theorem 2.1 garantee that H is a 2-matching, i.e., it is either
a Hamiltonian circuit or a collection of at least two disjoint subcircuits. In the first
case µ2 = hn, while in the second, according to Theorem 1.2, µ2 = 0. As α > hn/n
in both cases it follows that αn− β > µ2 − β, i.e., the smallest eigenvalue of X is
equal to µ2 − β.

Suppose that H is a Hamiltonian circuit. Then β 6 hn implies µ2 − β =
hn − β > 0, i.e., matrix X is positive semidefinite. Suppose now that X is positive
semidefinite. Then µ2 − β > 0 and β > 0 imply µ2 = a(H) > 0 and by Theorem
1.2 it follows that H is a connected 2-matching, i.e., a Hamiltonian circuit. ¤

It follows from Theorem 2.1 that a spanning subgraph H of G is a Hamiltonian
circuit if and only if its Laplacian L(H) satisfies the following conditions:

lii = 2, i = 1, . . . , n(8)

X = L(H) + αJ − βI is positive semidefinite, α > hn/n, 0 < β 6 hn(9)

Starting from (8) and (9) the following discrete semidefinite programming model
of TSP can be defined

(10) minimize F (X) =
n∑

i=1

n∑

j=1

(
− 1

2
dij

)
xij +

α

2

n∑

i=1

n∑

j=1

dij

subject to

xii = 2 + α− β, i = 1, . . . , n(11)
n∑

j=1

xij = nα− β, i = 1, . . . , n(12)

xij ∈ {α− 1, α}, i, j = 1, . . . , n, i < j(13)

X > 0,(14)

where X > 0 denotes that the matrix X = (xij)n×n is symmetric and positive
semidefinite and α and β are chosen according to Theorem 2.1. Matrix L = X +
βI −αJ represents the Laplacian of a Hamiltonian circuit if and only if X satisfies
(11)–(14). Indeed, constraints (11)–(13) provide that L has the form of a Laplacian
with diagonal entries equal to 2, while condition (14) guarantees that L corresponds
to a Hamiltonian circuit. Therefore, if X∗ is an optimal solution of problem (10)–
(14), then L∗ = X∗ + βI − αJ is the Laplacian of an optimal Hamiltonian circuit

of G with the objective function value
n∑

i=1

n∑
j=1

(− 1
2dij)l∗ij = F (X∗).

The well-known integer programming formulation of TSP reads:

(15) minimize
∑

i∈V

∑

j>i

dijxij
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subject to
∑

j<i

xji +
∑

j>i

xij = 2, i ∈ V ;(16)

∑

i∈S

∑

j∈S
j>i

xij 6 |S| − 1, for all S ⊂ V, S 6= ∅;(17)

xij = 0 or 1 i, j ∈ V, j > i.(18)

The subtour elimination inequalities (17) can also be written as
∑

i∈S

∑

j∈V−S
j>i

xij +
∑

i∈V−S

∑

j∈S
j>i

xij > 2, for all S ⊂ V, S 6= ∅.

Each of n constraints in group (16) requires exactly two edges to be incident
to every vertex and constraints of type (17) are subtour elimination constraints
excluding the subtours with less than n vertices.

It is important to note that in our discrete semidefinite programming model of
TSP (10)–(14), the single condition (14) replaces all subtour elimination constraints
in the standard integer programming model!

A natural semidefinite relaxation of the travelling salesman problem is obtained
when discrete conditions (13) are replaced by inequality conditions:

(19) minimize F (X)

subject to

xii = 2 + α− β, i = 1, . . . , n(20)
n∑

j=1

xij = nα− β, i = 1, . . . , n(21)

α− 1 6 xij 6 α, i, j = 1, . . . , n, i < j(22)

X > 0(23)

It is easy to see that the relaxation (19)–(23) can be expressed in the standard
form of an SDP problem. Indeed, constraint (20) can be represented as Ai ◦X =
2 + α − β, where ◦ is the Frobenius product and Ai is a symmetric n × n matrix
with 1 at the position (i, i) and all other entries equal to 0. Similarly, condition
(21) is equivalent to Bi ◦ X = 2(nα − β), where Bi has 2 at the position (i, i)
while all the remaining elements of the i-th row and the i-th column are equal to
1, and all the other entries are zero. Finally, condition (22) can be expressed as
2(α − 1) 6 Cij ◦ X 6 2α, where Cij has 1 at the positions (i, j) and (j, i) and
zero otherwise. Since SDP problem (19)–(23) depends on parameters α and β it
represents a class of semidefinite relaxations of TSP. In the sequel, members of this
class will be referred to as SDP relaxations.

Let us denote by P and P ◦ the feasible set of problem (19)–(23) and its relative
interior. For each X ∈ P the corresponding Laplacian L = X + βI − αJ can
be interpreted as the Laplacian of the weighted graph GL = (V,EL, CL), where
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EL = {{i, j} ∈ E | lij < 0} and CL = 2I − L. If α and β satisfy the conditions
of Theorem 2.1 then, using similar arguments as in the proof of Theorem 2.1, it
can be shown that X > 0 is equivalent to a(GL) > β (see also [24]). Hence, by
Theorem 1.3 graph GL is connected. It immediately follows that 2-matchings with
disjoint subcircuits cannot correspond to any X in P .

It is easy to see that P ◦ 6= ∅. Indeed, if e.g. L̂ =
(
2 +

2
n− 1

)
I − 2

n− 1
J ,

then X̂ = L̂ + αJ − βI =
(
2 +

2
n− 1

− β
)
I +

(
α − 2

n− 1

)
J has the eigenvalues

2+
2

n− 1
−β with the multiplicity n− 1 and nα−β with the multiplicity 1. Since

nα − β > 0 and 2 +
2

n− 1
− β > 2 +

2
n− 1

− hn > 0 for n > 4, it follows that

X̂ ∈ P ◦, n > 4.
For β < hn matrices X which correspond to Laplacians of Hamiltonian circuits

are in P ◦, while for β = hn these matrices belong to P r P ◦. It is clear that the
best relaxation is obtained for β = hn. Concerning the parameter α, it is always
sufficient to choose α = 1.

The semidefinite relaxation (19)–(23) is substantially different from the existing
TSP relaxations. It should be pointed out that it cannot be theoretically compared
neither with 2-matching nor with 1-tree. Indeed, if we consider TSP model (10)–
(14) it is easy to see that X which corresponds to the Laplacian of a 2-matching
satisfies (11)–(13) but need not satisfy (14). In the case of 1-tree, the condition
(11) is relaxed, while (12), (13) and (14) hold (see [24]). Preliminary numerical
experiments on randomly generated problems with 10 6 n 6 20 which are reported
in [24], indicate that SDP relaxation gives considerably better lower bounds than
both 1-tree and 2-matching.

We have implemented two branch and bound algorithms with the SDP relaxation
(with α = 1, β = hn) and one with the 1-tree relaxation. The last one was
implemented to check the correctness of the results. All algorithms are based on
the general branch and bound scheme as described in [51]. We used a FORTRAN
implementation of the branch and bound shell from the package TSP-SOLVER [21],
[29]. An initial upper bound was obtained in all cases by the 3-optimal heuristic.
The depth first search was used to select the next subproblem.

The two branch and bound algorithms differ only in their branching rules (the
first one defined by Vollgnant and Jonker, see [25]):

Algorithm 1. At the first vertex of degree greater than 2 in the weighted graph
representing the SDP solution an edge is excluded in each son;

Algorithm 2. The first non-integer entry of the SDP solution matrix is replaced
in the sons by 0 and 1 respectively.

Inequality conditions (22) were handled adding n2 − n slack variables each rep-
resented by a 1× 1 block as accepted by the software.

For solving the SDP relaxation tasks we used a modification of CSDP 2.3 software
package developed by Borchers [8, 9] in C language. The package is based on a
predictor–corrector variant of the interior point algorithm presented by Helmberg,
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Rendl, Vanderbei, Wolkowicz [43]. The experiments were performed on an Alpha
800 5/400 computer. Preliminary computational results were reported in [25]. A
part of the results is presented in the next subsection. Further numerical evidence
with larger TSP instances is given in [47], [48].

2.2. Complexity Indices for TSP. In this section we will illustrate how some
invariants related to the solution of SDP relaxation (19)–(23) could be implemented
as complexity indices in an adaptive solution approach for TSP. Such an approach,
introduced in [29], is based on the following principles:

For a given branch and bound (B&B) algorithm and a given maximal number
of relaxation tasks RS which are allowed to be solved within the algorithm, TSP
instances are classified into two classes: hard and easy instances. The hard class
contains TSP instances for which solving more than RS relaxation tasks is required
to reach an optimal solution, while the easy class consists of the remaining instances.

Since hard instances usually require a lot of computing time, there is some inter-
est to recognize such instances before the algorithm starts. If a concrete instance is
recognized to be hard, instead of finding an exact solution, a suboptimal solution
could be found by an efficient heuristic.

The recognition of hard and easy instances is realized using the notion of com-
plexity indices.

Given an instance of the TSP, the instance complexity of this instance for the
given B&B algorithm can be defined as the number of relaxation tasks which need
to be solved within the applied algorithm to reach an optimal solution.

Any number assigned to an instance which contains some information on the
instance complexity (with respect to a given B&B algorithm) will be called a com-
plexity index.

Usually, complexity index is a numerical graph invariant of a (weighted) graph
related to the solution of the relaxation task for the instance considered. In the
context of this study, special attention will be paid to highly informative graph
invariants, since we might expect that just these will serve as good complexity
indices.

Here we assume that there exists an efficient (polynomial) algorithm for deter-
mining the index under the consideration.

Since an instance complexity of the TSP for a given B&B algorithm is related
to the number of relaxation tasks, it is reasonable to determine the value of a
complexity index on the basis of solved relaxation tasks within the algorithm. This
is based on the expectation that the branch and bound algorithm will run for
longer, the more relaxation solution(s) are distanced from an optimal solution, and
that this information could be extracted from one or several relaxation solution(s).
Each type of a possible relaxation used in some variant of B&B algorithm offers a
variety of complexity indices. In this way complexity indices depend upon a B&B
algorithm and so special complexity indices for each variant of a B&B algorithm
can be introduced.

There are no theoretical results described in the literature which would indicate
the existence of efficient complexity indices for a particular instance of NP-hard
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problems, in spite of the fact that this would be of obvious practical importance.
As a mater of fact, we do not see how a theory of complexity indices for instances
of NP-hard problems could be set up based on known results.

The idea of complexity indices has been initiated in [54] in relation to the TSP.
The indices offered have been intuitively justified and their validity supported by
some experimental results. The largest eigenvalue of the adjacency matrix of a
minimal spanning tree has been introduced in [15]] as a complexity index for the
travelling salesman problem and its validity supported by some results from the
theory of graph spectra [31].

As a selection criterion for the most informative index, the measure of statistical
dependence of the value of the complexity index and the number of the solved
relaxation tasks is used. This measure ought to reflect as much as possible the
extent and the type of the dependence. It is also pointed out in [15] that the
efficiency of complexity indices is related to statistical distribution of the set of
instances which are intended to be solved.

Let N be a set of the TSP instances defined by distance matrices with elements
(i.e., arc lengths) from a given distribution. Let the output of the applied branch
and bound algorithm be presented by two sequences of real numbers (bi) and (ci),
i = 1, 2, . . . , |N |, where bi is the number of solved relaxation tasks and ci is the
value of the corresponding complexity index, both referring to the i-th instance of
the TSP in the set N . Under this assumptions we can interpret sequences (bi) and
(ci) as the realizations of random variables B and C in a statistical experiment.

The measure of dependence of a complexity index and the number of solved re-
laxation tasks can be interpreted as a degree of dependence of the random variables
C and B and estimated by the methods of correlation analysis.

The coefficient of linear correlation for two sequences (bi) and (ci) is defined by

CBC =
1

ϑBϑC

|N |∑

i=1

(bi − m̄B)(ci − m̄C),

where m̄B , m̄C and ϑB , ϑC are mean values and variances of the corresponding
sequences (bi) and (ci), respectively.

Under the assumption that the random variables B and C obey the normal distri-
bution, the correlation coefficient CBC is a reliable estimation of linear dependence
of the random variables B and C.

The efficiency of the complexity index can be statistically estimated measuring
the linear correlation between the index value and the number of relaxation tasks
solved within the B&B algorithm.

Several invariants can be considered as complexity indices for the TSP with
respect to B&B algorithms based on SDP relaxation [26]:

Let X be the solution of SDP relaxation (19)–(23) and L = X + hnI − J . Then
L determines the weighted graph WL = (V,EL, CL), where EL = {{i, j} ∈ E |
lij < 0} and CL = 2I − L, the corresponding unweighted graph GL = (V, EL) and
a stochastic matrix SL = I − 1

2L. The most efficient indices introduced in [26] are
the following:
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I1: the number of edges of GL

I2: the second smallest eigenvalue of the Laplacian of GL

I3: the entropy of SL, i.e., value equal to
∑

(i,j)∈EL

lij
2

log2

(
− lij

2

)
− n

2

I4:
n∑

i=1

|µi−µ∗i |, where µ1, µ2, . . . , µn and µ∗1, µ∗2, . . . , µ
∗
n are sequences of non-

decreasing eigenvalues of the Laplacians of GL and a Hamiltonian circuit,
respectively.

I5: the same sum as in I4 but with eigenvalues of the Laplacian of WL instead
of GL.

I6: the number of vertices of the GL with degrees greater than 2.

The efficiency of indices Ik, k = 1, . . . , 6, has been investigated in [26]:
For each dimension 20, 25, 30, 35 we consider 50 randomly generated TSP

instances with distances uniformly distributed in the interval [1,999]. To each
instance one of B&B algorithms based on SDP relaxation is applied (see Subsection
2.1).

The coefficients of the linear correlation between values of indices Ik(k = 1, . . . , 6)
and the number of relaxation tasks for dimensions n = 20, 25, 30, 35 are summa-
rized in Table 1. Results indicate that the most reliable indices are I1, I4 and I6

with almost significant correlation.

Table 1. Values of the linear correlation coefficients

index I1 I2 I3 I4 I5 I6

n
20 0.53 0.35 0.51 0.53 0.53 0.53
25 0.48 0.49 0.21 0.48 0.48 0.49
30 0.29 0.21 0.32 0.29 0.42 0.33
35 0.56 0.52 0.37 0.56 0.38 0.55
average value 0.47 0.39 0.35 0.47 0.45 0.48

Index I4 is a spectrally based invariant and, having in view facts from Subsec-
tion 1.2, one would expect that it performs better than I1 and I6. The obtained
experimental results presented in this subsection indicate the lack of theoretical
explanations of phenomena with complexity indices, the need for experiments with
instances of higher dimensions and, perhaps, the need for better classification of
graph invariants than the intuitive approach, adopted in this study on highly in-
formative graph invariants.

An idea how to improve the results with complexity indices is already given in
another context in [29, pp. 23–25]. One can consider linear combinations of already
defined complexity indices as well as the invariants of some short edge subgraphs
of the input weighted graph.

We shall describe now our adaptive procedure for solving TSP.
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The most important parameter in the adaptive solution approach for TSP is I∗

which represents the estimated value of the complexity index I corresponding to the
maximal allowed number of solved relaxation tasks RS . In general RS depends on
the problem dimension n and this function is chosen by the user, while I∗ depends
on both n and statistical distribution of TSP instances. The value of I∗ is used to
classify instances in hard and easy classes in the following way [29]:

(1) easy instances, I 6 I∗, and (2) hard instances, I > I∗.
More precisely, when I 6 I∗, then the number of generated subproblems within

the branch and bound procedure is expected to be less than RS , while for I > I∗

this number is expected to be greater than RS .
In the case when the solution process for TSP is based on SDP relaxation easy

instances can be solved by one of B&B algorithms from Subsection 2.1, while hard
instances are handled by a heuristic developed in [27]. The heuristic uses limited
branching based on the number of edges with weights equal to one in the graph WL.
Namely, already mentioned experiments with a set of 50 randomly generated TSP
instances for each of dimensions n=20, 25, 30, 35 show that high percentage of edges
from WL with weights equal to one stay in the optimal Hamiltonian circuit, which
is illustrated in Table 2. This suggests the following modification of the branch
and bound algorithms from Subsection 2.1. Starting from an initial upper bound
obtained by the 3-opt heuristic and the solution X of the initial SDP relaxation, all
edges from WL with weights equal to one are fixed, and the branching is performed
on the remaining edges.

Table 2

1 2 3 4
20 79.8% 97.7% 84%
25 84.1% 98.2% 78%
30 82.2% 98.1% 74%
35 85.4% 97.4% 60%

The proposed heuristic solves the TSP by limited branching and therefore it
has in the worst case exponential complexity. Nevertheless it performs very well
in practice, which is illustrated in Table 3. The test examples are the same as in
Table 2.

The columns in Table 2 contain the following data:
(1) dimension n of TSP;
(2) the average percentage of the edges with weights equal to one in WL w.r.t.

n;
(3) the average percentage of edges from WL with weights equal to one which

stay in the optimal solution;
(4) the percentage of TSP instances for which all edges from WL with weights

equal to one stay in the optimal solution.
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Table 3. Performance of the heuristic

1 2 3 4 5 6
20 93.6% 53.2% 0.14% 5 31
25 85.1% 59.6% 0.12% 7 80
30 79.2% 72.9% 0.37% 8 47
35 62.5% 89.6% 0.62% 10 92

The columns in Table 3 contain the following data:

(1) dimension of TSP;
(2) percentage of instances for which optimal solution was reached;
(3) percentage of instances for which the heuristic improved the initial upper

bound obtained by 3-opt heuristic;
(4) average relative distance from the optimal objective function value

(((fH − fopt)/fopt)%);
(5) average number of subproblems solved within the heuristic;
(6) maximal number of subproblems solved within the heuristic.

In [27] the described adaptive solution procedure was tested on the same set of
randomly generated instances used to generate Tables 1,2 and 3.

Before solving the instances we need first to decide upon the value of RS-the
maximal number of relaxation tasks which are allowed to be solved within the
adaptive procedure. Here for each dimension we take that RS is equal to the
maximal number of subproblems solved within the heuristic given in column 6 of
Table 3. As suggested in [27] the most reliable estimation for I∗k was achieved by
averaging those values in the correlation field which were equal (or approximatively
equal) to RS .

The performance of the adaptive solution procedure can be measured by two
parameters f and t determined on the basis of the whole set of considered TSP
instances. The parameter f represents the average percentage difference between
the objective function value fad obtained by the adaptive procedure and the optimal
objective function value fopt determined by the B&B algorithm, i.e.

f =
fad − fopt

fopt
%.

Value t is the “saving” of CPU-time, i.e., the percentage difference between the
average number of solved relaxation tasks within the B&B and the adaptive pro-
cedure.

In order to measure the quality of the adaptive solution with one parameter we
use the value k = t/(1 + f/100) proposed in [29].

The adaptive procedure was tested on the same sets of TSP instances for each
of complexity indices Ik, k = 1, . . . , 6 as before. According to [27], the best perfor-
mance was obtained for I6.

In Table 4 we report on relevant details for this case.
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Table 4. Results of the adaptive procedure for I6

n 20 25 30 35
I∗6 14 12 11 12

No. of hard instances 10 11 25 23
No. of detected hard instances 11 15 27 23
No. of easy instances 37 36 23 25
No. of detected easy instances 36 32 21 25
No. of incorrectly classified instances 7 16 10 10
exactness of decision 85.1% 66.00% 79.2% 79.2%

f 0.01% 0.05% 0.21% 0.21%
average No. of subproblems
in adaptive algorithm 13 36 56 61
average No. of subproblems
in optimal algorithm 23 69 198 238

t 43.5% 47.8% 71.7% 74.4%
k 43.5% 47.8% 71.6% 74.2%

Table 5

index I1 I2 I3 I4 I5 I6

average exactness
of decision 76.8% 73.7% 69.5% 76.3% 71.0% 77.4%
average value k 57.1% 46.4% 56.6% 56.1% 59.3% 59.3%

The results for the remaining complexity indices were also reasonable. Table 5
summarizes the most important indicators of the efficiency of the adaptive proce-
dure: the average exactness of decision per dimension and the average value k per
dimension.

On the basis of results presented in Tables 4 and 5 we can conclude that both the
exactness of decision and the quality measure k are satisfactory for all complexity
indices.

Another use of complexity indices in the TSP solving procedures is described in
[32]. A new search strategy in B&B algorithms has been developed. The traditional
backtrack strategies (depth-first search and breath-first search) are not optimal and
therefore the so called jumptrack strategies have been considered in the literature.
In such strategies any active subproblem can be selected following certain criteria.
Usually, one selects a subproblem with smallest lower bound. Complexity indices
have been introduced in [32] to help to select next subproblem. An ordered list of
interesting subproblems has been introduced. The strategy takes the first subprob-
lem from the list and branches it using the depth-first search until a complexity
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index starts to increase. Several variants of such a search strategy have been de-
scribed in [32]. Computational results show better behaviour of these strategies
compared with other ones.

2.3. Data Clustering. In this subsection we consider the problem of clustering
data (see, e.g., [1], [3]). Clusters in some cases are obtained by solving some opti-
mization problems. Again the algebraic connectivity of a graph is useful.

The algebraic connectivity is known to be a very useful parameter for describing
the “shape” of a graph (see, e.g., [31, p. 266]). Indeed, low algebraic connectivity
shows small connectivity and girth and high diameter, although such a statement
lacks a precise formulation. In the context of clustering, low algebraic connectivity
indicates that the graph has good clustering properties.

The data are usually represented by vectors from Rn. Euclidean or other kind
of distance function d(x, y) is assumed to be defined for any x, y ∈ Rn. Given a set
of vectors from Rn, the problem is to partition it into subsets called clusters under
various conditions. Clustering methods are supposed to produce clusters which
have the property that vectors from the same cluster in some sense are “closer” one
to the other than the vectors from different clusters. The number of clusters may
but need not to be given in advance. Sometimes cardinalities of clusters are given
or limited by additional conditions.

There are difficulties in applying traditional clustering procedures to discrete
data. We describe a graph theoretical approach in clustering binary vectors. New
clustering procedures are combined from several algorithms and heuristics from
graph theory and combinatorial optimization.

We consider clustering of discrete data. A typical example of discrete data are
binary vectors, i.e. elements of Bn where B = {0, 1}. When standard clustering
procedures (see, e.g., [1], [3]) are applied to binary vectors, the resulting clustering
has usually a low quality. Among other things, the clustering is highly dependent
of the ordering of vectors.

To avoid these difficulties it seems reasonable to use specific properties of discrete
data and to apply combinatorial, including graph theoretical, tools in handling the
problem. We have developed a number of complex graph theoretical procedures for
clustering binary vectors [16], [18], [20]. See also [22] and [61].

A hypercube Hn of dimension n is the graph whose vertex set is Bn and two
n-tuples are adjacent if they differ in exactly one coordinate. The number of coor-
dinates in which n-tuples x, y ∈ Bn differ is called the Hamming distance between
x and y.

For a graph G we define its k-th power Gk. The graph Gk has the same vertex
set as G and vertices x and y are adjacent in Gk if they are at (graph theoretical)
distance at most k in G. For k = 0 the graph Gk consists of isolated vertices. For
k = 1 we have Gk = G. If X is a subset of the vertex set of a graph G, then G(X)
denotes the subgraph of G induced by X.

Let X ⊂ Bn be a set of binary vectors (n-tuples) which is to be clustered. Our
procedures for clustering make use of the graph sequence

H0
n(X), H1

n(X), H2
n(X), . . . ,Hn

n (X)
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which is called the basic graph sequence.
Note that two vectors x, y ∈ X are at the Hamming distance k if they are

not adjacent in Hk−1
n (X) and are adjacent in Hk

n(X). For i = 1, . . . , n the graph
Hi

n(X) has all edges from Hi−1
n (X) plus those ones connecting vectors at Hamming

distance i. H0
n(X) has only isolated vertices while Hn

n (X) is a complete graph.
Let the vertex set X of a graph G be partitioned into subsets X1, X2, . . . , Xm.

A condensation of G is a weighted graph on vertices x1, x2, . . . , xm (called super-
vertices) in which xi and xj are connected by an edge if there is at least one edge
between Xi and Xj in G. Both supervertices and edges in the condensation carry
weights. The weight of the supervertex xi is equal to |Xi| while the weight of the
edge between xi and xj is equal to the number of edges between Xi and Xj . We
consider a condensation as a multigraph where edge weights are interpreted as edge
multiplicities while supervertices as vertices and supervertex weights are ignored.

In the clustering procedure, which will be described, some algorithms and heuris-
tics, described in the literature, will be used. We shall define them here (see [18]
for details).

Algorithm CP. This is an algorithms for finding components of a graph.
Algorithm JM. This is an algorithm for partitioning a connected (multi-) graph

into two parts.
Heuristic KL. This is a heuristic for partitioning the vertex set of a (multi-)

graph into two parts of given cardinalities with a minimum number of edges between
vertices from different parts [45].

Let X be a set of binary vectors of dimension n and suppose we have to cluster
it into k (k > 1) clusters. For k = 2 we consider the problem in two variants:
1◦ Cluster cardinalities are not given, 2◦ Cluster cardinalities are given.

Our procedure consists of two phases.

Phase 1. We form the basic graph sequence. Let ci be the number of compo-
nents of Hi

n(X). Components are sequentially determined in graphs from the basic
sequence by algorithm CP. We have c0 = |X| > c1 > c2 > · · · > cn = 1.

There is a non-negative integer s such that cs > k > cs+1. If cs = k, the
components of Hs

n(X) are clusters and the procedure is finished. If cs > k > cs+1

we proceed to Phase 2.
Phase 2. We distinguish cases: 1) k = 2 and 2) k > 2.

Case k = 2. Now Hs+1
n (X) is connected and we consider the condensation of

the graph Hs+1
n (X) in which components of Hs

n(X) play role of supervertices.
We consider two subcases:
1◦ Cluster cardinalities are not given;
2◦ Cluster cardinalities are given.

Subcase 1◦. If cs > 10 any of the following two procedures can be applied to
the condensation of Hs+1

n (X):
a) algorithm JM;
b) heuristic KL.
In any of these cases we get two clusters and the whole procedure is finished.
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In variant b) the user can select the range of cluster cardinalities and the number
of randomly generated starting clusterings. The result in variant a) can serve as a
hint for the range of cluster cardinalities in variant b).

If cs 6 10, we form all partitions of the vertex set of the condensation of Hs+1
n (X)

into two parts since there are only 2cs − 2 such partitions. We find the best parti-
tion with respect to a selected quality criterion (e.g., minimizing the edge number
between two parts). The whole procedure is thus finished.

Subcase 2◦. We apply algorithm JM to the condensation of Hs+1
n (X). If the

partition thus obtained shows cluster cardinalities required, we have done. Oth-
erwise we apply heuristic KL to the graph Hs+1

n where the starting partitions are
formed on the basis of information obtained by the working of the algorithm JM.
Let p, q (p > q) be the required cluster cardinalities. Let algorithm JM have given
a solution with cluster cardinalities r, s (r > s). If p < r, from the cluster of
cardinality r we choose those p vertices for which moduli of the coordinates of the
eigenvector from algorithm JM are as great as possible. If p > r, then q < s, and
from the cluster of cardinality s we choose q vertices as above. The result of the
working of heuristic KL for the starting partition so formed is compared with result
for other, randomly generated, starting partitions.

Case k > 2. Now we have cs > k > cs+1 and we get a clustering into k clusters
in one of the following two ways

1) by splitting some of cs+1 components of the graph Hs+1
n (X) into parts;

2) by uniting some of cs components of Hs
n(X).

We use first way if k is closer to cs+1 than to cs and the second one otherwise.
Splitting components we perform by partitioning a component into two parts

and by iterating this procedure. First we partition components of Hs+1
n (X) which

do not exist in Hs
n(X) and if there are not sufficiently many such components

we treat sequentially those which exist in Hi
n(X) and not in Hi−1

n (X) for i =
s, s−1, . . . . For components of Hi

n(X) (i = s+1, s, . . .) we form condensations with
supervertices corresponding to components of Hi−1

n (X) and for each condensation
we determine the ratio of the algebraic connectivity and the number of vertices.
Condensations are ordered by this ratio and partitioned sequentially into two parts
starting from those with a smallest ratio. In each step of partitioning the newly
generated components are treated as above. For partitioning components into two
parts we apply the procedure from the case k = 2 above.

When uniting components we consider all possibilities of uniting if cs − k <
4. Otherwise we apply the Ward method, which is one of the best hierarchical
clustering methods (see, e.g., [1], [3]).

Algorithm JM and the calculation of the algebraic connectivity have complexity
O(|X|3) while other parts of the procedure have lower complexities. Therefore the
whole procedure has complexity O(|X|3) and this is the same as in many standard
clustering procedures. However, theoretical reasons and numerical experiments
show that the graph theoretical procedure is superior to standard procedures in
clustering binary vectors.
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3. Defining Graph Invariants
by Solving Optimization Problems on Graphs

Section 3 elaborates Assertion 1. Subsection 3.1 introduces star bases and a
canonical star basis of a graph. This basis is obtained by solving several optimiza-
tion tasks and is useful in treating the graph isomorphism problem. It is shown in
3.2 that using canonical star basis one can construct a polynomial time algorithm
for checking the isomorphism of graphs with bounded multiplicities of eigenvalues.
Other examples of defining highly informative graph invariants are given in 3.3.

3.1. Star Partitions and Canonical Star Bases. Spectral techniques in graph
theory are based on the eigenvalues of the adjacency and other graph matrices.
These techniques have been further developed by considering, in addition, some
invariants of eigenspaces of graphs, namely graph angles. Introduction of star
partitions and canonical bases can be considered as a result of efforts in the same
direction – to enrich spectral techniques in graph theory.

Let G be a graph with vertices 1, . . . , n and (0, 1)-adjacency matrix A. Let
µ1, . . . , µm (µ1 > · · · > µm) be the distinct eigenvalues of A, with corresponding
eigenspaces S1, . . . , Sm. For each i ∈ {1, . . . ,m}, let ki be the multiplicity of µi.

Let us consider the spectral decomposition of A:

A = µ1P1 + · · ·+ µmPm.

Thus Pi represents the orthogonal projection onto Si and, if {e1, . . . , en} is the
standard orthonormal basis of Rn, the vectors Pie1, . . . , Pien constitute a eutactic
star (see [33]). Norms of vectors from these eutactic stars are angles of a graph.
Rows (or columns) of Pi are vectors of the eutactic star associated with Si. The
Gram matrix of these vectors is just the matrix Pi.

A partition X1∪̇ · · · ∪̇Xm of the vertex set {1, . . . , n} is called a star partition,
with star cells X1, . . . , Xm, if for each i ∈ {1, . . . ,m} the vectors Piej (j ∈ Xi)
are linearly independent. In this situation a comparison of dimensions shows that
|Xi| = ki (i = 1, . . . , m) and the vectors Piej (j ∈ Xi) form a basis Bi of Si. Then
B1 ∪ · · · ∪ Bm is a basis of Rn, called in [33] a star basis corresponding to A (a
construction applicable to any symmetric matrix with real entries).

It was shown in [33] that the following three theorems hold.

Theorem 3.7. Every graph G has a star partition.

Theorem 3.8. The partition X1∪̇ · · · ∪̇Xm is a star partition if and only if for
each i ∈ {1, . . . , n}, µi is not an eigenvalue of G−Xi.

Theorem 3.9. (Reconstruction theorem) A graph G is uniquely determined by an
eigenvalue µi, the subgraph G−Xi, and the subgraph G−E(Xi) where Xi is a star
cell belonging to µi and E(X) is the set of edges of G whose both end points are in
the set X.

It has been shown in [34] that it is possible to construct one star partition of a
graph G in time bounded by a polynomial function of the number n of vertices of
the graph G. One approach is related to the Hungarian algorithm for constructing
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a perfect matching in a bipartite graph. The complexity of this approach is at most
O(n4). The other approach uses matroid theory and a rough complexity estimation
is O(n5).

Let S be the matrix of a basis S of eigenvectors (in particular, a star basis or
even some kind of the canonical basis) of Rn corresponding to a graph G. Columns
of S are vectors of S. We have S = (S1 · · ·Sm), where Si is the matrix of the
star basis Si of the eigenspace E(µi). The adjacency matrix A can be expressed in
the form A = SΛS−1 where Λ is a diagonal matrix with eigenvalues of A at the
main diagonal. Putting (S−1)T = (X1 · · ·Xm) and using relation S−1S = I we get
Xi = (ST

i Si)−1ST
i . This is sufficient to prove the following proposition.

Proposition 1. We have A = µ1S1(ST
1 S1)−1ST

1 + · · ·+ µmSm(ST
mSm)−1ST

m.

Proposition 1 gives the spectral decomposition of the adjacency matrix A of a
graph. Hence, Pi = Si(ST

i Si)ST
i is the projection onto the i-th eigenspace E(µi).

The matrix Wi = ST
i Si is the Gram matrix of the star basis Si of the eigenspace

E(µi). (If the basis is orthonormal Wi is equal to a unit matrix).
If S is a precisely defined canonical basis, eigenvalues µ1, . . . , µm and matrices

S1, . . . , Sm comprise the canonical code of a graph. All graph properties can be de-
rived from the canonical code of the graph at least by reconstructing the adjacency
matrix A and applying some graph theoretical algorithms. Of course, it would be
of interest to derive procedures for a more direct link between the canonical code
of the graph and the graph properties we are interested in.

The problem is how to select a canonical basis of eigenvectors. Without addi-
tional restrictions there are infinitely many such bases and if we want to select one
by an optimization task, the set of feasible solutions is infinite and compact so that
we are led to a problem of continual (global) optimization. However, if we restrict
ourselves to star bases, we encounter a problem of finding an extremal value of a
function defined on a finite set since the number of star bases is finite. Hence, we
have to solve a problem of combinatorial optimization.

Let us note that the number of star bases of a graph, although finite, is very large
since we have to consider star bases corresponding to all orders (permutations) of
the vertex set.

Given a graph G on n vertices, the notion of a canonical basis of eigenvectors of
G for Rn which is related to the notions of the star basis and the star partition of G
has been introduced in [33]. This canonical basis is called the canonical star basis.
The canonical star basis is unique for a graph i.e. it does not depend on the vertex
labelling. Finding this canonical basis involves several extremal tasks similarly as
in finding an extremal binary number (see Subsection 1.2). To construct this basis
we have introduced a total order of graphs, called CGO (canonical graph ordering)
and a quasi-order of vertices called CVO (canonical vertex ordering). Both CGO
and CVO are defined recursively in terms of graphs with fewer than n vertices.

The definition of the canonical star basis enables the formulation of the following
theorem (whose proof is obvious):

Theorem 3.10. Two graphs are isomorphic if and only if they have the same
eigenvalues and the same canonical bases.
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Several improvements to the procedure from [33] have been proposed in [19]. See
also [35]. One can show that the procedure is reduced in some parts to special cases
of some well-known combinatorial optimization problems, such as the maximal
matching problem, the minimal cut problem, the maximal clique problem, etc.
This sheds some light on the algorithmical complexity of the procedure for finding
a canonical basis, i.e., tells something about the graph isomorphism problem.

A procedure for testing the isomorphism of graphs, which is based on the spectral
decomposition of matrices has been described in [69].

Since the canonical star basis together with eigenvalues of G determines G up to
isomorphism, algorithms for finding the canonical basis and some of its variations
are studied in [19]. The emphasis is given on the following three special cases:
graphs with distinct eigenvalues, graphs with bounded eigenvalue multiplicities
and strongly regular graphs. This technique provides another proof of a result of
L. Babai et al. [5] that isomorphism testing for graphs with bounded eigenvalue
multiplicities can be performed in polynomial time (see next subsection). One can
show that the canonical basis in strongly regular graphs is related to the graph
decomposition into two strongly regular induced subgraphs (these decompositions
are described in [41]). Examples of distinguishing between cospectral strongly
regular graphs by means of the canonical basis are provided. The behaviour of star
partitions of regular graphs under operations of complementation and switching is
studied in [19] as well.

The canonical star basis (and star bases in general) can be very useful in studying
other problems.

3.2. The Maximal Clique Problem and Bounded Multiplicities. The procedure
of finding the canonical star basis can be designed so that it contains a kind of the
maximal clique problem. This is especially useful in the case of graphs with bounded
multiplicities of eigenvalues. This subsection is mainly written following [19].

A star basis of a graph G with distinct eigenvalues µ1, . . . , , µm of multiplicities
k1, . . . , km is characterized by weighted graphs W1, . . . , Wm of orders k1, . . . , km,
respectively (see the comment after Proposition 1 in the previous subsection). In
orthodox star bases (i.e., bases among which the canonical star basis is selected)
the sequence W1, . . . ,Wm is lexicographically maximal using ordering of weighted
graphs specially defined in [33], [19], [35], i.e., canonical weighted graphs ordering
(CWGO) and canonical weighted graphs vertex ordering (CWGVO). Instead of
finding several (or all) star bases and selecting maximal ones among them, we
can find maximal sequences W1, . . . , Wm and check whether star bases with such
sequences exist.

Let us assume that G is a connected graph. Then µ1 is a simple eigenvalue
and W1 is reduced to squares of coordinates of the eigenvector belonging to µ1. As
proved in [34] any vertex can form a star cell X1 for µ1. Hence, for W1 we select the
square of a coordinate of the eigenvector belonging to µ1 with a maximal modulus.

Next we have to select X2, the star cell belonging to µ2. That means we have
to find a principal submatrix W2 of P2 of order k2 so that the weighted graph
determined by W2 is maximal. Now we can consider P2 as a weighted graph in
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which we have to find a clique of order k2 with a maximal weight if we define the
weight of a clique just to be the matrix W2. We decide which of two given cliques
has greater weight in accordance with ordering of weighted graphs (CWGO). The
complexity of this decision depends on the order of the clique.

Finding a maximal clique in a weighted graph has been considered in [6]. The
problem is essentially similar to the problem of finding a (maximal) clique in a
graph without weights on edges [42]. Roughly speaking, we have to check all

( n

ki

)

principal submatrices of order ki. If ki is fixed,
( n

ki

)
is a polynomial in n of degree

ki, i.e.,
( n

ki

)
= O(nki). If the size of the clique is not restricted, the problem of

finding a maximal clique (decision version) is known to be NP-complete. Note that( n

cn

)
for a fixed c (0 < c < 1) is not polynomially bounded.

Once we have found X2 such that W2 is maximal we can decide easily whether a
star partition exists in which X2 is a cell. (A necessary but not sufficient condition
for this is that the graph G −X2 does not have an eigenvalue µ2. An example is
provided by the Petersen graph; there is no star partition in which X1∪X2 induces
C6.)

More generally, given any partially built partition we can in a polynomial time,
using algorithms from [34], extend it to a star partition or establish that this cannot
be done.

It should be noted that our reductions of the graph isomorphism problem to
some well known combinatorial optimization problems do not involve general cases
of these problems; in fact, we have special cases determined by special features of
weight matrices in question (eigenvector and projector matrices). This is important
especially in the case when the general problem is NP-complete (NP-hard) as in
the case of the problem of finding a maximal clique. Note that such reductions of
the graph isomorphism problem to special cases of NP-hard problems (of unknown
complexities) have been already noticed elsewhere (see [64] where a special case of
the maximal clique problem occurs).

It has been proved by L. Babai et al. [5] that isomorphism testing for graphs
with bounded multiplicities of eigenvalues can be performed in a polynomial time.

Using above ideas we can confirm this result.
If eigenvalue multiplicities are bounded by an absolute constant a, then the size

of the maximal clique we have to find is limited also to at most a. It is known that
a maximal clique of limited size can be found in a polynomial time, i.e., in time
O(na) in this case. We can in a polynomial time examine and keep information
on all induced subgraphs whose vertex sets have cardinalities equal to eigenvalue
multiplicities.

Hence we can find an orthodox star basis in a polynomial time. In fact, we
can find all orthodox star bases in a polynomial time and go on in finding quasi-
canonical bases and the canonical basis.

Ordering vertices in star cells of orthodox star bases by corresponding CWGVOs
can be done in a time bounded by a function of the constant a. We can imagine
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that for testing isomorphism of graphs in which each eigenvalue has multiplicity
at most a we have prepared a (finite) table of automorphism groups and CVO for
graphs with at most a vertices. (It is even possible to use all orderings-at most a!-of
vectors in an orthodox star basis.) Hence, all maximization procedures, needed to
find the canonical star basis, can be performed in polynomial time and the result
by L. Babai et al. follows.

Remark 1. The result can be extended to graphs (as noted also in [5]) in which
all but one eigenvalue have bounded multiplicities and this property is heredi-
tary (holds also for any induced subraph). The hereditarity of the property in
question was not assumed in [5]. Perhaps it can be avoided also here but we
have assumed it since the multiplicity of an eigenvalue can increase when going
from graphs to subgraphs and the subgraph induced by the star cell corresponding
to the eigenvalue of unbounded multiplicity can have more than one eigenvalue
above the bound for eigenvalues. In this case we modify the notion of an ortho-
dox star basis in such a way that the matrix Wi corresponding to the eigenvalue
µi, whose multiplicity is not bounded, is put at the end of the original matrix se-
quence W1, . . . , Wm which should be lexicographically maximal (i.e., we have now
the sequence W1, . . . , Wi−1,Wi+1, . . . , Wn, Wi). Namely, we readily find in polyno-
mial time star cells corresponding to matrices W1, . . . , Wi−1,Wi+1, . . . , Wn while
the cell of unbounded size, corresponding to Wi is determined by the vertices which
remain. It is also not necessary to order vertices in this star cell; it is sufficient to
use the Reconstruction theorem (Theorem 3.3 from Subsection 3.1).

Remark 2. Let us finally note that the graph isomorphism problem can be
also reduced to a problem of finding a certain kind of matching in an auxiliary
bipartite graph. However, the number of vertices of this bipartite graph depends on
multiplicities of eigenvalues. The graph in question is the incidence graph between
the set of distinct eigenvalues of the original graph G and the set of subsets of the
vertex set of G with cardinalities equal to multiplicities of eigenvalues. There is
an edge between vertices representing an eigenvalue µ and a subset X of vertices
if and only if |X| is equal to the multiplicity of µ and G − X does not have an
eigenvalue µ. A star partition of G is represented by a matching which satisfies
some additional requirements but we shall not go into details.

As indicated, using canonical star bases we can relate the graph isomorphism
problem to some problems of combinatorial optimization (the problem of finding
a maximal matching, the maximal clique problem, the problem of finding a bipar-
tition with an extremal number of edges between the parts, etc.). Some of these
problems can be solved in polynomial time while the others are known to be NP-
hard. Arguments pro and contra the existence of a polynomial algorithm for the
graph isomorphism problem both exist.

3.3. Other Highly Informative Graph Invariants. In this final subsection we
shortly report on some other graph invariants which can be considered as highly
informative.



OPTIMIZATION AND HIGHLY INFORMATIVE GRAPH INVARIANTS 35

Spectra of weighted adjacency matrices have served to introduce a new impor-
tant graph invariant in [66]. For a connected graph G we introduce the class ÅG of
matrices A = (aij) for which aij > 0 if i and j are adjacent and aij = 0 otherwise.
Let µ1, µ2, . . . , µm (µ1 > µ2 > · · · > µm) be distinct eigenvalues of A with multi-
plicities k1 = 1, k2, . . . , km, respectively. Let µ(G) = max k2, where maximum is
taken over the class ÅG. For example, µ(Kn) = n−1 and µ(K3,3) = 4. It is proved
that G is planar if and only if µ(G) 6 3. It is conjectured that µ(G) > χ(G) − 1,
where χ(G) is the chromatic number of G. The validity of this conjecture would
imply the four color theorem!

The Lovász theta function has been introduced in [53] when solving a long stand-
ing problem in information theory. The theta function can be defined in many
equivalent ways: via an extremal problem concerning eigenvalues of graphs, via a
semidefinite programming model and in some other ways. For a short review on
this important graph invariant see [39].

See [10] for other interesting graph invariants.
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[26] D. Cvetković, M.Čangalović, V. Kovačević-Vujčić, Complexity indices for the traveling sales-
man problem based on a semidefinite relaxation, M. Vujošević, M. Martić, eds., Proceedings
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formatike, Sarajevo-Jahorina ’87, 1987, knj. 2, 276-1–276-5
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