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ON THE BRACHISTOCHRONIC MOTION OF: A° NON-CONSERVATIVE
DYNAMIC SYSTEM

f) S Djukzc

(Communicated January 5, 1977)
‘Abstract

The brachistochronic motion of mechanical system with dissipative genera-
hized forces is considered. The generalized workless forces, which must be ‘added
to thé system to realize brachistochronic motion, are obtained. As an apphcatlon
of the’ theory two particular problems are studied. S

1. Imtroduction

The optimization of mechanical system during the motion is a very old pro-
blem but contemporary current in recent years. John Bernoulli (1696) first formu-
lated and solved a problem of this kind. It was the brachistochrone problem.

Let us consider a dynamic system which is moving from a given configuration
A to another given configuration B. It is required to find the control forces which
will carry the system from A4 to B in a minimal-stationary time. The motion. of
the system is called brachistochronic, while the corresponding trajéctory of the
system 1S known as a brachistochrone. Following a concept of classical mechanics,
we will suppose that the total work of the control forces is equal to zero, and we
will say that these forces are workless. Namely, in the classical mechanics these
control forces are reactions of the constraints imposed on the system during the
motion. We will consider the control forces as the forces which must be added
to the system to realize the brachistochronic motion,

Bernoulli considered the brachistochronic motion of a particle under the
influence of gravity. The brachistochronic motion of a particle in a central force
field have been solved by Kleinschmidt and Schulze [4]. The brachistochronic
motion of a conservative mechanical system of #n degrees of freedom was studied
by Pennachietti [1] and McConnel [2] for the holonomic system, and by .Djukié
[3] for the nonholonomic case. In [9]—[11] the brachistochrone of a particle with
Coulomb friction has been treated. The brachistochrone of a particle in a re-
sisting medium was solved, in the sense of reduotlon to quadratures, by Euler (see
[6] p. 241), and recently by Drummond ‘and Downes [7]. Stojanovitch [8] consi-
dered the brachistochronic motion of a scleronomic holonomic dynamical system
in the field ot non-conservative forces that are mdependent of time and veloc1t1es
of the system. S S
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We will consider the brachistochronic motion of scleronomic holonomic
non-c¢onservative mechanical system, where the nonconservative generalized forces
are dependent on time, generalized coordinates and generalized velocities. As an
application of the derived theory, two particular problems will be analyzed.

In this paper the notation of tensor calculus is used throughout and the sum-
mation convention will be observed. Small italic indices imply a range of values
from 1 to n.

2./The "eqaations of brachistoclironic motion

Let us consider a holonomic scleronomic nonconservative mechanical system
with n degrees of freedom, where the ¢' are mutually independent generalized
coordinates and ¢ is the time. The mechanical system is characterized by the
kinetic energy .
. 1 cees
(1) T='§" ij(qr)qiqjs |

AN DA AR . Lo . ' ‘
poténtial enegy =, nonconservative generalized forces Q¢ and by the generalized
control forces u;. The potential energy is function of the generalized coordinates
and the nonconservative forces are dependent on the generalized coordinates,
generalized velocities and time. Here g% are the derivative of gt with respect to
time and a; are the functions of the ¢’ only. The corresponding differential equa-
tions of motion of the mechanical system are

d oT 0T oT
dt 0q* o¢ 24¢"°

@

Let us suppose that the mechanical system is moving in a Riemannian con-
figuration space V, with the metric form

3) (ds)? = 27T (dt)*=a; dq’ dg.

From this equation we immediately have that the time needed by the system to
pass from a given initial configuration

CE ¢ (0)=g"
to another known terminal configuration
(5) q' ()=¢"",
along a curve iIn the V,, is
.
1/2

(6) I= b dt,

(2T)\/?

0

where

(7) ¢ (q', éi)=aij q'q.
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Accordmg to our assumption total work* of the control forces u; is equal to
zero, 1.e.

(8) U; éiﬁ‘—.‘ 0.

Hence, between the change of mechanical energy and the work of nonconservative
forces done on the elementary displacement of the system there exists the relation

d .
(9) '2; (T+r)=0,49"

Using (3), above equation takes the form
O™

10 j"+__._. ; l[2=0,
(10) aq,q @
where | |

1 ,
11 P it q, q7) q'.
(11) VﬁQ( q,49")q

Further, we will restrict our analysis on the problems where the function ® may
be ‘always expressed as a f'l.lllCthl‘l of time, generalized coordinates and kinetic

energy, that 1is,

12 - - (, ¢, T).

In the brachistochronic motion of the mechanical system the functional (6), where
the terminal time t is not specified, must be minimal subject to the equation
(10) as a constraint. The variational problem is equivalent (see [6] p.222) to the
minimization of a new functional

T

(13) I* = f[nlﬂ“(q ) H(t, g, ), T)+A(T+§-—- q)]dt,
q
T 0

where A 1s Languange’s multiplier and

(14) H(t, ¢, "’T);V%' 2@ (1, ¢, T).

Assuming that the variation operator 8 and the differentiating operator d are
commutative, the first variation of (13), where the t is not specified, is given by

T

e e St (2

oq o dt \2 P¥L
0

(15) —A Ef 8T(¢112 oH i)}dt+18T i ( =12 Iv H+
| g’ oT . o \2 0q°
+1 25) 3g +H¢112(1 L 9% , )
34‘ 0 24" aq (=T

* indeed total power



42 G e e e P Ss PukiG e e e STt wd )

Following standard procedure of variational calculus, using (1), (7) and:the facts
that 3 ¢*(0)=38q%(r)=0, the condition that I* is stationary, i.e. 3/*=0, yields - ' .

H oy LIRS
(16) 4 ( o ‘)4’) b_ (szr “) o
. “ar \V2T 04') V2T o¢ g o)t
. __0H .
17 A=V2T —,
(17) =V =
(18) )\ST'{E‘;O.-* e e P

Combining (1), (2), (7), (16), we have the ':bptimal control forces Sl

B Ty

om 2T 0H Vzr[ o 0T d

(19) Up=——0; dgi " gt dr (V_T)]

aq H 0q¢" H

Hence, it follows:

Theorem: The brachistochronic motion of a holonomic scleronemte noncon-
servative mechanical system with kinetic energy (1) in the field of - forces .of
potential ® and nonconservative forces Q; is described by the differential equa-
tions (16), (17) and (10) and realized with the help of the control forces (19)

The transversallty condltlon (18) will be satisfied if

(20) - - | T(0)=T, or A(0)=0,
and
(21) -~ . T(n)=T, or A () =0,

\
where Tg and T} are 1n1t1al and terminal values of the kinetic. energy Combining

(1) and (7) we obtain the following equation
(22) =27 for tE[0,.1].

After integration of n second order differential equations (16) and two first order
differential equations (17) and (10) we have the ¢, T and A as functions:of tiine
and 2n+2 constants of integration. These 2n+2 constants and the terminal time
v of the motion may be found from the 2n-!—3 algebraic equatlons (4), (5) and
(20)— (22) | .

3. A brachist_ochronic stabilisation

Let us consider the perturbed motion about a circular orbit of a material
point in a Newtonian central force field, The corresponding differential equations
for the dlsturbances x and y are (for more details’ consult [12] p. 617):

(23) x—2y=0; P+H2x=3p=0. . . . toawbe
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Adding to the system a constant force -k. in- the y dlrectlon we wish to transfer
the initial disturbances = . e e e

(24) - x(O)=xy; yO) =y T(O)=T,
into the zeros, i.e. to thé state N |
(25) e X(r) =050 y(£)=0;. T(0)= 0 -

for a minimal time. Hence, we may call the problem under consideration ’’the
brachistochronic stabilization problem®, . In this case, the characteristic func-
tion of the problem are | - '-

(26) $ = %2+ 92 ZT%x’,‘Z-I—j)Z;- Tc='ky';-.i y2: D=0 H-— 3 RIS

2 ’ VaT

‘Combining (10), (16), (17) and (26) we obtain the differential equations ‘of i the
brachistochronic m_otion

@1 T+(k—3))y=0." B

d [ x d [y ~ '
(28 =0; = - A(k-3y);
(28) dt (2]’) dt (2T) ( ’)
(29) A= ——
A==or
From (24), (25) and (27) we have |
(30) 2T =3y%—2ky; k=—3— yo—zp-. | |

Solving the equations (18) and (29) and using (22) (26) and (30) we obtam fol-
lowing solution of the problem | | e

B 2_ 1\ Va2 _

e " k|1 F(a’l/a l) aE(a,Va 1.)],

3 - a a a

, 3 / 3 I
(32) t=c A Va ._..lF(cx,l - 1):

a]/3 a
where . . }-
(33) o = arcsin cos | arcsin 1(3 J’—l) }:

Vaz-——l a \k

a, b and ¢ are integration constants and where F({, k) and E (¢, k) are the
tell1pt1c integrals of the first and second order respectively. o
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Substituting (31) — (33) into the equations (24) and (25) we obtain the fol-
lowing system of algebraic equations for finding the constants a, b and ¢ and the

minimal time 7

b= I; [i F(a,, e)—aE(ocl; e)]; e=VazaH l X
(34) c= VZZV——I F (e, €); T——V=[F (%, e) — F(x,; e)];
- 3.:0 - [F(a, e)—F(ao;. )]~ alE (o, ) ~E(ap, e)],

where «g(x) and «; (a) are obtained from (33) for y=y¢ and y=0 respectively.

4.. Brachistochronic motion of a material point in a resting medium

A material point of unit mass with prescribed kinetic energy Ty is moving,
under the influence of gravity along a curve in space from a point 4 to another
point B. When the kinetic energy is T the motion is resisted by a force R (T)
per unit mass, but there is no other frictional force. The problem is to find the form
of the curve so that the point reaches B in the shortest possible time. The same
problem of motion, but in vertical plane, is treated in [6] p. 241. The characte-
ristic functions of the problem are

= —gz; 2T=x*+32+2% ¢=x2+3y*+2% &= -R(D),

1
VZ_T*AR(D

where x, y and z are the Cartesian coordinates of the material point, and g 1s
the acceleration due to gravity.

Substituting (35) into (10), (16) and (17) we have the following equations of
brachistochronic motion

(35) H=

| d | H |

(36) a (Vﬁ"‘)‘o’

d (| H

— v ]1=0;

(37) dt (Vzry ) |

d | H .
(3%) @ (Vﬁz)“”’
(39) V‘z’i“)—H

(40) T-g2+R(T) V2T=0.
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From (35)—(38) we have
(41) | H?=C_2+C2+ (Mg +C,),

where C;, C, and C; are integration constants. Combination (41) and (35)
yields the Lagrange’s multiplier A as a function of the kinetic energy |

- (g C, V§T) -V (T)

(42) A (T) = gz — R2 ’
where
(43) r@=(s - =) - @Ry (e creci- ).
> Y2T Y &
Now, from (35) and (41) it follows that
(44) H%—? dT = +V f(T)dA,
and the equations (36)—(40) become
(45) - Cy,x—-C,y=C,, C,=const.,
(46) dy=C, L,
VA(T)
(47) dz — [C3+K(T)g] dT

Vra

1 g[C,+2(T)g]
(48 dt = ——— 2 11d4T,
) t RVzr[ V(T }

where the positive square root of the function f(7') is taken. For any given depen-
dence R(7T), the problem can therefore be solved by quadratures.
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