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A PROJECTION METHOD FOR LINEARLY CONSTRAINED
PROBLEMS WHICH ONLY USES FUNCTION VALUES
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Abstract. In this paper we define an iterative algorithm which uses only function
values for finding an optimal solution to the problem min{yp(z) | + € X}, where
X is a convex polytope. It is shown that using this algorithm one can reduce the
initial problem to a finite number of subproblems of the type min{y(z) | z € C},
where C is a linear manifold. It is also shown that each cluster point of the sequence
generated by the algorithm presents an optimal point to the considered optimization
problem.
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1. INTRODUCTION

We consider the following minimization problem:
min{p(z) |z € X}, X ={z€R"|ATz>b}, (1)

where AT = (a;-r), j €{1,...,m} is an m X n matrix, b an m-vector.
We use in the sequel the following notation. We define the index set:

I(z)={je{1,...,m) |a}'x=b’;} = £ T, ]

We shall assume the following:

Al. ¢ : R® — Ris atwice continuously differentiable function with positive definite
Hessian matrix; we denote by g(z) and G(z) the gradient and Hessian at z,
respectively;

A2. X # @ and there exists a point £ € X such that the set L = {z € X | p(z) <
¢(z)} is bounded;

A3. the vectors a;j, j € I(z) = I are linearly independent for each index set I.

The algorithm presented in this paper 1s based on McCormick’s optimization
algorithm (see [1]) defined for minimizing a positive definite quadratic form on R".
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In solving the linearly constrained problem (1) we use McCormick’s algorithm for
finding an optimal point of the function ¢ on a linear manifold by means of an

active set strategy.

2. THE PROJECTION ALGORITHM FOR LINEARLY CONSTRAINED

PROBLEMS WHICH ONLY USES FUNCTION VALUES

Given €1,69,7; 0 < e <, < ;0 <y < 1.

STEP 0.

STEP 1.
STEP 2.

STEP 3.

STEP 4.
STEP 5.

STEP Ha.
STEP 5b.
STEP He.

Let z) be a given point in X. Because of assumption A2 it follows
that the level set L = {z € X | ¢(z) < ¢(zj)} is a bounded set. Set
I = I(z}). Let cardI = ¢, and let 5;,_;,i=1,... ,n—gq be n—gq vectors
with one in the i-th position and zeros elsewhere spanning the linear
space R"71. If ¢ =0, set Zy = F, where F is an n x n identity matrix.
Otherwise find a matrix Z; which is a basis matrix for the null space of
AT, where AT = (al), i€ I. Set k — 1.

Set 1 — 1.

Compute af satisfying the condition

p(zi_1 + a; Zrsi-1) = min{p(z{_, + aZysi_y) | zf_, + aZsioy € X}.
Denote by a* the optimal step along the ray Z;s;—; and by ai* the

:
step to the nearest inactive constraint. Select af = min(a¥,a’*). Set
rf =zf  +afZ;si_). If I(z¥) D I(z*_)), go to step 3; otherwise go to

step 4.

Set 2 «— z¥ k—k+1, g — card I(z¥), I — I(zF), determine Z;
and go to step 1.

If 1 = n — g, go to step 5; otherwise set i «— 7 + 1 and goto step 2.

Calculate

Gri,t' _ —2((,0': - ‘Pf—l)

p (a;_t)z !

f= .o B

where ©f = p(z*) and G;;;IE denotes a diagonal element of the approxi-
mation of the projected Hessian G':;' = Z] G*Z; and go to step 5a.

Set 3 e |,

Set j — 1.

k . *
Set z* «— :cﬁ_q, set ) — 1+ 1. Let 5;; = ¢; + ¢; € R"™ 9, where e,

18 a unit coordinate n — ¢ vector. Let a;; be the scalar that minimizes
 on the subspace corresponding to I along Zrs,; starting from ;.
Calculate z; ; = z* + ajjZrsij. I I(xi ) D f(:ci)‘ sel £f +~— i
k— k+1, ¢ — card I(z;;), | «— I(x;;), determine Z; and go Lo
step 1; otherwise set z*t! «— z,; oF = p(zF), pk+! = e(z**!) and
calculate

y £ ",1 ol id
G — 2(—pht! 4 ok - (“"J'):('r' = Foi. )2(1;‘,,
' 2o, )?




STEP 5d.
STEP 5e.

STEP 6.

STEP 6a.
STEP 6b.

STEP 6c¢.

STEP 6d.

STEP 6e.
STEP 6f.

STEP T.

STEP 8.

STEP 9.
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(approximation of an off-diagonal element of the projected Hessian G7)
and go to step 5d.

If j =n - q, go to step Se; otherwise set j «—— 7 + 1 and go to step 5c.
If1<n-—gq seti——1i+1 and go to step 5¢; otherwise calculate

n-—g n—gq

ky ] k
=3 6 (T atari)
=141 i=] J

(the approximation of the projected gradient at the point z;.) Calculate
llgg|| and go to step 6.

Set p — 0.

If ||g;” < €147, go to step 6b; otherwise go to step 6f.

Calculate the Lagrange multiplier estimate Ag. If all Af > 0, go to step

6c; otherwise find A¥ — the most negative Lagrange multiplier estimate,
and go to step 6d.

If vPe; < €5, go to step 9 (set ¢ —— z¥), otherwise go to step 6f.
If A satisfies \¥ < —4P¢;, go to step 7; otherwise go to step 6e.
If vPe; < €9, go to step 8; otherwise go to step 6f.

Calculate the Newton vector

Let a*t! be the scalar that minimizes ¢ on the subspace along Z;5;
starting from z*. Find zFt! = 2% 4 o**1Z;5,. If I(z*¥+!) D I(z*), set
zk — zFtl bk — k41, ¢ — card I(z*+!), I «— I(z*t!), determine
Z; and go to step 1; otherwise calculate the new approximation of the
gradient g;,"“, set £F — z¥*! bk — k+ 1, p— p+ 1 and go to step
Ba.

Set ] «— I\ {i,}. Set z¥ — z*¥ k «— k+1, ¢ — ¢q— 1, determine
Zy and go to step 1.
Calculate p(es) = €3 Z‘,E,'(A}’)Te,, where I, 1s the set of indices of

constraints with near-zero multipliers, i.e. I, = {i | —e2 < Af < 0} and
At is the pseudoinverse of the matrix A;. Calculate z(£2) = z* + p(e2)
and the corresponding Lagrange multiplier estimate A®?. Let (A®? —
A¥), = min{(}*? — A%);i € I,}. If (A2 — AF), < 0, go to step T;
otherwise set z — z* and go to step 9.

Topt — I, STOP.

3. THE PROOF OF CONVERGENCE

If © is a quadratic form, the Algorithm computes the exact projected gradient
and projected Hessian. In the general case we must assume that the obtained
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approximations are “sufficiently accurate”. For the sake of simplicity, in the proofs
that follow we shall assume g:f = go(2*), G': = G,(z*).

At first, we shall show in the following lemma that we may delete any constraint
for which A¥ is negative.

LEMMA. Let z* belong to the manifold defined by the index set I = I(z*) and
suppose g,(z*) = 0. If we delete from the active set of constraints the constraint
corresponding to a negative A*, then the vector 5 = —Z;(G;)"lg: in the subspace
corresponding to the new indezx set I = I\{i,} is a feasible descent direction because
the condilions

aT(rk + asg) > by, a>0, and ggék <0

3

are satisfied.

Proof. Since gp(:ck) = 0, it follows that g(z*) = Zjef Afaj. Consequently,

gp(z¥) = Z] (;.19(=") = Z{ (i) D Mai = N Z[\,10s # 0 (2)
i€l
since A¥ < 0 and the vectors a;, i € I are, by assumption, linearly independent.

Now we have, using the notation I = I\ {i,}, gx = 9(z%), g:8x =
—gTZp(GE) gk = —(ZTgi)T(GE)"1(ZTgr) = —(95)T(G}) 95 < O since Gy is
positive definite and gﬁ # 0 by (2). Finally,

aTse = —a] Z(GE) 7' 2T Y Mai = -2i(2fa)"(Gy) " (2fa) >0 (3)
1€/
because (G‘f;')"l is positive definite, A* L< 0 and Z}ra, # 0 by linear independence
of vectors a;, i € I. Since aXz* = b,, we obtain, using (3)

T .k T

af(m"ﬁ—as’k):a,:c + aa; sp > b,, a>0,

and that i1s what we had to prove.

THEOREM. Let the above (A1-A3) assumplions be satisfied. Then the presented
algorithm reduces the initial problem (1) to a finite number of subproblems of the
type min{p(z) | z € C}, where C 1s a linear manifold and each cluster point of the
sequence generaled by the algorithm presents an optimal point to the problem (1).

Proof. At a k-th iteration one of the two following cases can be realized.

CASE 1. z* is a near optimal point of  on the subspace corresponding to the index
get [ = I(J:’“); that 18, we obtamn

lgp(£5)]| < €19"

at step Ga.
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After some finite number of steps we shall get
lgp(z*)|| < €2, €17’ <€z andall AF >0

(steps 6a, 6b, 6¢c); that is, we find an optimal point z* = Tope (step 9) to the
problem (1).

If ”S?p(-‘ﬂt)ll < €;9" and A¥ — the most negative Lagrange multiplier estimate
satisfies the condition

Af € =7

(steps 6a through 6d), we delete (at step 7) the constraint corresponding to the
index t, and repeat the procedure of minimization on the new so defined subspace.

Or, after some finite number of steps (steps 6a, 6d, 6e, 8) we shall obtain
llgp(z*)|| < €2, Ay > —€, YEr X €3,

and we proceede to step 8 to check optimality conditions on an £2-active manifold,
that 1s to check the sign of

(A2 — AR, i€ 1,

where I, denotes the index set of the near-zero multipliers. If (A2 — A¥), > 0, we
have found an optimal point z* = z,,, (step 9); otherwise we delete a constraint
(at step 7) and repeat the procedure at step 1.

During the above described procedure we must stay in the feasible region X.

Our step-size 1s
o = min{a*, a"*},

where a* denotes the optimal step along the given direction and a** the step to
the nearest inactive constraint. If o = a**, that is, if we reach a new (inactive)
constraint, the process of minimization on the subspace corresponding to the index
set I(z*) is interrupted and we restart the process using the last obtained point on
the boundary as a starting point at the next iteration (step 3, step 5c, step 6f).

In this way, either we find a near optimal point of ¢ on the subspace corre-
sponding to I(z*), or the process is interrupted if a* = a**. In both cases the last
obtained point 1s used as a starting point (step 1 or step 7) and the minimization
process is repeated.

From Lemma and Algorithm it follows that the sequence of function values
{¢(z*)} is monotonically decreasing®.

CASE 2. z¥ is not a near optimal point of ¢ on the subspace corresponding to the
index set I = I(z*); that is, we obtain

l9p (25| > €177

at step 6a, 6¢c. In that case we proceed to look for the minimum of ¢ on the
subspace corresponding to I(z*) (step 6f) using the projected Newton vector 5 =

* See the second part of the proof.
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—Z;(G") gpz* until we either find an optimal point on that subspace: llge (2*)]] <
£, at step 6e (or a global optimal point at step 6¢) or we attach a new constraint
for a* = a*f. In both cases the last obtained point is used as a starting point and

the minimization process is repeated at step 1.

In both cases we also obtain decreasing values of ¢ since we make a pos-

itive step o > 0 along a descent feasible dlrectmn f = —Z;(G;) gp(x")
(by assumption of positive definiteness of G"‘) (If o = a**, we have 'k =
min; {(b; — aTx")/(a sk),aj8x < 0,5 ¢ I}. Since b; —alz* < 0 and a] §; <0, it
follows that a*f > 0).

From the above consideration of Case 1 and Case 2 it follows that either we
find an optimal point on a subspace (including a global minimum of ¢ on X) or
we add a new constraint to the set of active constraints. Since, by assumption, the
vectors a;, ¢ € I(z,) are linearly independent, such an extension of set of active
constraints must be finished after a finite number of iterations, which can not be

greater then n, where n is the dimension of the problem (1).

Since the sequence {y(z*)} is monotonically decreasing**, all the sets I(z*)
are different.

Hence, this algorithm constructs an optimal point of ¢ on a subspace (including
a global optimal point of ¢ on X) after a finite number of active constraint set
changes.

Since all index sets I(z*) C {1,...,m}, it follows that their number is finite
(the number of subsets of a set consisiting of m elements — 2™).

Therefore the number of problems min{g(z) | £ € C}, where C is a manifold
corresponding to the set of active constraints, must be finite.

Let us prove the second part of the theorem.

By Taylor’s theorem we have

2

e |
p(zFt!) = p(z*) - 'TPESEG:;(’T:)SJ::

r): = zF 4 0, ("1 = ), 0r € (0,1).

Therefore it follows that ¢(z**!) < (z*) since G"" iIs by assumption positive
definite. Hence {z*} C L, where L is by a.ssumption a compact set. Consequently
there exists asubsequence {z*1} such that z¥/ — z* € L as j — oo. By continiuity
of ¢ we have p(z*7) — p(zx) as j — oc.

From the algorlthm we have g,(z¥) — 0 as k — . By continuity of g, it
follows that g,(z*/) — gp(:: ) =0 as j — oo. Since from the algorithm we have
A(z®) 2 0, it follows that z* is an optimal point to the problem (1).

** See the second part of the proof.
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4. CONCLUSIONS

The advantages of the presented algorithm are:

. this algorithm uses the algorithm presented in (1, pp. 176-177] for uncon-

strained minimization on a subspace; so it requires only evaluation of function
values:

. since the direction vector 1s the Newton vector s = -—Z;(G;)"lgp(::"’) it 18

natural to expect a good rate of convergence of the sequence of points generated
by this algorithm to an optimal point of the problem (1);

3. the algorithm is simpler if ¢ 1s a quadratic convex function;

4. there exist suitable methods for evaluating the matrix Z and the Lagrangian

vector (see [2] and [3]);

. By Definition 4.1 and Definition 4.2 given in (2, p. 132} it follows that the

presented algorithm is an ideal algorithm and that the sequence generated by
this algorithm 1s 1deal, too.

The main disadvantage of the presented algorithm is that the algorithm de-

mands the calculation of an optimal step along the given direction and that the
information built up about the approximation of the projected Hessian is lost every
time a new constrained 1s encountered.

(1]
(2]
(3]
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