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Abstract: In this paper an algorithm is described for an exact construction of digital
convex (2s+1)-gons of minimum diameter. A complete family of auxiliary so—called
perfect Basic b-tuples is obtained by applying this algorithm. The required optimal
(2s+1)-gons can be easily constructed from this family.
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1. INTRODUCTION

A digital convex polygon (shortly d.c.p.) is a polygon whose all vertices are points
of the integer grid and all the interior angles of which are strictly smaller than =
radians. The diameter of a d.c.p. is the minimal edge size of the enscribed digital

square with edges parallel to the coordinate axes.
The following optimization problem is considered:

Given an odd natural number 2s + 1, determine a d.c. (25 + 1)-gon of minimum
diameter mind(2s + 1).
The analogous problem for 2s—gons was completely solved in [4]. A construction of

almost optimal d.c. (2s + 1)-gons was given in [5]; these (2s + 1)-gons are almost
optimal in the sense that their diameters are not greater than

1+ mind(2s + 1).

In this paper the last step is made for completion of these results: an algorithm is
given, the results of which are used for an exact construction of optimal digital convex

(2s + 1)-gons.
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2. PRELIMINARIES

in And x, __ respectively denote the minimal y—coordinate and the maximal
r—coordinate of the considered d.c.p. P. Generally, the SE-arc (south—east arc) of P is
the sequence of consecutive edges (V,, V;,,), 1<i<k-1, where V, denotes a vertex
(x,y) of P;x) < ... <Xy =X, 0 3 ¥min =¥ < - <¥; - In particular, if the polygon P has a
lower horizontal edge (Vy, Vy) (Vo= (xo, %), V; = (x,,5,), 25 <x,), then this edge is
additionally considered to be the first edge of the SE-arc. The NE-arc, the NW-arc
and the SW-arc of a d.c.p. are defined in the analogous way.

Given an edge e = ((x,,¥,), (x5, ;) of a d.c.p., the edge slope of e denotes the
fraction:

BizBl ¢ ceNE-orSW-arc; A=%2l ' o cSB- or NW-arc,
Iy -2l by = xg |

while bd-length (shortly: bdl) of the edge e denotes the sum [x; —x,| + [y; —¥,l|.

DS(p, q) denotes a digital square with the property that each arc has exactly one
edge with the edge—slope g /p, where p and g are relatively prime natural numbers.

Let y

If the corresponding arcs of some two d.c. polygons P, and P, have no common
edge slopes, then there exists the Minkowski sum of P, and P,, which is a uniquely
determined third d.c.p. P, (for more details see, e.g., [6]). Each arc of P; includes all the
edges of the corresponding arcs of P, and P,, sorted so that the convexity condition is
preserved. The diameter of P, is equal to the sum of the diameters of P, and P,

MS(P) denotes the minimal (digital) square (with edges parallel to the coordinate
axes) in which a d.c.p. P can be inseribed.

A "projection of an edge” of a d.c.p. P is a projection of that edge to an edge of
MS(P) which is not "hidden" by P (thus each "oblique"” edge of P has exactly two
projections). s

2.1. ABOUND, A CONSTRUCTION AND TOLERANCES

A theoretical lower bound for diameter of a d.c. n—gon can be derived from the
following observations:

Let Minsum(n) denote the minimal possible sum of bd-lengths of n digital edges
which might be included into a d.c.p. P. We are going to make the notion of Minsum(n)
more precise:

Since the number of summands is fixed, the minimization requires the summands
to be as small as possible. Such a choice of summands is naturally performed by the
following "greedy” algorithm: choose as many summands equal to 1 as possible, then
proceed with summands equal to 2 and so on. All these summands are of the form
(p +q), where g/p (g=0,1,...,p=1,2,..) is an edge slope. The following two rules
must be obeyed by the edge slopes ¢/ p: the numbers p and g are relatively prime; each
g/ p can be used at most four times (at most once in each one of the four arcs of P) -
that is, it has at most four associated summands (p + q) in Minsum(n).
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A family { P(t) |t = 1,2, ... } of optimal d.c. 4s-gons was introduced in [7] (see also
[8]). Each arc of the polygon P({) contains all the possible edge slopes ¢ /p satisfying
p + g < t. The number of vertices and the diameter of the polygon P(t) are denoted by
v(t) and d(t) respectively.

One can derive ([1)) that the functions v(f) and d(¢) can be expressed in terms of
the Euler function ¢ (¢() denotes the number of integers between 1 and ¢ which are
relatively prime with i; e.g., (1) = 1, #3) = #4) = 2, #5) = 4) as follows:

¢ ]
v(t)=4- ¢i) d)=3i-¢)
=1 i=1

Let n e (v(t-1), v(?) ).

The diameter of a d.c. n—gon P cannot be smaller than one fourth of the perimeter
of MS(P). On the other hand, Minsum(n) is a lower bound for this perimeter.
Consequently, a greedy lower bound gdlb(n) for diameter of a d.c. n-gon can be
expressed as:

gdfb{n)=|'Mm5um[n]]

=d(t_n+|'(n-v{r— 1]}+:"

4

A d.c. n-gon for n odd is called perfect if its diameter is equal to 1 + gdlb(n) for
t mod 4 = 0 and gdlb(n) otherwise. Namely, it was shown in [5] that there are no d.c.
n—-gons with n odd, t mod 4 = 0, and diameter equal to gdlb(n).

Our construction of perfect d.c. n—gons is based on the key concept of perfect
Basic b-tuples.

A Basic b-tuple B is defined as a collection of b edges partitioned w.r.t. the arcs
which satisfies that each edge slope of B is used in at most three arcs. Note that B can
be used as a summand of a Minkowski sum and that MS(B) is well-defined. Initial
4s—gons associated to B are the Minkowski sums of s arbitrary different 4-gons of the
form DS(p, q), which satisfy the following conditions! p + g <t ; the edge slope g/p is
not used in B; all the edge slopes ¢'/p' which are not used in B and which satisfy
q' +p' < g+ p - are used in the corresponding Initial 4s—gon.

A Basic b-tuple B is called perfect if it can be used for the construction of a perfect
d.c. n—gon. The construction of perfect Basic b—tuples is the goal of the algorithm
described in Section 3.

Let k,, for i =1,2,3,4 denote the difference between the diameter of a Basic
b-tuple B and the sum of projections of edges of B onto the north, west, south and east
edge of MS(B) respectively.

A perfect d.c. n—gon P is constructed from a perfect Basic b-tuple B and a
corresponding Initial 4s-gon I (b + 4s = n) by applying in turn the following two steps:

1. Construction of the Minkowski sum T of B and I.

2. Replacement of edges of T with edge slope 0/1 ("flat" edges) in the i-th arc
(i=1,2,3,4 for NW-, SW-, SE- and NE-arc respectively) by edges with edge
slopes 0/ (k; + 1).
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Let a perfect Basic b-tuple B be devoted to the constructions of perfect n-gons
satisfying (n-b)mod4 = 0 and n € (v(¢-1), v(t)). We say that B leaves a gap if B
cannot be used for constructions of perfect d.c. n-gons with some of the considered
values of n.

Let a Basic b-tuple B be used for the construction of a d.c. n-gon P. The used
tolerance (shortly: UT) of B is equal to the difference of the sum of bd-lengths of edges
of P and Minsum(n).

Assume now that both B and P are perfect. Then the allowed tolerance (shortly:
AT) of B is equal to the difference of the perimeter of MS(P) and Minsum(n). It is
obvious that AT 2UT and that AT-UT =k, +k, + kg + k.

It turns out that AT depends merely on n' = nmod4 and ' = £ mod 4; its values
are given by Table 1:

WG

3. ALGORITHM

There are four (hierarchically nested) levels of search for perfect Basic b-tuples:
Cases determined by combinations of used bd-lengths, bd—lengths used within a Case,
edge slopes of a given bd-length and arcs in which a given edge slope is used. For
example, if Case and bd-length are fixed, then, when looking for an edge slope of that
bd-length, all the possibilities are tried, and for each one of them all the possibilities
for the arcs are examined. The preparatory stages of the algorithm include Case level -
generation of all the Cases (Section 3.1), as well as the preparation of the edge slope
level - generation of all the edge slopes, which might be used in a Case (Section 3.2).

3.1. LIST OF CASES

When looking for perfect Basic b-tuples, we make the complete List_of Cases for
a choice of bd-lengths of their edges. The diameter and the used tolerance of these
Basic b-tuples are determined by the Case and denoted as Diameter(Case) and
UT(Case) respectively.

List_of Cases is determined by hand, depending on nmod4 in {1,3}. The
partition into Cases is an application of the divide-and—conquer approach to the
search: a huge amount of unusable combinations is eliminated.

Each Case requires a fixed number of edges with a given bdl. Moreover, the
number of edge slopes with that bd! is sometimes (see mode 1 in Section 3.4) also
fixed, as well as the number of edges (arcs) with the corresponding edge slope.
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As an example, we give List of Cases (Table 2) for choice of bd-lengths of edges
of perfect Basic (4s + 1)-tuples, which can be used for n = v(f-1) + 1. Each Case is
written in the form of sum of the used bd-lengths. A summand of the form g * p[f -]
means that the corresponding perfect Basic b—tuple should use g distinct edge slopes
with bdl = t - i, so that each one of these edge slopes is used in exactly p arcs. If either
of the integers g and p is equal to 1, then it is omitted. A summand of the form gt or
g(t + i) means that the perfect Basic b-tuple should use ¢ edge slopes with bdl =1,
respectively with bdl = ¢ + i (these edge slopes, when used in distinct ares, need not be
distinct). Each sum in the list is followed by UT(Case). The additional denotation ! (w)
means that a perfect Basic b-tuple with such a choice of bd-lengths has been
effectively constructed (would leave no gaps).

Table 2.
3[t—4] + 2¢
3[t-3] + 3[t-1] + 3¢
3[t-3] + 2¢
3[t-3] +t + (t+1)
2 * 3(t-2] + 3t
3[t-2] + 2 * 3[¢t-1] + 4t
3[t-2] + 2 * 3[t-1]
3[t-2] + 3[¢t-1] + 3t
3[t-2] + 3[t-1] + 2¢ + (¢+1)
3[t-2] + 2[t-1] + 4t
3[t-2] + 2[t-1]
3[t-2] + 2¢
3[t-2] +t + (t+1)
3[t-2] + 2(t+1)

| 3[t-2) +t + (t+2)
2[t-2] + 3t

| 4 *3[t-1] + 5¢
4% 3[t-1) + ¢
3+ 3[t-1] + 4t
3 * 3[t-1]
3*3[t-1] + 3t + (t+1)

E

LT S NN T N X NN
(S €

= e
€ €

2% 3[t-1] + t + 2(t+1)
2 * 3[t-1) + 2t + (t+2)
3[t-1] + 2[¢-1) + 4¢

3[t-1] + 2[¢t-1] + 3t + (t+1)
3[t-1] + [t-1] + 5t

3[t-1] + [t-1] + ¢

2 * 2[t-1] + 5t

2+ 20t-1] + ¢

3(t-1) + 2t

3[t-1] + ¢ + (t+1)

3[t-1] + 20¢+1)

3[t-1) + ¢ + (¢+2)

3[t-1) + (¢+1) + (t+2)
3[t-1] + ¢ + (t+3)

2[t-1] + 3t

2(t-1] + 2t + (1+1)

2[t-1] + ¢ + 2(t+1)

2(t-1] + 2t + (t+2)

[t-1] + 4¢

[t-1] + 3t + (¢+1)

3.2. CANDIDATES FOR EDGE SLOPES

Given n e (v(t - 1), v(t)), a family F(bdl) of candidates for edge slopes of a perfect
Basic b-tuple is generated for each bdl € [t -AT,t + AT ). Given a bd! of the form
4k+u (k=0,1,.. , u=0,1,23), the candidates in F(bdl) are chosen to be of the
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bilinear form (i -k +j) / ((4 —i) - k+(u —J)), so that the denominator and numerator are
relatively prime. In particular, in the case bdl = 4k + 2 we distinguish the subcases
bdl = 8k + 2 and bdl = 8k + 6. The definition of perfect d.c. n-gons motivates the
partitioning w.r.t bdl mod 4.

Table 3 is obtained by quoting merely one of each two mutually reciprocal
fractions of the family F(bdl).

- Note that for each odd bdl there exists a subfamily of F(bdl) of the form
28/ (bdl-1-(2°-1)) for s=0,1,...,[log,(bdl)], while for each bdl satisfying
bdlmod4 = 2 there exists a subfamily of the form ((bdl/2)-1-(2°-1))/
((bdl/2) -1+ (2° +1)), for s =1,2,...,[log,(bdl/2)].

Table 3.

23
2k+1" 4k-(2°-1)’
2k-(2°-1)

T =1,2,...,|loga(2k +1)|
2k +1 e
2k+2" 4k-(2°-3)’
4k-(2°-1)
4k +(2° +1)’
4k —(2* - 3)
4k +(2*+3)

§=0,1,...,|loga(4k +1) |

s=0,1,...,| logy(4k +3) |

s=12,...,|logy(4k+1)|

s=12,...,|logy(4k+3)]

3.3. SKETCH OF THE ALGORITHM

The shell of the algorithm for the construction of a complete family of perfect
Basic b-tuples, which can be used for construction of perfect digital convex n—gons for
each n odd - has the following outlook in PseudoPascal:

BEGIN (* main *)
Generate F(bdl), bdl € {4k -4, ... 4k +4} U {8k, .. 8k +8};
(* these bdl-s are sufficient for all the Cases *)
FOR (n mod4) in {1, 3} DO BEGIN
Generate the List_of Cases;
(* for bd-lengths of edges of perfect Basic b-tuple *)
FOR (t mod 4) in {0, 1, 2,3} DO BEGIN
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Calculate AT(* Table 1 *);
Determine interval [ ATt + AT | for bdl;
Found := FALSE,;
REPEAT
Take next Case from the List_of_Cases;
IF UT(Case) <AT THEN BEGIN
Calculate Diameter(Case);
Initialize Basic 0-tuple;
Augment(No_slope, No_arc(s), 0) END
UNTIL Found or (List_of Cases is exhausted)
END (* fort *) END (* for n *) END. (* main *)

We also sketch the recursive procedure Augment, which searches for perfect
Basic b-tuples by backtracking. This procedure incorporates the last three levels of the
search; in particular, the bdl level is treated by Jump, while the WHILE loop searches
through the edge slope level and the arc level at the same time.

Each call of Augment in the main program corresponds to an attempt
(determined by Case) for construction of a perfect Basic b-tuple, while each successful
recursive call inserts one or more edges with the same edge slope into the current
Basic c-tuple (¢ < b).

PROCEDURE Augment(Last_slope, Last_arc(s), Last_diameter);
BEGIN
IF Completed THEN BEGIN
Print perfect Basic b-tuple;
Found := TRUE END

ELSE BEGIN
IF the current Basic c—tuple has the sufficient number

of edges with bdl = bdl(Last_slope) THEN BEGIN (* Jump *)
bdl := the next bd-length required by the Case;
New slope := the first candidate of F(bdl);
New arc(s) := the first possible;
F(bdl) exhausted := FALSE; END (* Jump *)
ELSE BEGIN (* an attempt for regular advancing *)
bdl := the bd-length of Last_slope;
IF Last_arc(s) = last possible THEN
IF Last_slope is the last candidate in F(bd!) THEN
F(bdl) exhausted := TRUE
ELSE BEGIN
New_slope := the next candidate in F(bdl);
New_arc(s) := the first possible END
ELSE New _arc(s) := the next possible END;
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WHILE NOT F(bdl) exhausted DO BEGIN
Insert(New slope, New are(s), New_diameter),
IF Feasible(Augmented_tuple) THEN
Augment(New slope, New_arc(s), New_diameter),
Delete(New slope, New_arc(s), Last_diameter);
IF New slope is the last candidate in F(bdl) AND
New _arc(s) = last possible THEN
F(bdl) exhausted := TRUE;
ELSE IF New_arc(s) = last possible THEN BEGIN
New_slope := the next candidate in F(bdl);
New _arc(s) := the first possible END
ELSE New_arc(s) := the next possible

END(* while *) END(* if not Completed *) END(* Augment *);

3.4. SOME FURTHER EXPLANATIONS ON AUGMENT

We elaborate some details within the procedure Augment:

Completed is the Boolean variable which becomes true when a perfect Basic
b-tuple (where b is the number required by Case) is constructed. In that moment the
Boolean variable Found becomes true and breaks the REPEAT loop in the main

program.
Feasible(Augmented_tuple) is the Boolean function which is true iff
Augmented_tuple satisfies the following conditions:

—_

—_

its diameter is not greater than Diameter(Case);

no edge slope is used in more than three arcs;

if the numbers of edges in NW-, SW-, SE- and NE-arc are denoted by nw,
sw, se, ne respectively, then nw>sw, nw2se, swzne (this condition

corresponds to avoidance of symmetry and shortens the search within
unsuccessful branches of the backtracking tree).

During the search for edges of a perfect Basic b-tuple, we distinguish two modes:

mode 1 (bdl <t): given an edge slope p /g with p + g < £, all the arcs of B in which

that edge slope will be used (at most three of them) are chosen at once
(the edge slope is treated as a whole);

mode 2 (bdl =1t): each edge (= the ordered pair of an edge slope and an arc) is

chosen independently of the others.

Note that both modes may be used with bdl =t (this bdl is preferable, since
tolerance is not used). During the backtracking, the modes can be alternatively used
several times. Determination of New_slope, New_arc(s), as well as the performance of
the procedures Insert and Delete — are mode-dependent.
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If Case requires the edges with edge slope = New_slope to be inserted into j arcs
Ue€{1,2,3}) in model and j=1 in mode2), then New arc(s) is chosen as the
lexicographically next combination of four arcs, without repetitions, of order j. The
attributes "the first possible", "the next possible" and "the last possible" are in
accordance with this lexicographical order.

The Boolean variable F(bdl) exhausted becomes true if there are no new
possibilities for New_slope and New_arc(s), within the given bdl. Note that each pass
through the WHILE loop corresponds to one bdl.

The procedure Insert effectively inserts the edge(s) with edge slope = New_slope
into the arc(s) determined by the combination New_arc(s). In this way the
Augmented_tuple is produced and its diameter (called New_diameter) is determined. If
the insertion implies that the Augmented tuple is not Feasible or the recursive call of
the procedure Augment terminates with failure, the reverse procedure Delete is
activated; it returns the Augmented tuple and its diameter into the previous state
(before the insertion).

4. PERFECT BASIC b-TUPLES

In this section we present the main result of the paper, which is obtained by the
algorithm of Section 3: a complete collection of perfect Basic b-tuples, for
constructions of perfect d.c. n—gons for each odd n. The Basic b-tuples in the collection
are partitioned w.r.t. ten cases, depending on n mod4 and ¢ mod 4; in particular, two
cases are used fort =4k +2:¢ =8k + 2 and ¢ = 8k + 6.

The data for each perfect Basic b-tuple B are listed. The first part of a list consists

of the denotations of the form < (List_of arcs), where -% is an edge slope (written in

P
the bilinear form) used in those arcs of B, which are mentioned in List_of_arcs

(1,2, 8, 4 denotes NW-, SW-, SE- and NE-arc respectively).

The second part of a list contains: the number b; the lower bounds for k and n, to
which B is applicable; the diameter d of B, which is equal to mind(n) - gdlb(n - b); the
values g of gaps, which are left by B (+i stands for the gap v(t-1) + i, while —i stands
for the gap v(t) - 1).

Casel. nmod4=1, t=4k

3k-1 2k-1
k (13) 2k+1

b=5 k=1, n217, d=5k

(14) i:i (2),
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Case2. nmodd=1 (=4k+1

3k+1 2k +1 1
23) ——(1),
3 (13) ok (23) 4k+1“
b=5 k=21, nz229, d=5k+2, g=+1
2k+1 1 k 4k 3k+1 2
— 1) —(2 3 ——(4),
2‘&“1(14‘3}3) 4&—1(12) 3k+1“ 1 (2) 5 ( &_1(

b=9, k=21, n=225 d=9%+1, g=-3,-7,-11

Case3. nmodd=1 (=8k+2

dk+1 6k+1 2k +1
B 2
4k g 2k+1( ) 6k+2

b=5, k=20, n25 d=10k+2

(4),

Cased. nmodd=1 t=8k+6

4k +5 4k +1 4k -1 6k+5 2k +2
12 4) ——(123 3
4k+1( 2 4k+5E ) 4k+7( } 2k+2(} 6k +5

b:g, kal, nz241, d=lﬁk+14, g=+1,+5

4k +2 8k+4 6k+5 2k+1 1
diag o0 =020 oW S Wi

b=9, k>0, n>41, d=18k+12, g=-3,-T

(1),

Caseb. nmod4=1, (=4k+3

3k +2 2k +2 1
TR T T

b=5, k21, n251, d=5k+4, g=+1

Case6. nmod4=3, =4k

3k +1 k 2k +1
1
k & 3k+1{3) 2k

b=3, k21, n219, d=3k+1

(4),

Case7. nmodd4=3, t=4k+1

3k+1 k 2k +1
k = 3k+1 e 2k gt
b=3, k21, n227, d=3k+1, g=-1,-5
k 2k 2k +1 1
el 0 Tl D 2k 2D Gkl

b=T7, k21, n>35 d=Tk+2, g=43,-1
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Case8. nmod4=3, t=8k+2

8k+1 6k +1 2k +1 4k +2
(234) 124 234
1 2k+1( ) 6k+l{ ) 4k +1 8k +2

b=11, k21, n2123, d=22k+6, g=+43,+7

Bk+1 6k+1 2k+1 4k +1
2) 4 o
1 ( 2k+1 “) 6k+1 2 4k Fnt Bk 2 ),

b=T, k21, n2115, d=14k+3, g=-1,-5

Case9. nmod4=3, t=8k+6

6k+5 2%k +2 4k +4
1
2k+1(} 6k+5(3} 4k + 3(4L

b=8, k>0, n243, d=6k+5

Case 10. nmod4 =3, =4k +3

3k+2 k+1 2k +2
1
k+1 0 3k + {3) 2k +1

b=3, k20, n>11, d=3k+3, g=-1,-5

3k+2 2k +2
e ( ) s (14) T[Z-‘M),

b=T, k21, n256, d=Tk+6, g=+3,

In some of the Cases (2.,4.,7.,8. and 10.) two different perfect Basic b-tuples are
used, in order to leave as few gaps as possible.

It can be shown that the gaps g = +1 in Case 5. and g = -1 in Case 7. must be left:
the corresponding perfect d.c. n-gons do not exist; the diameter of an optimal d.c. n-
gon is for 1 greater than the diameter required for a perfect d.c. n—gon. The same
conclusion can be derived for the special value n = 45 in Case 4.

One can also check that the perfect d.c. n—gons for the special values n = 13
(Case 5), n = 7 (Case 8) and n = 15 (Case 10) cannot be constructed by using the given
perfect Basic b-tuples. However, it is easy to construct these perfect d.c. n-gons

directly.

(4),

5. CONCLUSION

The results of the previous section can be summarized in the form of the

following theorem:
THEOREM 1. Let the number of edges of a d.c. n-gon P for some odd n belong to the
interval (v(¢ - 1), v(f)) for some natural number ¢ > 1. Then the minimum diameter
mind(n) of P is equal to gdlb(n) for each odd integer n > 4, except for the following
cases in which mind(n) = gdlb(n) + 1 is satisfied:
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n is odd, ¢ is divisible by 4;
n =uv(t-1)+ 1, wheretis of the form 4k + 3, k> 0;
n = v(t) -1, wheretisof the form 4k + 1, k> 0;

n =45,

00 B0 =

REMARK. It follows from the results of [4] that an analogous statement is valid for n
even. The only exceptional values of n in which mind(n) = gdlb(n) + 1 is satisfied -

are of the form:
5. n=uvl(t-1)+ 2, wheret is of the form 2%, k>1;
6. n =uv(t)-2, wheretisof the form 2k, k>1.

Note that all the non-exceptional optimal d.c. n—gons, as well as the exceptional
ones corresponding to the case 1. - are perfect. The algorithms for constructions with
the cases 2.3.4. (respectively 5., 6.) are described in [2] and [3]. Using these
algorithms, it can be shown that the optimal (either perfect or not) d.c. n—gons can be
efficiently constructed from a family of (perfect) Basic b—tuples.

The results of this paper (exact constructions for n odd) put an end to a series of
results motivated by the initial paper [7]: approximation formulae for minimum
diameter of a d.c. n-gon ([1]), exact constructions for n even ([4]) and suboptimal
constructions for n odd ([5]).

We suggest two related topics for future investigations: the maximal number of

edges of a d.c.p. inscribed into a given rectangle and a generalization of the considered
problem to the 3D—case.
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