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1. INTRODUCTION 

Commonly, when formulating a large scale multiobjective programming model 
which closely describes and represents the real world decision situations, various factors 
of the real system should be reflected in the description of the objective functions and 
constraints. Naturally, these objective functions and constraints involve many parameters 
and the experts may assign them different values. In the traditional approaches, such 
parameters are fixed at some values in an experimental and/or subjective manner through 
the experts' understanding of the nature of the parameters. In practice, however, it is 
natural to consider that the possible values of these parameters are often only 
ambiguously known to experts' understanding of the parameters as fuzzy numerical data, 
which can be represented by means of fuzzy subsets of the real line known as fuzzy 
numbers ([25], [26]). 

After the publication of the Dantzig-Wolfe decomposition method [5], there 
have been numerous subsequent works on large scale linear and nonlinear programming 
problems with block angular structure ( see f. i. [11,12,17, 24, 26]).  

M Sakawa and K Kato [21] formulated a large scale multiobjective linear 
programming problems involving fuzzy numbers. It is shown that the corresponding α-
Pareto optimal solution can be easily obtained by solving the minimax problems for 
which the Dantzig-Wolfe decomposition method is applicable. 

M. S. Osman, O. M. Saad and A. G. Hasan [20] presented a method for solving 
a special class of large scale fuzzy multiobjective integer problems depending on the 
decomposition algorithm. 

A. A. El-Sawy, N. A. El-Khouly and T. H. M. Abou-El-Enien [9] introduced an 
algorihm for decomposing the parametric space in large scale linear vector optimization 
problems under fuzzy environment. 

S. Opricovic and G. H. Tzeng [19] presented a comparative analysis of VIKOR 
and TOPSIS methods. The two methods are illustrated with a numerical example, 
showing their similarity and some differences. The multiple criteria decision making 
(MCDM) methods VIKOR and TOPSIS are based on an aggregating function 
representing "closeness to the ideal", which originated in the compromise programming 
method. In contrast, VIKOR linear normalization and TOPSIS vector normalization are 
used to eliminate the units of criterion functions. The VIKOR method of compromise 
ranking determines a compromise solution, providing a maximum "group utility" for the 
"majority" and a minimum of an individual regret for the "opponent". The TOPSIS 
method determines a solution with the shortest distance to the ideal solution and the 
greatest distance from the negative-ideal solution, but it does not consider the relative 
importance of these distances. 

M. A. Abo-Sinna [1] extends TOPSIS approach to solve multi-objective 
dynamics programming (MODP) problems. He shows that using the fuzzy max-min 
operator with nonlinear membership functions, leads to the solutions that are always 
nondominated solutions of the original MODP problems. 

M. A. Abo-Sinna [2] presents an interactive fuzzy decision making for 
generating α-Pareto optimal solution to multiobjective dynamic programming problems 
with fuzzy parameters through the decomposition method 
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H. Deng et. al. [7] formulated the inter-company comparison process as a multi-
criteria analysis model, and presented an effective approach by modifying TOPSIS for 
solving such a problem. 

C. T. Chen [4] extends the concept of TOPSIS to develop a methodology for 
solving multi-person multi-criteria decision-making problems in fuzzy environment.  

In this paper, we extend TOPSIS [15] for solving large scale multiple objective 
programming (LSMOP) problems with fuzzy parameters in the objective functions and 
the right-hand side of the independent constraints (LSFMOP). TOPSIS was first 
developed by C. L. Hwang and K. Yoon [14] for solving a multiple attribute decision 
making problem. It is based upon the principle that the chosen alternative should have the 
shortest distance from the positive ideal solution (PIS) and the farthest from the negative 
ideal solution (NIS). The single criterion for the shortest distance from the given goal or 
the PIS may be not enough to decision makers. In practice, we might like to have a 
decision which does not only make as much profit as  possible, but which also avoids as 
much risk as possible. A similar concept has also been pointed out by M. Zeleny [26] 
(see Y. J. Lai et. al. [15]). 

In the following section, we will give the formulation of the large scale multiple 
objective programming problem with fuzzy parameters in the objective functions and the 
right-hand side of the  independent  constraints (LSFMOP),  which have  block angular 
structure on which the Dantzig-Wolfe decomposition method was successfully applied. 
The family of dp-distance and its normalization is discussed in subsection 3.1. The 
TOPSIS approach is presented in subsection 3.2. By the use of TOPSIS, we propose an 
interactive algorithm for solving LSFMOP problems in section 4, where the DM is asked 
to specify the degree α and the relative importance of objectives. The satisfying solution 
for the DM can be derived efficiently form among an α-Pareto optimal solutions. We  
also give a numerical example in section 5 for the sake of illustration. Finally, concluding 
remarks and future works are given in section 6. 

 
2. FORMULATION OF THE PROBLEM  

In practice, it would certainly be more appropriate to consider that the possible 
values of parameters, in the description of the objective functions and the constraints, 
usually involve the experts' ambiguous understanding of the real systems. Thus, in this 
paper, we consider a LSFMOP problem of the following  block angular structure [13,  16, 
26]: 

(LSFMOP): 

1 2 2 2 1( , ), ( , ),..., ( , )kMaximize f X U f X U f X U⎡ ⎤⎣ ⎦  (1-a) 

subject to 

0
1

: , ,

0, 1,2,..., , 1

q
n

j j j j
j

j j

X R A X b D X Yj
X M

X d j q q
=

⎧ ⎫∈ ≤ ≤⎪ ⎪∈ = ⎨ ⎬
⎪ ⎪≥ > = >⎩ ⎭

∑  (1-b) 
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If the objective functions are linear, then the objective function can be written as 
follows: 

1 1

( , ) ( , ) , 1, 2,...,
q q

i i i i ij j ij i ij j
j j

f X U U C X f X U U C X i k
= =

= = = =∑ ∑  (2) 

where   
 
k : the number of objective functions, 
q : the number of  subproblems, 
m : the number of constraints, 
n : the number of variables, 

jn : the number of variables of the thj  subproblem, 1,2,..., ,j q=  
0m : the number of the common constraints represented by  

0
1

,
q

j j
j

A X b
=

≤ ∑   

jm : the number of independent constraints of the thj  subproblem 

represented by , 1, 2,...,j j jD X Y j q≤ =  
R : the set of all real numbers,  
X : an n - dimensional column vector of variables, 

jX : an jn  - dimensional column vector of variables for the thj   
subproblem, 1,2,..., ,j q=   

jA : an 0( )jm n×  coefficient matrix,  

jD : an ( )j jm n×  coefficient matrix,       

0b : an 0m  -dimensional column vector of right-hand sides of the common 
constraints whose elements are constants, 

jY : an jm  - dimensional column vector of independent constraints right-hand 
sides whose elements are fuzzy parameters for the thj  subproblem, 1,2,..., ,j q=  

jd  : is a certain lower bound for the variables jX  for all j , 

jU : an n - dimensional row vector of fuzzy parameters for the thi  objective 
function, 

ijU : an jn  - dimensional row vector of fuzzy parameters for the thj  subproblem 
in the thi  objective function, 

iC  : is an ( )n n×  diagonal matrix for the thi  function, 

ijC  : is an ( )j jn n×  diagonal matrix for the thj  subproblem in the thi  function, 

{ }1, 2,...,K k=  
{ }1,2,..., ,N n=  
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}{ }1 2( , ,..., : ,Tn
n iR X x x x x R i N= = ∈ ∈  

Throughout this paper, we assume that the column vectors of fuzzy parameters 
, 1, 2,..., ,jY j q=  and , 1,...,iU i k= , the row vectors of fuzzy parameters are characterized 

as the column vectors of fuzzy numbers and row vectors of fuzzy numbers respectively 
[8,22,26].  

These fuzzy numbers, reflecting the experts' ambiguous understanding of the 
nature of the parameters in the problem-formulation process, are assumed to be 
characterized as the fuzzy numbers introduced by D. Dubois and A. Prade [8]. In this 
paper, we deal with a real fuzzy number ã whose membership function aμ  (a) is defined 
as [8,22,26]:  

(1) A continuous mapping from R1 to the closed interval [0,1],         
(2) ( ) 0a aμ =  for all a ]1( , ,a∈ −∞  

(3) Strictly increasing on [ ]1 2, ,a a  

(4) ( ) 1a aμ =  for all a ]2 3( , ,a a∈  

(5) Strictly decreasing on [ ]3 4, ,a a  

(6) ( ) 0a aμ =  for all a [ ]4 , .a +∞  
 
A possible shape of the fuzzy number ã is illustrated in figure 1. 

 
 

            μã(a) ▲ 

  ► 
              0       a1       a2                   a3              a4         a  

Figure1. Membership function of the fuzzy number ã 

Observing the LSFMOP problem, it is evident that the notion of Pareto 
optimality [13] defined for the LSMOP problem cannot be applied directly.  Thus, it 
seems essential to extend the notion of usual Pareto optimality. For that purpose, we first 
introduce the concept of the α-level set or  α-cut of all the vectors whose elements are  
the fuzzy numbers as follows [8,22,26]:      
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Definition1. (α-level set). The α-level set of ( , )U Y  is defined as the ordinary set ( , )aU Y  
for which the degree of its membership function exceeds the level  

[ ] {
}

, ,,,
0,1 : ( , ) ( , ) : ( ) , ( ) , 1,..., ,

1,..., , 1,..., , 1,...,

a v tj s tj jjU

j

s tjv tj
U Y U Y U y v n

j q t k s m

α μ α μ α∈ = ≥ ≥ =

= = =
 (3) 

For a certain degree of α, the LSFMOP problem (1) can be understood as the 
following nonfuzzy α -large scale multiple objective decision making α  - LSMOP 
problem [13,16, 26]:  

( ) :LSMOPα −  

[ ]1 1 2 2( , ), ( , ),..., ( , )k kMaximize f X U f X U f X U  (4) 

0
1

: ,
q

n ј j
j

subject to X M X R A X b
=

⎧′∈ = ∈ ≤⎨
⎩

∑  (4-a) 

,j j jD X Y≤  (4-b) 

,j j jD X Y≤  (4-c) 

0, 1, 2,..., , 1,j jX d j q q≥ > = >  (4-d) 

}( , ) ( , )U Y U Y α∈  (4-e) 

In the α -LSMOP problem (4), the parameters , 1,..., , , 1,1,..., ,j iY j q and U i k= =  
are treated as variables rather than constants.  

Based on the definition of α -level sets of the fuzzy numbers, we characterize 
α – Pareto optimal solution of α - LSMOP problem (4) [8,22,26]: 
Definition2. (α -Pareto optimal solution). A solution Xj

* є  M' , j=1,2,…,q, is said to be 
an α - Pareto optimal solution to the α - LSMOP problem (4), if and only if there does not 
exist another , 1, 2,..., , ( , ) ( , )jX j q U Y U Y α= ∈ , such that 

1 1

( , )
q q

ij j ij ij
j j

f X U f
= =

≥∑ ∑ * *( , ), 1,2,..., ,j ijX U i k=  with strictly inequality holding for at least 

one i, where the corresponding value of the parameter (U* , Y* ) is called α -level 
optimal parameter. 

Thus, the α -LSMOP problem (4) can be written as follows [10,13,18]: 

[ ]1 1 2 2( , ), ( , ),..., ( , )k kMaximize f X U f X U f X U  (5-a) 

subject to  

0
1

,
q

j j
j

A X b
=

≤∑  (5-b) 
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,j j jD X Y≤  (5-c) 

0, 1, 2,..., , 1,j jX d j q q≥ > = >  (5-d) 

, 1,2,...,T T T
ij ij ijG U H i k≤ ≤ =  (5-e) 

, 0,1,..., , 1j j jY j q qη β≤ ≤ = >  (5-f) 

It should be noted that the constraints (4-e) are replaced by the equivalent 
constraints (5-e) and (5-f), where ,ij jG η  and jβ , ijH  are lower and upper bounds of ijU  
and jy , respectively. 

If the objective function is linear as in the equation (2), it will become  

1 1

( , ) ( , ) ,... 1, 2,...,
q q

i i i i ij j ij ij ij j
j j

f X U U C X f X U U C X i k
= =

= = = =∑ ∑  (6) 

If the equation (6) is used in problem (5), the nonlinearity of the objective 
functions can be treated by using the following transformations: 

, , , 1,2,... , 1, 2,..., , 1, 2,...,i js i js j jz u x i k j q s n= = = =  (7) 

Thus, equation (6) can be written as follows: 

( )i i if Z C′=  
1 1

( ) ,
q q

i ij ij ij ij
j j

Z f Z C Z
= =

′= =∑ ∑ 1,2,..., .i k=  (8) 

Consequently, problem (5) becomes: 

[ ]1 1 2 2( ), ( ),..., ( )k kMaximize f Z f Z f Z  (9-a) 

subject to  

0
1

,
q

j j
j

A X b
=

≤∑  (9-b) 

,j j jD X Y≤  (9-c) 

0, 1, 2,..., , 1,j jX d j q q≥ > = >  (9-d) 

( ) ( ), 1,2,...,ij ij ijG X Z H X i k′ ′≤ ≤ =  (9-e) 

, 0,1,..., ,1 1j j jY j qη β≤ ≤ = >  (9-f) 

where 

, ( ) , , , ( ) , ( ) , , 1,2,... ,
1, 2,..., , 1, 2,...,

i js i js j i js i js i js j

j

g x g x and h x h x h x i k
j q s n

′ ′ ′= = = =

= =
 (10) 

Problem (9) can be written as follows: 
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[ ]1 1 2 2( ), ( ),..., ( )k kMaximize f Z f Z f Z  (10-a) 

subject to  

{ }( )
0

1

0 : ,
q

n m m
j j

j

X M X R A X b+ −

=

′′ ′′ ′ ′∈ = ∈ ≤∑  (10-b) 

,j j jD X b′ ′ ′≤  (10-c) 

}0, 1, 2,..., , 1j jX d j q q′ ≥ > = >  (10-d) 

where ( , , )T
j j ij jX X Z Y′ =  is an ( )j j jn kn m+ +  - dimensional column vector of variables 

for the thj  subproblem, 1, 2,..., , ( 0)j jj q A A′= =  is an 0( ( ))j j jm n kn m× + +  matrix , 
where 0 is an 0( ( )j jm kn m× +  zero matrix, jD′  is a (3 2 ) ( ))j j i i im kn n kn m+ × + +  matrix 
which is the coefficient of the left-hand side of the following system: 

0,j j jD X y− ≤  (11-a) 

j jy U≤  (11-b) 

j jy L≥  (11-c) 

( ) 0ij ijZ H X′− ≤  (11-d) 

( ) 0ij ijG X Z′ − ≥  (11-e) 

j jY η≥ , (11-f) 

, 1, 2,..., , 1, 1,2,..., ,j jY j q q i kβ≤ = > =  (11-g) 

and jb ′  is a (3 2 )j jm kn+  - dimensional column vector of independent 
constraints right - hand side of the system (7) for the thj  subproblem, 1,2,..., ,j q=  

Now, if * * *( , , ) , 1, 2,..., ,T
j ij jX Z Y j k=  is the optimal  solution for the problem (11), 

then * * *( , , )T
j ij jX U Y  becomes the optimal solution for the problem (5) by using 

* * *
, , / , 1, 2,... , 1,2,..., , 1, 2,...,i js i js ju z x i k j q s n= = = =  (12) 

3. TOPSIS METHOD 

This section consists of two subsections. In subsection (3.1), we will redefine 
some basic concepts of distance measures for problem (10). In subsection (3.1), we will 
extend the concept of TOPSIS to obtain a compromise ( nondominated ) solution for α -
LSMOP problems.  
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3.1. Some Basic Concepts of distance Measures    

The compromise programming approach (see [7, 28]) was developed to solve 
multiple objective programming problem, by reducing  the set of nondominated 
solutions. The compromise solutions are the closest, by some distance measure, to the 
ideal ones. In this section, we redefine some concepts for the problem (10). 

The point * * *

1

( ) ( ) ( )
q

i i i i ij ij
j

f Z f Z f Z
=

= ∑  in the criteria space is called the ideal point 

(reference point). As the measure of “closeness”, pd  - metric is used. The pd  - metric 

defines the distance between two points, 
1

( ) ( )
q

i i ij ij
j

f Z f Z
=

= ∑  and * *

1

( ) ( )
q

i i ij ij
j

f Z f Z
=

= ∑  (the 

reference point) in k-dimensional space [18] as:  

[* * 1/ * 1/

1 1 1 1

( ( ) ) ( )
pq qk k

p p p
p i i ij ij

i i j j

d f f f f
= = = =

⎤= − = − ⎦∑ ∑ ∑ ∑  (13) 

where 1p ≥ . 
Unfortunately, because of the incommensurability among objectives, it is 

impossible to directly use the above distance family. To remove the effects of the 
incommensurability, we need to normalize the distance family of the equation (8) by 
using the reference point ( see [ 27, 28]) as:  

* *
1/

p
1 1 1 1

d ( ([ ] / ) )
q q qk

p p

ij ij ij
i j j j

f f f
= = = =

= −∑ ∑ ∑ ∑  (14) 

where 1p ≥ . 
To obtain a compromise solution for the problem (6), the global criteria method 

[13,16] for large scale problems uses the distance family of the equation (9) by the ideal 
solution being the reference point. The difficulties appear when solving the following 
auxiliary problem : 

[ ]* 1/

' '' 1 1 1

( )
pq qk

p
p ij ij

x M i j j

Minimize d f f
∈ = = =

= −∑ ∑ ∑  (15) 

where . *X ′  is the PIS and 1,2,...,p = ∞ . 
Usually, the solutions based on PIS are different from the solutions based on 

NIS. Thus, both PIS . *( )f  and NIS ( )f −  can be used to normalize the distance family 
and obtain [14] :     

[
1/

* *

1 1 1 1 1

( ( ) / ( )
pq q q qk

p
p ij ij ij ij

i j j j j

d f f f f −

= = = = =

= − − ⎤⎦∑ ∑ ∑ ∑ ∑  (16) 

where 1p ≥ . 
In this study, we further extend  the concept of TOPSIS to obtain a compromise 

( nondominated ) solution for α  - LSMOP problems.    
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3.2 TOPSIS for α  -LSMOP Problems  

Consider the following α  -LSMOP Problem [13,16,23]: 

[ ]1 1 2 2/ ( ), ( ),..., ( )k kMaximize Minimize f Z f Z f Z  (17-a) 

subject to 

X M′ ′′∈  (17-b) 

where 

1

( ) :
q

tj t
j

f Z
=
∑  

Objective Function for Maximization, 1 ,t K K∈ ⊂   

1

( ) :
q

vj v
j

f Z
=
∑  

Objective Function for Minimization, 2v K K∈ ⊂  
In order to use the distance family of the equation (16) to solve the problem 

(17), we must first find *( )PIS f  and ( )NIS f −  which are [14]: 

*

' ''
1 1

( ) ( ) ( ( )), ( )
q q

tj vjtX M
j j

f Maximize or Minimize f or f t and vZ Z ν∈
= =

= ∀∑ ∑  (18-a) 

' ''
1 1

( ) ( ) ( ( )), ( )
q q

tj vjtX M
j j

f Minimize orMaximize f or f t and vZ Z ν

−

∈
= =

= ∀∑ ∑  (18-b) 

* * * *
2 1 2( , ,..., )kK f f f f=  and 1 2( , ,..., )kf f f f− − −=  are the individual ∪  where 

1K K=  
positive (negative) ideal solutions.  
Using the PIS and the NIS, we obtain the following distance functions, 

respectively: 

* *

1 1 1 1 1/

* *

1 1 1 1

1 2

( ) ( )
[ ( ) ( ) ]

q q q q

tj tj vj vjt
j j j jPIS p p p p p

q q q qt vp
t K v K

tj tj vj vj
j j j j

f f f f
d w w

f f f f

Z Z ν
= = = =

− −∈ ∈

= = = =

− −
= +

− −

∑ ∑ ∑ ∑
∑ ∑

∑ ∑ ∑ ∑
 (19-a) 

and 

1 1 1 1 1/

* *

1 1 1 1

1 2

( ) ( )
[ ( ) ( ) ]

q q q q

tj tj vj vjt
j j j jNIS p p p p p

q q q qt vp
t K t K

tj tj vj vj
j j j j

f f f f
d w w

f f f f

Z Z ν

− −

= = = =

− −∈ ∈

= = = =

− −
= +

− −

∑ ∑ ∑ ∑
∑ ∑

∑ ∑ ∑ ∑
 (19-b) 
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where 1, 2,..., ,iw k=  are the relative importance (weighs) of  the objectives, and 
1,2,...,.p∞ =  

In order to obtain a compromise solution, we transfer the problem (17) into the 
following bi-objective problem with two commensurable (but often conflicting) 
objectives [15]:  

( )

( )

PIS
p

NIS
p

Minimize d Z

Maximize d Z
 (20) 

subject to 
M X′′ ′∈  

where 1,2,...,p = ∞  
Since these two objectives are usually conflicting to each other, we can 

simultaneously obtain their individual optima. Thus, we can use membership functions to 
represent these individual optima. Assume that the membership functions 

1 2( ( ) ( ))Z and Zμ μ  of the two objective functions are linear. Then, based on the 
preference concept, we assign larger degree to the one with shorter distance from the PIS 
for 1 ( )Zη , and assign larger degree to the one with farther  distance from NIS for 2 ( )Zη . 
Therefore, as shown in figure 2, 1 ( )Zη  and 2 ( )Zη  can be obtained (see [3, 30]): 

 
*

*

*
1 *

1, ( ) ( ) ,

( ) ( )
( ) 1 ( ) ( ) ( ) ,

( ) ( )

0, ( ) ( ) ,

PIS PIS
p p

PIS PIS
P p PIS PIS PIS

p p pPIS PIS
p p

PIS PIS
p p

if d Z d

d Z d
Z if d d Z d

d d

if d Z d

μ

⎡ <
⎢

−⎢ ′= − ≥ ≥⎢ ′ −⎢
⎢ ′>⎣

 (21-a) 

and 
 

*

*
2 *

1, ( ) ( ) ,

( ) ( )
( ) 1 ( ) ( ) ( ) ,

( ) ( )

0, ( ) ( ) ,

NIS NIS
p p

NIS PIS
P p NIS NIS NIS

p p pNIS PIS
p p

NIS NIS
p p

if d Z d

d Z d Z
Z if d d Z d

d d

if d Z d

μ

⎡ <
⎢

−⎢ ′= − ≤ ≤⎢ ′−⎢
⎢ ′<⎣

 (21-b) 

where 
 

*

*

( ) ( ) ,

( ) ( ) ,

( ) ( ) ( ) ( ).

PIS PIS PIS
p pX M

PIS NIS NIS
p pX M

PIS PIS NIS NIS NIS PIS
p p p p

d Minimize d Z and the solution is Z

d Maximize d Z and the solution is Z

d d Z and d d Z

′ ′′∈

′ ′′∈

=

=

′ ′= =
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             ▲  μ1(Z),  μ2(Z)  

          
           

1  
                   
                                         
                           
   
                            
                                            
                                                                max-min            
                                            ◄-----    solution   
                                                                                                                                         

                                                                                                                            
            
0             ----------------------------------------------------------------------------► dp(Z) 

                            (dp
PIS)*  (dp

NIS)/                 (dp
PIS)/           (dp

NIS)*   
 

Figure 2. The membership functions of   μ1(Z) and  μ2(Z)        

   
Now, by applying the max-min decision model proposed by Bellman and Zadeh 

[3], and extended by Zimmermann [30], we can resolve problem (15). The satisfying 
decision, X*, can be obtained by using the following model [3, 26]: 

{ }*
1 2( ) ( ( ), ( ))D X M

Z Maximize Minimize Z Zμ μ μ
′′∈

=  (22) 

Finally, if 1 2( ( ), ( ))Minimize Z Zδ μ μ= , the model (22) is equivalent to the form 
of Tchebycheff model (see [ 6]), which is equivalent to the following model: 

Maximize δ  (23-a) 

subject to 

1 ( ) ,Zμ δ≥  (23-b) 

2 ( ) ,Zμ δ≥  (23-c) 

[ ]0,1 , ,M Xδ′′ ′∈ ∈  (23-d)  

where δ  is the satisfactory level for both criteria of the shortest distance from 
the PIS and the farthest distance from the NIS. 

For finite value of p , problem (23) can be written as follows: 

Maximize δ  (24-a) 
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subject to 
* *( ( ) ( ) / ( ) ( ) ) ,PIS PIS PIS PIS

p p p pd Z d d d δ′⎡ ⎤ ⎡ ⎤− − ≥⎣ ⎦ ⎣ ⎦  (24-b) 

* *( ( ) ( ) / ( ) ( ) ) ,NIS NIS NIS NIS
p p p pd d Z d d δ′⎡ ⎤ ⎡ ⎤− − ≥⎣ ⎦ ⎣ ⎦  (24-c) 

[ ]0,1 , ,M Xδ′′ ′∈ ∈  (24-d) 

we have the following problem (instead ∞ For the special case of p = of the 
problem (20)) [15]: 

( )

( )

PIS
p

NIS
p

Minimize d Z

Maximize d Z
 (25-a) 

subject to 

X M′ ′′∈  (25-b) 

* *

1 1 1 1

( )) / ( ( )
q q q q

PIS
tj tj t tj t tj

j j j j

f f Z f w f d−

∞
= = = =

⎡ ⎤− − ≤⎣ ⎦∑ ∑ ∑ ∑  (25-c) 

* *

1 1 1 1

) / ( ( ) ( )
q q q q

PIS
vj vj vj v v vj

j j j j

f f f Z w f d−

∞
= = = =

⎡ ⎤− − ≤⎣ ⎦∑ ∑ ∑ ∑  (25-d) 

*

1 1 1 1

) / ( ( ) ( )
q q q q

NIS
tj tj tj t t tj

j j j j

f f f Z w f d− −

∞
= = = =

⎡ ⎤− − ≥⎣ ⎦∑ ∑ ∑ ∑  (25-e) 

*

1 1 1 1

( )) / ( ( )
q q q q

NIS
vj vj v vj v tj

j j j j

f f Z f w f d− −

∞
= = = =

⎡ ⎤− − ≥⎣ ⎦∑ ∑ ∑ ∑  (25-f) 

where 1,2,..., .p = ∞  
 

4. THE ALGORITHM OF TOPSIS FOR SOLVING LSFMOP 
PROBLEMS 

Thus, we can introduce the following algorithm to generate a set of α  - 
nondominated solutions for the α-LSMOP problem: 

The algorithm (Alg-I): 
Step 1. (i) Formulate LSFMOP problem (1) which has linear objective functions 

as in equation (2). 
(ii) Ask the DM to select [ ]* 0,1α α= ∈ . 
(iii) Elicit a membership function from the DM for each fuzzy number in 

LSFMOP problem (1). For example, the fuzzy parameter 1 2 3 4( , , , )a a a a a=  can have a 
membership function of the following form [8,22,26]:  
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[ ]

[ ]

1

2

2 1 2 1 2

2 3

2

3 4 3 3 4

4

0, ,

1 ( ) / ( ) , ,
( ) 1, ,

1 ( ) / ( ) , ,
0, .

a

a a

a a a a a a a
a a a a

a a a a a a a
a a

μ

≤⎡
⎢
− − − ≤ ≤⎢

⎢= ≤ ≤⎢
⎢ − − − ≤ ≤
⎢

≤⎢⎣

 (26) 

                          μã(a)   

 
          0         a1           a2                      a3                      a4         a 

Figure 3. Membership function of the fuzzy number ã at α=α* 

Figure 3. illustrates the graph of a possible shape of a fuzzy number ã at α=α*. 
(iv) Transform LSMOP problem (1) into the form of the problem (5) by using  

(i),   
(ii), (iii) and equation (6).  
Step 2. Transform problem (5) into the form of the problem (10). 
Step 3. Construct the PIS payoff table of FOR?? the problem (10) by using the 

decomposition algorithm [5], and obtain  f*=(f1
*,f2

*,….,fk
*), the    individual positive ideal 

solutions.  
Step 4. Construct the NIS payoff table of FOR??the  problem (10) by using the 

decomposition algorithm [5], and obtain f -=(f1
-,f2

-,….,fk
-), the individual negative ideal 

solutions.  
Step 5. Use the equations (18) & (19) and the steps 4 & 5 to construct PIS

pd  and 
NIS
pd . 

Step 6. Transform problem (17) to the form of problem (20). 

Step 7. (i) Ask the DM to select { }* 1, 2,..., ,p p= ∈ ∞  (ii) Ask the DM to select 

* , 1, 2,..., ,i iw w i k= =  where 
1

1,
k

i
i

w
=

=∑  

(iii) Use (i), (ii) and step 5 to compute ( )PIS
pd X  and ( )NIS

pd X . 
Step 8. Construct the payoff table of FOR?? the problem (20):  
At 1p = , use the decomposition algorithm [5].                      
At 2p ≥ , use the generalized reduced gradient  method [17],                
and obtain:   

α=α*     

1 
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* * *(( ) , ( ) ), (( ) , ( ) )PIS NIS PIS NIS
p p p p p pd d d d d d− ′ ′= = , 

Step 9. ( i ) Transform problem (20) into the form of problem (23) by using the 
membership functions (21).. 

( ii ) Transform problem (23) into the form of problem (24). 
Step 10.  Solve problem (24). 
Step 11. If the DM is satisfied with the current solution, go to step 11. 

Otherwise, go to step (1-ii). 
Step 11. Stop. 
 

6. A NUMERICAL EXAMPLE 

Consider the following LSFMOP problem which has the angular structure: 

1 11 1 12 2( ) 3 4Maximize f X u x u x′′ ′′= +  (27-a) 

2 21 1 11 2( ) 5 6Minimize f X u x u x′′ ′′= − −  (27-b) 

subject to 

1 2 6x x+ ≥ , (27-c) 

1 13 ,x y≤  (27-d) 

1 1x ≥ , (27-e) 

2 24 ,x y≤  (27-f) 

2 1x ≥ , (27-g) 

where 
1 (3,4,10,11),y = 2 (5,6, 22,23),y = 11 (0,1,3,5),u′′ = 12 (1,6,7,8),u′′ =

21 (0,5,7,10),u′′ =  and 12 (0,2,4,6)u′′ = . 
We use (Alg-I) to solve the above problem. 
Let * 0.36α α= =  and by using the membership function (20), thus  

1 11 1 12 2( ) 3 4Maximize f X u x u x′′ ′′= +  (28-a) 

2 21 1 22 2( ) 5 6Minimize f X u x u x′′ ′′= − −  (28-b) 

subject to 

1 2 6x x+ ≥ , (28-c) 

1 13 ,x y≤  (28-d) 

1 1x ≥ , (28-e) 

2 24 ,x y≤  (28-f) 
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2 1x ≥ , (28-g) 

110.2 4.6u≤ ≤ , (28-h) 

212 7.8u≤ ≤ , (28-i) 

121 9.4u≤ ≤ , (28-j) 

220.4 5.6u≤ ≤  (28-k) 

13.2 10.8y≤ ≤  (28-l) 

25.2 19.2y≤ ≤  (28-m) 

which can be written as follows : 

1 11 12( ) 3 4Maximize f X z z= +  (29-a) 

2 21 22( ) 5 6Minimize f X z z= − −  (29-b) 

subject to 

1 2 6x x+ ≥ , (29-c) 

1 13 ,x y≤  (29-d) 

1 1x ≥ , (29-e) 

2 24 ,x y≤  (29-f) 

2 1x ≥  (29-g) 

1 11 10.2 4.6x z x≤ ≤  (29-h) 

1 21 12 7.8x z x≤ ≤  (29-i) 

2 12 29.4x z x≤ ≤  (29-j) 

2 22 20.4 5.6x z x≤ ≤  (29-k) 

13.2 10.8y≤ ≤  (29-l) 

25.2 19.2y≤ ≤  (29-m) 

We first obtain PIS and NIS for the problem (29) and use the transformation 
(12) to get : 
Table1 : PIS payoff table 
 

1f  2f  1x  2x  1y  2y  11u  12u  21u  22u  

1 ( )Maximize f X  320.16* -47.52 3.6 3.8 10.8 19.2 4.6 11.87 2 0.505 

2 ( )Minimize f X  21.36 -301.68* 3.6 4.8 10.8 19.2 0.2 1 7.8 5.6 
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PIS: f *=( 320.16 , 301.68) 
 

Table2 : NIS payoff table  
 

1f  2f  1x  2x  1y  2y  11u  12u  21u  22u  

1 ( )Maximize f X  11.76 -41.76 3.6 2.4 10.8 9.6 0.2 1 2 0.4 

2 ( )Minimize f X  19.92 -23.52- 1.2 4.8 10.8 19.2 0.2 1 2 0.4 
 
NIS: f -=  (11.76   , -23.52) 
Next, we use the equations (18 and 19) to construct the following ones: 

[ ]
[ ] [ ]
[ ]
[ ] [ ]

1 1

1/

2 2

1 1

1/

2 2

( 320.16 ( ) / 320 16 11.76 )

( ( ) ( 301.68) / 23.52 ( 301.68) ) ,

( ( ) (11.76) / 320.16 11.76 )

( 23.52 ( ) / 23.52 ( 301.68) )

PIS p p
p

pp p

NIS p p
p

pp p

d w f Z

w f X

d w f X

w f X

⎡ ⎤ ⎡= − − − +⎣ ⎦ ⎣

− − − − − ⎤⎦
⎡ ⎤ ⎡= − − +⎣ ⎦ ⎣

− − − − − ⎤⎦

 

Thus, problem (20) is obtained. 
In order to get numerical solutions, let us assume that 1 2 0.5p pw w= =  and 
at 1p = , 

1 3 4 5 6

1 3 4 5 6

0.00864 0.00649 0.00899 0.11 1.0623
0.00864 0.00649 0.00899 0.11 0.0614

PIS

NIS

d x x x x
d x x x x

= + + + +

= + + + −
 

Table 3: PIS payoff table of the problem (20) at 1p =  and 1 2 0.5p pw w= =  
 

1
PISMinimize d  1

NISMaximize d  

1
PISd  -0.921* 0.1408 

1
NISd  0.014 -0.075* 

1f  230.16 19.92 

2f  -301.68 -23.52 

1x  3.6 1.2 

2x  4.8 4.8 

1y  10.8 10.8 

2y  19.2 19.2 

11u  4.6 0.2 

12u  9.4 1 

21u  7.8 2 

22u  5.6 0.4 
*

1 1( 0.921, 0.075), (0.1408,0.014)d d −= − − = . 
Now, it is easy to use problem (24) to formulate the following problem: 
Maximize δ  
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subject to 
[ ], 0,1X M δ′′∈ ∈ , 

1

1

( ( ) ( 0.9211)) /1.06193 ,
( 0.075 ( )) / ( 0.2162)

PIS

NIS

d X
d X

δ
δ

− − ≥

− − − ≥
 

The maximum “satisfactory level” ( 1)δ =  is achieved for the solution 

1 2 1 2 11 12 21 223.6, 2.4, 10.8, 9.6, 0.2, 1, 2, 0.4x x y y u u u u= = = = = = = = . 
Also, at 2p = , we have : 

2 2
2 3 4 3 4

2 2
3 4 5 6 5 6

0.5
5 6

2 2
2 3 4 3 4

3 4

0.000024 0.000042 0.005046 0.006738
0.000063 0.000081 0.000116 0.000194
0.00585 0.00585 0.56358)

(0.000024 0.000042 0.0001853 0.000247
0.000063

PIS

NIS

d x x x x
x x x x x x

x x
d x x x x

x x

= + − +

− + + +

− − +

= + − −

− + 2 2
5 6 5 6

0.5
5 6

0.000081 0.000116 0.000194
0.00076 0.000912 0.000543)

x x x x
x x

+ +

− − +

 

Table 4 : PIS payoff table of the problem (20) at p=2 and w1
p=w2

p=0.5 

 
1
PISMinimize d  1

NISMaximize d  

1
PISd  0.5040* 0.5182 

1
NISd  0.3557 0.4593* 

1f  181.863 186.544 

2f  -150.485 -225.797 

1x  2.2191 2.2172 

2x  4.0252 4.1490 

1y  7.2915 7.2915 

2y  16.5995 16.5995 

11u  10.2005 4.5921 

12u  9.3946 9.3998 

21u  7.778 7.796 

22u  2.658 5.598 

*
2 2(0.5040,0.4593), (0.5182,0.3557)d d ′= =  

Now, it is easy to use problem (24) to formulate the following problem: 

Maximize δ  

subject to 

[ ], 0,1 ,X M δ′′∈ ∈  
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2( ( ) 0.504) / 0.0142PISd X δ− ≥ , 

2(0.4593 ( )) / 0.1036NISd X δ− ≥  

The maximum “satisfactory level” ( 0.9999)δ =  is achieved for the solution  

1 2 1 2 11

12 21 22

1.5852, 0.4.4231, 8.6894, 17.7168, 2.1633,
2.0296, 3.4997, 3.4997

X X y y u
u u u

= = = = =
= = =

 

7. CONCLUDING REMARKS 

In this paper, a TOPSIS approach is extended to solve Interactive Large Scale 
Multiple Objective Programming problems involving fuzzy parameters (LSFMOP). The 
LSFMOP problems using TOPSIS approach provides an effective way to find the 
compromise (satisfactory) solution of such problems. Generally, TOPSIS provides a 
broader principle of compromise for solving multiple criteria decision making problems. 
It transfers k-objectives (criteria), which are conflicting and non-commensurable, into 
two objectives (the shortest distance from the PIS and the longest distance from the NIS), 
which are commensurable but most of the time conflicting. Then, the bi-objective 
problem can be solved by using membership functions of fuzzy set theory to represent 
the satisfaction level for both criteria and obtain TOPSIS, compromise solution by a 
second–order compromise. The max-min operator is then considered as a suitable one to 
resolve the conflict between the new criteria (the shortest distance from the PIS and the 
longest distance from the NIS). 

Also, in this paper, an interactive algorithm for generating an α-Pareto Optimal 
(compromise) solution of LSFMOP problem is presented. It is based on the 
decomposition algorithm of LSFMOP problem with block angular structure via TOPSIS 
approach for p=1, and Generalized reduced gradient method for p≥2.  This algorithm has 
few features, (i) it combines both LSFMOP and TOPSIS approach to obtain TOPSIS's 
compromise solution for the problem, (ii) it can be efficiently coded, (iii) it is found that 
the decomposition based method generally leads better results than the traditional 
simplex-based methods. Especially, the efficiency of the decomposition-based method 
increased sharply with the scale of the problem. Finally, an illustrative numerical 
example clarified the various aspects of both the solution concept and the proposed 
algorithm. Also, applications of the proposed algorithm will be required. 
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