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CHAPTER VI� INFINITE SETS

�� Equivalence

In this Chapter we shall deal with in�nite sets� Here �in�nite� generalizations
of some concepts that we introduced in Chapter III appear naturally� For example�
let M�� M�� M�� � � � be an in�nite system of subsets of a certain set M � Subset M �

ofM � containing elements belonging to at least one of the subsetsMi� will be called
the union of these subsets and denoted in the same way� M � �M��M��M��� � � �
We will write

M � �
�
n��

Mn�

for short� For example� if M is the set of all natural numbers and Mn contains all
numbers k for which k � �n� then

S
n��Mn �M �

In the same way� if M�� M�� � � � � Mn� � � � is an in�nite system of subsets of
a set M � then those elements common to all subsets Mn� n � 	� �� � � � � form their
intersection� It is denoted by M� �M� � � � � or

T
n��Mn� For example� if M is the

set of all natural numbers and Mn its subset containing all numbers divisible by n�
then

T
n��Mn is empty�

If the subsets Mn are mutually disjoint 
i�e� Mi �Mj � � for i �� j�� then
their union is called the sum and it is denoted by M� �M� � � � ��Mn � � � � � For
example� if M is the set of all natural numbers andMn contains all numbers k such
that �n�� � k � �n� then M �M� �M� � � � ��Mn � � � � �
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When dealing with in�nite sets we immediately encounter the fact that one
fundamental notion which we used to formulate all questions and assertions in
Chapter III does not exist here�the notion of the number of elements of a set�
However� in Chapter III we stated the principle of equivalence of two �nite sets

i�e� when they have the same number of elements� in another way� two �nite
sets are equivalent if and only if there exists a one�to�one correspondence between
them� First of the notions�the number of elements of a set�cannot be applied to
in�nite sets� but the second�one�to�one correspondence�can be applied� So we
can transform the previous principle into the de�nition of equivalence of two sets�
which makes sense for arbitrary sets�

Two sets are called equivalent �equipotent� if there exists a one�to�one
correspondence between them�

In this way we can distinguish between �nite sets with 	� �� �� etc� elements� as
well as between in�nite sets according to whether they are equivalent to each other�
This procedure of dealing with in�nite sets was considered by scientists long ago�
But there was a seemingly paradoxical phenomenon� a set can be equivalent to its
proper subset� For example� the set of all natural numbers is equivalent to the set of
even natural numbers� If is enough to notice that for each natural number n there is
a corresponding number �n� this is obviously a one�to�one correspondence between
the sets of natural and even natural numbers� �Paradoxicality� comes from the
obvious fact that such a situation cannot arise for �nite sets� So it seemed that
even the notion of equivalence does not make sense for in�nite sets� For example�
Galileo in his �Dialogues� gives an example of a one�to�one correspondence between
natural numbers and squares of natural numbers where n and n� correspond to each
other� One of the participants concludes�

�properties of equalities� and also of inequalities� do not hold when
we deal with in�nities��

Only much later� in the second half of the XIX century� Dedekind introduced
the notion of equivalence as a fundamental notion for dealing with in�nite sets� He
took a property which was considered �paradoxical� before as a de�nition of an
in�nite set� a set M is in�nite if it is equivalent to its proper subset M � �M � We
shall prove later that this property is in fact equivalent to in�nity of the set�

We shall often use the following simple fact�

If the sets A and B are equivalent and B and C are equivalent� then A and C
are also equivalent�

Really� since A and B are equivalent� there exists a one�to�one correspondence
between them� Let this correspondence map an element a � A to an element
b � B� Analogously� since B and C are equivalent� there exists another one�to�
one correspondence between B and C� Let this correspondence map the element
b to an element c � C� The correspondence which maps a into c is a one�to�one
correspondence between the sets A and C 
check it yourself��� Hence� A and C are
equivalent�

Using the previous property� if we want to prove equivalence of two sets A and
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B we can replace A with an equivalent set A� and then prove equivalence of sets
A� and B� Analogously� B can also be replaced by an equivalent set B�� We shall
often use this method� even without mentioning it� It is analogous to the following
reasoning� in order to prove a � b� it is enough to prove a � a� for some a� and
then a� � b�

Let us �rst consider some simple in�nite sets� The simplest example of an
in�nite set is the �natural sequence of numbers�� i�e� the set of all natural numbers�
Each set equivalent to the set of natural numbers will be called countable�

Thus� for a countable set M there must exist a one�to�one correspondence
betweenM and the set N of natural numbers� If in such correspondence an element
a �M corresponds to a natural number n� we can say that it is indexed by n and
so the whole set M is numbered� In other words� the set M is countable if it can
be written in the form of an in�nite sequence M � fa�� a�� � � � g�

Countable sets are in a certain sense �the smallest� among in�nite sets� First
of all� each subset of a countable set is either �nite or countable� Indeed� a countable
set M can be numbered� M � fa�� a�� � � � � an � � � g� Let M � be its subset� We can
number it� calling an element ak �rst if k is the smallest index for which ak belongs
to M �� then calling an element al second if l is the smallest index for which l � k
and al belongs to M � and so on� This process will either stop�in which case the
subset is �nite�or it will continue to give a numbering of all elements of M �� since
each of them is contained among elements a�� a�� � � � � an� � � � � and will eventually
be obtained�

The same property of countable sets as �the smallest� in�nite sets can be
described in the following way�

Theorem �� Each in�nite set contains a countable subset�

Proof� Let M be an in�nite set� Choose an arbitrary element a� of M � Since
M is in�nite� it contains other elements as well� Choose from them an element a�
di�erent from a�� Since M is in�nite� it contains elements di�erent from a� and
a�� Choose from them an element a�� Continuing in this way� if we have already
found n distinct elements a�� � � � � an of M � then� since this set is in�nite� these
elements cannot exhaust it�we can choose again an element an�� of M from those
that are di�erent from all of a�� � � � � an� The subset N � fa�� a�� a�� � � � g that we
obtain in this way consists of distinct elements� Their numbering gives a one�to�one
correspondence between N and the set of all natural numbers�

Note that as the �rst element a� in the construction we could use any arbitrary
element a of the set M � which means that there exists a countable subset N such
that N � a�

Corollary� Each in�nite set M is equivalent to one of its subsets� di�erent
from the whole set M �

We shall prove this assertion in a more explicit form� for each element a of a

given in�nite set M � the set fag obtained from M by deletion of a� is equivalent

to M 
fag is the complement of the one�element set fag in M�� Consider �rst the
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case whenM is the set of natural numbers N and N � � fag� where a is an arbitrary
natural number� Correspond to each number n � a the number n itself� and to
each n � a the number n � 	� It is obvious that we have obtained a one�to�one
correspondence between N and N �� Hence� this assertion is valid for each countable
set�

For an arbitrary in�nite set M we shall use Theorem 	� Suppose that M
contains a countable subset N � As we have seen� we may suppose that a � N � As
we have proved� there exists a one�to�one correspondence between N and N �� where
N � is obtained by deletion of a from N � Let N be the complement of the set N in
M � and M � is obtained by deletion of a fromM � Then M � N �N � M � � N ��N �
We can construct a one�to�one correspondence between M and M � extending the
already found correspondence between N and N � so that each b � N is mapped
onto itself� Thus� we obtain that the sets M and M � are equivalent�

Let us state a few more examples of countable sets�

	� The set of all integers is countable�

Correspond the number � to number 	� positive integer n to number �n and
negative integer �m to number �m � 	� We obtain a one�to�one correspondence
between the set of integers and the set of natural numbers�

Corollary� The set which is the sum of two countable sets is countable itself�

Let A � B � C� If B and C are countable� then B is equivalent to the set
of positive integers� and C is equivalent to the set of negative integers� Hence� A
is equivalent to the set of all integers and is therefore countable� 
Note that we
obtained only integers di�erent from �� How can this problem be surpassed��

�� The set of all positive rational numbers is countable�

For a positive rational number
m

n
� let us call m� n its height 
we consider m

and n to be relatively prime�� Obviously� there exist only �nitely many rational
numbers of any given height� Write down �rst of all the rational numbers of height ��
then of height �� etc� We obtain an in�nite sequence in which each positive rational
number appears� sooner or later� If we correspond to each positive rational number
its index in this sequence� we obtain a one�to�one correspondence between the set
of positive rational numbers and the set of natural numbers� The beginning of our
sequence is as follows�

	�
	

�
� ��

	

�
� ��

	

�
� ��

�

�
�
�

�
� � � �

Here we put � �
�

	
� � �

�

	
� � �

�

	
� � � �

Corollary� The set of all rational numbers is countable�

We have already established a one�to�one correspondence between the set of
positive rational numbers and the set of natural numbers� Analogously� there exists
a one�to�one correspondence between the set of negative rational numbers and
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the set of negative integers� Corresponding zero to zero� we obtain a one�to�one
correspondence between all rational numbers and all integers� Since� according to
Example 	� the latter set is countable� the former is countable� too�

In Example � we represented the set of rational numbersM as a sum of count�
ably many �nite subsets Mk� where Mk is the set of rational numbers of height k�
Therefore the result of Example � follows from the following general result� a
countable sum of �nite sets is countable� We shall prove even stronger result�

�� A countable sum of �nite or countable sets is countable�

The proof is based on the same principle we used in Example �� Let M �
M� �M� �M� � � � � � Since the set Mi is �nite or countable� its elements can be
numbered� We shall assume that all of the sets Mi are really numbered� De�ne
the height of an element a of M � If it belongs to the set Mi and is numbered by
the index j in it� its height will be i� j� Obviously� there exist only �nitely many
elements of a given height� Really� if i � j � n is given� then i � n� so that an
element a of the height n can only belong to one of the sets M�� � � � � Mn��� If it
belongs to Mi� then it has a number j � n � i � n there� There are only �nitely
many such elements� Therefore� we can list �rst all the elements of height �� then
of height �� etc� The principle of numbering the elements of the set M is shown in
Fig� 	� where the set M� is written in the �rst row� the set M� in the second� etc��
and the numbering of elements ofM is represented by the zigzag line� It is assumed
in Fig� 	 that all of the setsMi are countable� Try to draw the corresponding �gure
in which� e�g�� the set M� is �nite and has three elements�

Fig� �

We have given several examples of countable sets� They are all mutually equiv�
alent� We shall give now some other examples of mutually equivalent sets�

�� Two arbitrary segments of the real line are equivalent� We can put our
segments �a� b� and �c� d� on two parallel lines and establish a one�to�one correspon�
dence between them as shown in Fig� �� More precisely� we connect an arbitrary
point x of the segment �a� b� with the point P of intersection of the straight lines ac
and bd� and we correspond to x the point y of the segment �c� d� which is the point
of intersection of the line Px and the line cd containing the segment �c� d��
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Fig� � Fig� �

�� Every line segment is equivalent to the whole line� i�e� to the set of all real
numbers� Taking into account Example �� it is enough to consider an arbitrary
segment� e�g� ��� 	�� Denote it by I � Divide the segment I into two equal parts by
the point 	�� and� bending it in this point� place it on the plane as shown in Fig� ��
as two equal segments �A�B� and �B�C� of the length 	��� making equal angles
with the x�axis�

Denote by P the midpoint of the segment AC and make the projection of
the bent segment I as in Example �� i�e� corresponding to the point a the point b
of intersection of the line aP with the x�axis� Obviously� the bent segment I is
equivalent to the original one� The given correspondence of the bent segment with
the line x is one�to�one� with the exception that there is no point of the line x which
would correspond to the endpoints A and C� since the lines PA and PC are parallel
to this axes and do not intersect it� We shall thus slightly change our construction�
Recall that in the proof of the Corollary of Theorem 	 we proved that each in�nite
set is equivalent to the set obtained from it by excluding one element� In particular�
the segment ��� 	� is equivalent to the set obtained from it by excluding one of its
endpoints� the number �� Repeating this argument we obtain that the segment is
equivalent to the set obtained by excluding both of its endpoints� the numbers �
and 	� This set is represented in Fig� � by the set obtained by excluding the points
A and C from the bent segment I � Denote the set so obtained by J � It is� as we
have seen� equivalent to the segment� But� on the other hand� the correspondence
represented in Fig� � for segment J will be a one�to�one correspondence between
this set and the whole x�axis� This proves our assertion�

Problems

�� Prove that the product of two countable sets is countable� The notion of
the product of sets was de�ned in Sec� 	 of Ch� III and it is valid for in�nite sets
as well as for �nite ones�

�� Prove that each circle is equivalent to the segment�

�� Divide the segment ��� 	� into two parts by the number 	��� then divide

the segment �	��� 	� into two parts by the number
	

�
�

	

�
� etc� We obtain numbers

�n �
	

�
�

	

�
� � � � � 	

�n
� Prove that the segment ��� 	� is the sum of the intervals

��n� �n���� Prove� analogously� that the line is a countable sum of the intervals
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�n� n � 	�� where n runs through all integers� Prove that the segments ��n� �n���
and �n� n � 	� are equivalent and deduce again that the segment and the line are
equivalent 
Example ���

�� Find explicit formulae for the one�to�one correspondence between the seg�
ments �a� b� and �c� d� constructed in Example ��

�� Prove that there is no one�to�one correspondence between the set of all
integers and the set of natural numbers which preserves addition� that is such that
if m is mapped onto m� and n is mapped onto n�� then m � n is mapped onto
m� � n��

�� Prove that there is no one�to�one correspondence between the set of all
integers and the set of natural numbers which preserves order� that is such that if
m is mapped onto m� and n is mapped onto n�� and m � n� then m� � n��

�� De�ne the distance between two points on a circle as the length of the
shortest arc of the circle connecting these points� The distance between points A
and B on a line segment will� as usual� be the length of the segment AB� Prove
that there is no one�to�one correspondence between the set of the points of a circle
and the set of the points of an arbitrary segment preserving distances� that is such
that if A is mapped onto A� and B is mapped onto B�� then the distance between
A and B is equal to the distance between A� and B�� Is this assertion valid if we
exclude a point from the circle�

	� There is a set of mutually disjoint segments on a line� Prove that the set
of these segments is �nite or countable� �Hint� Prove that the set of segments
contained in a given one is �nite or countable� In order to do that consider the set
of the segments of lengths greater than 	� then of lengths greater than 	��� 	���
etc��


� There is a set of mutually disjoint crosses in a plane� each of which is
made of a horizontal and a vertical segment� both of length 	� intersecting at their
midpoints� Prove that this set is �nite or countable�

�� The continuum

At the end of the previous section we stated several examples which can be
divided into two groups� A�countable sets 
all of these are� by de�nition� mutually
equivalent� and B�sets equivalent to a segment 
and so also mutually equivalent��
A question remained open� are the sets of the �rst group equivalent to the sets of the
second one� The principle of classi�cation of sets depending on their equivalence
would probably remain a pure mathematical game if it was not possible to prove
that two sets from groups A and B� respectively� are not equivalent� This fact has
a fundamental role for the whole mathematics�

Theorem �� The set of all points of a segment is not countable�

We shall give two proofs of this Theorem� using two di�erent properties of
segments� As we saw in Section 	� all the segments are equivalent to one of them�
e�g�� ��� 	�� so we shall consider this particular one�
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First proof� If the segment ��� 	� were countable� then the set obtained from
it by deletion of its right endpoint 	 would be countable� too� Write down each
number of this set as a decimal expansion ��a�a� � � � � where ai takes values from
f�� 	� � � � � �g� Suppose that all these numbers can be numbered as x�� x�� � � � � xn�
� � � � and write down their decimal representations in the following way�


	�

x� � ��a�a�a� � � �

x� � ��b�b�b� � � �

x� � ��c�c�c� � � �

� � � � � � � � � �

� � � � � � � � � �

� � � � � � � � � �

We will derive a contradiction from the assumption that we have numbered all
of the numbers of the segment by constructing a decimal expansion which does not
appear on the list 
	�� We shall construct it in the form y � ��k�k�k� � � � � Choose
the �rst digit k� so that k� �� a�� Then� for an arbitrary choice of the subsequent
digits� y �� x�� After that� we choose k� �� b��then for an arbitrary choice of the
subsequent digits� y �� x�� Then we choose k� �� c� and so on� kn is chosen to be
di�erent from the digit in the n�th place on the n�th row of table 
	�� Then we are
sure that y �� xn� After choosing all the digits kn� we �nd that y does not coincide
with any of the xk �s�

One can make the following objection to this reasoning� In Sec� � of Chapter V
we saw that the correspondence between the numbers of the segment and the
decimal expansions is not one�to�one�it is violated because of the in�nite decimal
expansions having � as the period� But if we exclude these expansions� then the
correspondence will be one�to�one� Therefore� we have to use only expansions that
do not have � as a period� As a result� each expansion in table 
	� will not have
� as a period� But we have also to ensure that our decimal expansion y does not
have � as a period� This is de�nitely possible� when choosing a digit kn� we have to
obey just one condition� kn has to be distinct from the n�th digit in the n�th row of
the table 
	�� But� since we have 	� possible digits��� 	� �� � � � � ��we can choose
kn also di�erent from �� As a result� the digit � will not appear in our expansion y
at all� The proof is complete� The process of constructing the expansion y is called
the diagonal process�

Second proof� In this proof we shall use segments determined by two points
a and b� a �� b� where the order a � b or a � b is not given in advance� We shall
denote them as �a� b� in both cases� so that if a � b� then �a� b� is in fact the segment
�b� a�� Note that every segment contains points distinct from its endpoints�e�g��
the segment �a� b� contains its midpoint �

� 
a � b�� Applying this reasoning to the

segment �a� �� 
a�b�� and repeating it� we deduce that each segment contains in�nite
number of points�

We come now to the proof of our assertion and we again suppose that the
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points of the segment ��� 	� are numbered as


�� x�� x�� x�� x�� � � �

Since numbering of the segment is� by the assumption� a one�to�one correspondence�
the numbers xm and xn are di�erent for m �� n� We will prove that the assump�
tion about countability of the segment is contradictory to the Axiom of embedded
segments� We �rst construct a system of embedded segments� We start with the
segment �x�� x�� and choose only those of the numbers in the sequence 
�� which
are contained in this segment� not coinciding with the endpoints� As we have seen�
there is an in�nite number of such numbers and they constitute a new sequence


�� xp� xq � xr� � � �

where 	 � � � p � q � r � � � � � Consider the segment �xp� xq � and choose those of
the numbers in the sequence 
�� which are contained in this segment and do not
coincide with the endpoints� We obtain another sequence

xm� xn� xk � � � �

where p � q � m � n � k � � � � �
This process can be repeated to in�nity� we obtain in each step in�nitely many

numbers from a certain segment� which are contained in sequence 
��� and in its
part constructed in the previous step� In this way we obtain a countable number
of sequences�

xp� xq � xr� � � �

xm� xn� xk � � � �

� � � � � � � � � � � � �

where the �rst sequence contains all of the points of the segment �x�� x��� except
the endpoints� the second contains all of the points of the segment �xp� xq �� except
the endpoints� etc� By construction� each new sequence starts with a greater index
than the previous one and therefore no number from sequence 
�� can belong to
all of them� But sequences 
��� 
��� etc�� are simply all of the numbers of the
segments �x�� x�� 	 �xp� xq � 	 �xm� xn� 	 � � � � except their endpoints� According
to the Axiom of embedded segments� there exists a number contained in all of the
segments �x�� x��� �xp� xq �� �xm� xn�� � � � � If it belonged� e�g�� to the segment �xm� xn��
it would� a fortiori� belong to the segment �xp� xq �� and it would not coincide with
its endpoints� i�e�� it would belong to one of the sequences 
��� 
��� � � � � But we
have seen that no number from sequence 
�� can belong to each of these sequences�
and all of the numbers from the segment ��� 	� are by assumption contained in
sequence 
��� This contradiction proves the theorem�

The second proof is a bit more complicated than the �rst one� but it has an
advantage that it does not use the representation of numbers in any position system
and it proves Theorem � directly from the axioms of real numbers�

Both proofs were found by Cantor in the nineteen seventies� and he had found
the latter proof before the former 
he was troubled by the di�culties connected with
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expansions having � as a period�� As we have seen� both arguments are very easy�
but the statement of the problem was completely new at the time� Cantor himself�
in one of his later articles� said that it took him � years to complete the proof of
the uncountability of a segment� A very interesting correspondence between Cantor
and Dedekind was kept which showed how hard it was to arrive at these new ideas�
Cantor wrote that he could not answer the question whether segment was countable
or not and asked Dedekind whether he knew the answer� The latter answered that
he did not know how to prove it 
both of them guessed the answer correctly�� but
he said that the question was� to his opinion� not worth dealing with� since it was
hardly probable that interesting corollaries could be deduced from it�

It is striking that Dedekind did not feel the importance of the question�not
least because of the fact that the uncountability of a segment and countability of
the set of rational numbers immediately imply the existence of irrational numbers
in a completely new way 
before that the existence of irrational numbers had been
proved only by the argument we followed in Chapter I�� It is even more striking
that Dedekind himself proved a statement which� together with the uncountability
of a segment� implied an even more important consequence�

It is connected with a concept that we have not mentioned before� but which
was well known at the time of Dedekind and Cantor� A number � is called algebraic
if it is a root of a polynomial a� � a�x � � � � � anx

n with rational coe�cients ai�
Since the roots of a polynomial do not change when the polynomial is multiplied
by a number� we can multiply the polynomial a� � a�x� � � �� anx

n by a common
denominator of all the numbers a�� � � � � an� and so we can assume from the be�
ginning that the coe�cients a�� � � � � an are integers� Those numbers that are not
algebraic are called transcendental�

Theorem �� The set of all algebraic numbers is countable�

Proof� Let us call the number n � ja�j � ja�j � � � � � janj the height of the
polynomial a��a�x� � � ��anx

n� Obviously� the height of a polynomial is a natural
number� It is also obvious that there exist only �nitely many polynomials whose
height is not greater than a given numberm� Indeed� if n�ja�j�ja�j�� � ��janj � m�
then n � m and jaij � m for all i � �� 	� � � � � n� Hence� for each coe�cient ai there
are no more than �m�	 possibilities 
�m� �m�	� � � � � �	� �� 	� � � � � m� and the
number of all such polynomials is �nite�

Consider now the set of all algebraic numbers which are roots of polynomials
with integer coe�cients and with height not exceeding a given natural number m�
Denote this set by Am� It is �nite� really� the number of polynomials with height
not exceeding m is �nite� as we have already seen� and each polynomial has a �nite
number of roots 
according to Theorem � of Ch� II�� The union of all sets Am for
m � 	� �� � � � is equal to the set of all algebraic numbers� From Example � of Sec� 	
it therefore follows that the set of algebraic numbers is countable�

Since the set of all real numbers is equivalent to the segment 
Example � of
Sec� 	�� the existence of transcendental numbers follows from Theorem �� And that
is far from being an easy fact� Although Theorems � and � imply that there are
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�a lot more� transcendental numbers than the algebraic ones� it is a very di�cult
task to construct a single example of a transcendental number and even more
di�cult to prove transcendence of a certain given number� It was only in the
middle of the XIX century that a number was constructed for which it was possible
to prove that it was transcendental� The most famous transcendental number is
the number ��its transcendence was proved in the nineteen eighties�

The assertion which we called Theorem � was proved by Dedekind in a letter to
Cantor� It seems that in order to underline the importance of the new ideas� Cantor
published a paper titled �On a property of the set of all algebraic real numbers��
where he gave proofs of the assertions which we called Theorem � and Theorem
�� and deduced the existence of transcendental numbers from them� Dedekind
acknowledged afterwards that his statement about the question of uncountability
of the segment being not interesting had been �seriously disproved��

But the following discovery was a shock to Cantor himself�

Theorem �� The set of points of a square is equivalent to the set of points of
a segment�

We shall compare the unit square and the seg�
ment of length 	� Let us start with a simple technical
modi�cation of the problem� Denote the square by K
and remove its adjacent sides AB and BC� Fig� �� De�
note the set that remains by P � and the union of the
sides AB and BC by L� Then K � P �L� Obviously�
L is equivalent to the segment 
it is a bent segment�
and if we prove that P is equivalent to the segment�
then K itself will be equivalent to the segment� Fig� �

We have already seen that the segment is equivalent to the set obtained by
deleting one of its endpoints� Thus it is su�cient to prove that P is equivalent
to the interval ��� 	�� with the point 	 deleted� Then� since L is equivalent to the
segment �	� ��� K will be equivalent to the segment ��� ��� We need these obvious
facts in order to pass from points to numbers� The coordinate method allows us to
describe any point of the square P by a pair of numbers 
x� y�� where � � x � 	 and
� � y � 	� In the same way� the points of the interval ��� 	� correspond to numbers
t with � � t � 	� Hence� we need to construct a one�to�one correspondence between
such pairs of numbers 
x� y� and numbers t�

In order to do this� write down all the numbers we need in the form of decimal
expansions

x � ��a�a�a� � � �
��

y � ��b�b�b� � � �
��

t � ��c�c�c� � � � �
��

where ai� bj � ck are digits from f�� 	� � � � � �g� All the points 
x� y� of the set P and
all the numbers t of the interval ��� 	� can be given in this form� Correspond now
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a number t to the point 
x� y� �mixing� expansions 
�� and 
��� i�e�� put c� � a��
c� � a�� c� � a�� � � � � c� � b�� c� � b�� c� � b�� � � � This correspondence is
one�to�one since expansions 
�� and 
�� can be reconstructed from the expansion

��� the digits ci with odd indices form the �rst expansion� and the digits with even
indices form the latter one�

The previous argument has the same problem as our �rst proof of Theorem ��
namely expansions having � as a period� Really� in order that the correspondence
between the numbers from a segment and the expansions be one�to�one� we had to
exclude expansions which have � as a period� But even if expansion 
�� does not
have � as a period� it can happen that one of the generated expansions 
�� and 
��
still does� For example� if t � ������� � � � � then x � ����� � � � � This objection was
made by Dedekind when Cantor wrote to him about his proof� Cantor was not
able to eliminate this defect� and so he soon found a new proof� not using decimal
expansions�

As a matter of fact� the proof could be corrected easily� In order to do that�
we have to complicate a bit the process of �mixing� expansions 
�� and 
��� paying
special attention to appearance of the digit �� Namely� we shall mix them as before�
taking one digit from the �rst expansion and one from the second one� as long as
they are di�erent from �� If one of the digits ak and bk is equal to �� we shall take
it together with all the ��s which follow it immediately in the respective expansion
and with the �rst digit di�erent from ��and we shall put the whole group of digits
into expansion 
��� For example� from the expansions x � ��	�
����
� � � � and
y � ���
����	 � � � we obtain the expansion t � ��	��
���
�����
	� � � � � where the
parentheses contain groups of digits taken as a whole� The process of reconstruction
of expansions 
�� and 
�� from expansion 
�� also needs to be modi�ed� As before�
we put digits of expansion 
�� into expansions 
�� or 
�� as long as they are di�erent
from �� When we encounter a �� we take it together with all the ��s that follow
it and also with the �rst digit di�erent from � that follows them� and put them
all together as one group of digits� So within each group of digits that is put into
a certain expansion� there is always a digit di�erent from �� and hence neither of
these expansions can have � as a period�

This easy argument proves the result which seems contradictory to our geo�
metrical intuition� �gures of di�erent dimension� such as a square and a segment�
appear to be equivalent� It can also be proved that the cube is equivalent to them

Problem 	�� The result shocked Cantor himself� He wrote to Dedekind� �The mat�
ter I have reported to you recently was so unexpected to myself� so new� that my
mind cannot rest before I hear your opinion� my dear friend� Until I see your justi��
cation I can only say� � and there in the letter written in German he unexpectedly
switches to French � � I can see but I do not believe� 
probably a reference to the
Evangelist saying �You believed when you saw me� blessed are those who have not
seen but believe���� It seemed to Cantor that the very mathematical description
of our intuition about dimensions needed to be considered again� �The di�erence
that exists between �gures of di�erent dimensions needs to be explained in a new
way� not using the number of independent coordinates � � � �
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In his reply Dedekind con�rmed the validity of the new proof� but expressed
his opinion that it does not contradict our belief that the dimension corresponds
to the number of independent coordinates� �Authors have always without saying
made the natural assumption that for a new de�nition of a point � � � using the new
coordinates� the latter must be continuous functions of the old coordinates��

The notion of a continuous function was at that time formulated precisely and
well known� We shall not go into the matter in general� but we will consider what
can happen in our example of the constructed one�to�one correspondence between
points of the square and of the segment� And this will be a consequence of the
problems that are caused by digit � appearing as a period� and of our method
of dealing with this problem� Consider two points 
x� y� and 
x�� y�� where x �
��	� � � � � � � � � y � ��� � � � �� x� � ���� � � � �� � � � 
there are n ��s in x��� Obviously�

y � �� x �
	

	�
and x� �

�

	��
� � � �� �

	�n��
� Then

x� �
�

	��

�
	 �

	

	�
� � � �� 	

	�n��

�
�

�

	��
	� �

��n

	� �
��


by the formula for the sum of geometric sequence�� This number is equal to
	

	�

�
	� 	

	�n

�
�

	

	�
� 	

	�n��
� Thus� when n increases� x and x� come arbitrarily

close to each other�

Consider now which points t and t� are corresponded to our points by the
process described in the proof of Theorem �� To obtain expansion t we just have to
�mix� the expansions corresponding to points x and y� After the decimal point� we
take 	 from x� then � from y� and then only zeros will follow� so that t � ��	� � � � �
	

	�
� Consider in more detail the process of constructing the expansion t�� After the

decimal point� we have to take � from x�� then � from y� then we come to � in x�

and we have to take the whole group of ��s together with the following �� After
that digits from y and from x� have to appear� but they are all zeros� As a result

we obtain t� � ����� � � � �� � � � � In other words� t� �
�

	��
� � � � � �

	�n��
� As in the

case of x� we can calculate�

t� �
�

	��

�
	 � � � �� 	

	�n��

�
�

�

	��
	� �

��n

	
��

�
	

	��

�
	� 	

	�n

�
�

	

	��
� 	

	�n��
�

We have seen that when n grows� x and x� come arbitrarily close to each other�
Since y is the same in both pairs� the pairs 
x� y� and 
x�� y� come arbitrarily close to
each other� too� But the corresponding points t and t� remain �far� from each other�

t �
	

	�
� t� �

	

	��
� 	

	�n��
and t� t� �

	

	�
� 	

	��
�

	

	�n��
�

	

	�
� 	

	��
�

�

	��
� Thus�

our correspondence somehow �tears apart� the square�points that are arbitrarily
close to each other correspond to points which stay at a distance greater than a
certain positive number� The process is similar to the process of tearing apart a
sheet of paper�
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In another letter to Cantor� Dedekind stated the assumption that if the require�
ment of continuity was included in the de�nition of one�to�one correspondence 
we
skip the precise formulation of that�� then it would not be possible to construct a
one�to�one correspondence between geometrical �gures of di�erent dimension 
such
as square and segment� or cube and square�� He wrote that he had had no time
to try to prove that� but he stated it �as his conviction and belief�� Later on�
Cantor agreed with the Dedekind�s point of view and even published a proof of this
hypothesis� which turned out to be false� Dedekind�s hypothesis was only proved
in 	�	��

Sets equivalent to the segment are called continual or the continuum� Hence�
Theorem � states that the continuum is uncountable� Practically all of the in�nite
sets appearing in mathematics belong to one of the two types�they are either con�
tinual or countable� Sets being neither continual nor countable can be constructed

Problem �� and even an in�nite set of in�nite sets can be constructed� neither
of which is equivalent to either of the others� But such sets are not very impor�
tant to the rest of the mathematics� Similarly� the equivalence of the square and
the segment 
Theorem �� has no important applications we may expect� We have
explained the reason for this earlier� Usually sets appearing in mathematics are
more speci�c� for example its elements are linked by certain relationships� or some
actions or inequalities or 
in geometry� distances are de�ned on them� In such cas�
es we are interested just in those one�to�one correspondences which preserve these
relationships between elements�and there may be a smaller number of them 
see
Problems �� � and 
 of Sec� 	�� Hence Theorem �� in spite of its striking e�ect� is
not a �working� mathematical result� But Theorem � is one of the most important
results in mathematics�

Problems

�� Prove that the set of points of the unit cube� containing points 
x� y� z��
� � x � 	� � � y � 	� � � z � 	 is equivalent to the interval ��� 	��

�� Prove that ifM� andM� are disjoint subsets of a setM andM� andM� are
equivalent� then their complements M� and M� are equivalent� �Hint� Consider
the special case M� �M� �M ��

�� Prove that the set of irrational numbers of the segment ��� 	� is equivalent to
the set N of the numbers of the interval not having the form 	�n� �Hint� Compare

both sets with the subset N � containing the numbers not having the form
p
��n�

n � 	 and apply Problem ���

�� Prove that the set of irrational numbers of the segment is continual� �Hint�
Use Problem �� It is su�cient to prove that the set N given in that Problem is
continual� It divides the segment ��� 	� into the segments � �

n�� �
�
n
�� Map each of

these segments onto the segment �n� n� 	� contained in the in�nite line and prove
the equivalence of the set N and the half�line x � 	� Then use the method applied
in Problem �� Sec� �� Pay attention to the endpoints of the segments��
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�� Prove that the set of all in�nite sequences of the form 
a�� a�� � � � � an� � � � ��
where ai can take values �� 	� � � � � �� is continual�

�� A natural number k � 	 is given� Prove that the set of sequences

a�� a�� � � � � an� � � � �� where ai are arbitrary integers� � � ai � k� is continual� �Hint�
Correspond to each such sequence the number x� written in the number system

with base k� x �
a�
k

�
a�
k�

� � � �� an
kn

� � � � � Think how to deal with the problem

that this is not a one�to�one correspondence between these sequences and the points
of the segment ��� 	���

�� Let U be the set of all subsets of a setM 
whenM is �nite� we have already
dealt with this set in Chapter III�� Prove that the sets U andM are not equivalent�
�Hint� Suppose that a one�to�one correspondence a
 A between the elements and
the subsets of the set M can be made� and consider the set B of all elements a
which are not contained in the corresponding subset� Let in your correspondence
b
 B� Consider two possibilities� b �� B and b � B��

	� Construct an in�nite set which is neither countable nor continual�

�� Thin sets

In this Section we shall consider some speci�c properties connected with the
countability of a set� We shall consider sets contained in the segment ��� 	� and
discuss the possibility of measuring the �length� of such sets� Clearly� the length of
the whole segment ��� 	� will naturally be taken to be equal to 	� Also� the length of
a segment �a� b� contained in ��� 	� will be de�ned as equal to b� a� If a set consists
of several disjoint segments� we will de�ne its length to be the sum of the lengths
of these segments� For example� the length of the setM � ��� 	���� ����� 	� is equal
to

	

�
�
	

�
�

�

�
� But an arbitrary set does not necessarily split into segments� and so

it is not possible to give such an easy de�nition of its length� How can one de�ne�
for example� �the length� of the set of all rational numbers contained in ��� 	�� Or
the set of all irrational numbers�

There is a theory which enables us to de�ne the length of a wide class� though
not of all� subsets of the segment� and this de�nition possesses all the properties
suggested by our intuition� It is called the Measure Theory� We shall not deal with
this theory in all its aspects� but we shall present the de�nition of a property of
a set which could be considered as having �length zero�� In Measure Theory such
sets are called sets of measure zero� We shall call them thin sets�

We start with basic de�nitions� using geometrical intuition� and formal de��
nitions will be given at the end� We have already de�ned the length of a segment
�a� b� contained in ��� 	�� and also of the sum of a �nite number of disjoint seg�
ments� This is only one step away from a countable sum of segments� Namely� if
M � I� � I� � � � �� In � � � � � where Ik are disjoint segments and the length of the
segment Ik is equal to �k� then the segments I�� I�� � � � � In are contained in the
segment ��� 	� and they are disjoint� and therefore the sum of their lengths does not
exceed 	� In other words� �� � �� � � � � � �n � 	 for all n � 	� �� � � � � It follows
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from the Lemma of Sec� 	� Ch� V that the in�nite sum �� � �� � � � � � �n � � � �
exists and also does not exceed 	� This sum will be called the length of the

set M � For example� if I� �

�
��
	

�

�
� Ik �

�
	� 	

��k��
� 	� 	

��k��

�

Fig� ��� then

�k �

�
	� 	

��k��

�
�
�
	� 	

��k��

�
�

	

��k��
� 	

��k��
� whence �k �

	

��k��
� Hence

�� � �� � � � � � 	

�
�

	

�
�

	

��
� � � � � 	

�

�
	 �

	

�
�

�
	

�

��
� � � �

�
�

	

�

	

	� �
�

�
�

�


according to the formula for in�nite geometric series�� So we obtain that the length
of our set is ����

Fig� �

We shall now make two hypotheses which will allow us to formulate the def�
inition that we need� First of all� consider a modi�ed situation where the set M
is the union of segments I�� I�� � � � � In� � � � which may intersect� It is natural to
assume that� however we de�ne the length of the set M � it will not exceed the sum
of the lengths of the segments Ik � Now� of course� we cannot state that the sums
�� � � � �� �n do not exceed 	� where� as before� �k denote the length of the inter�
val Ik�it can even happen that all the segments Ik coincide� So� our hypothesis
makes sense only if the sum ������ � � ���n� � � � exists� The second hypothesis
is even more intuitive� we shall assume that� however we de�ned the lengths of sets
M� and M�� if M� �M� the length of M� would not exceed the length of M��

The hypotheses that we have made are not su�cient to measure the length of
an arbitrary set� since it cannot be represented as a union of a countable number
of segments� For example� the set of all irrational numbers of the segment ��� 	�

Problem 	� cannot be represented in this way� But� using the second hypothesis�
we can estimate the length of a set� however it is de�ned� assuming only that our
hypotheses are valid� Assume� for example� that the set M is contained in the
union of segments I�� I�� � � � � In� � � � � Then its length cannot exceed the sum of
the lengths of the segments Ik� We can try to measure the set M by including it
in various sets that are unions of countable sequences of segments� If as a result of
these �measurements� we obtain that the estimates for the measure of the set M
are getting smaller and smaller 
closer to ��� then there will be no other possibility
than to say that the length of the set M is equal to �� This brings us to the
de�nition of a thin set�
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In the sequel� in order to make formulations shorter� when a setM is contained
in the union of sets M�� M�� � � � � Mn� � � � � we will say that it is covered by these
sets� and the inclusion

M �M� �M� � � � � �Mn � � � �
itself will be called the cover of M by the sets Mk�

Definition� A set M contained in the segment ��� 	� is called thin if for each
arbitrarily small positive number � there exists a cover of the set M by segments
I�� I�� � � � � In� � � � � such that the sum of the lengths of the segments Ik does not
exceed ��

We stress once again that our discussion and remarks so far in this Section
have not proved anything�they have just been explanations for this de�nition�

Consider now some examples of thin sets� A set containing just one element
x is thin� since for each � � � it has a cover x � I�� where I� is the segment
�x� ���� x� ���� of the length �� or� if this segment is not contained in the segment
��� 	�� then their intersection� having the length not exceeding �� In the same manner
one can prove that the set containing a �nite number of points is thin�

Now we shall show that the notion of a thin set is connected with countability�

Theorem �� Each countable subset of the segment ��� 	� is thin�

Let M be a countable set� numbered in some way� M � fa�� a�� � � � � an � � � g�
We shall construct� for each positive �� a cover of this set by segments I�� I��
� � � � In� � � � such that the sum of the lengths of these segments does not exceed
�� In order to do that� take for I� the segment of the length ��� with centre a��
I� � �a������ a������� or� if this segment does not lie inside the segment ��� 	�� its
part which is contained inside ��� 	�� Similarly� for each k take for Ik the intersection

of the segment
h
ak � �

�k��
� ak �

�

�k��

i
with the segment ��� 	�� In each case the

length of the segment Ik does not exceed ���k� and the sum of the lengths of all

segments Ik does not exceed the sum
�

�
�

�

�
�

�

�
� � � � � � 
by the formula for the

sum of a geometric series��

It follows� for example� that the set of rational numbers contained in the seg�
ment ��� 	� is thin� which is not obvious�

Let us turn now to another property�

Theorem �� The union of two thin sets is also a thin set�

Let M� and M� be two thin sets and M � M� �M�� In order to prove that
the set M is thin� we have to construct� for each � � �� a cover I�� I�� � � � � In�
� � � of this set by segments� so that the sum of their lengths does not exceed ��
We shall use the fact that the sets M� and M� are thin� This means that for each
positive number 	� M� and M� can be covered by segments so that the sum of the
lengths of segments in each cover does not exceed 	� This is valid for every 	� and
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in particular for 	 � ���� where � is the number given in advance� Write down the
covers that we have found�

M� � J� � J� � � � � � Jn � � � � �
M� � K� �K� � � � � �Kn � � � � �

Consider the sequence of segments J�� K�� J�� K�� J�� K�� � � � � Their union
contains both M� and M�� and so also M � M� �M�� i�e�� it is a cover of the
set M by segments� Let us prove that the sum of the lengths of the segments in
this cover does not exceed �� Denote the length of the segment Jm by am� and the
length of the segment Km by bm� Then the sum of the lengths of the segments of
the sequence J�� K�� J�� K�� � � � is equal to



� a� � b� � a� � b� � � � � � 
a� � a� � � � � � � 
b� � b� � � � � ��
Since� by the assumption� a� � a� � � � � � ��� and b� � b� � � � � � ���� the sum on
the left�hand side of equation 

� does not exceed ��� � ��� � �� as we wanted to
prove�

This argument needs a clari�cation� concerning formula 

�� If we had been
dealing with �nite sums� this would have been the assertion that brackets in a sum
can be arranged in an arbitrary manner� This is a consequence of commutative
and associative laws for addition 
axioms I� and I� from Sec� 	� Ch� V�� But we
had not given such axioms for in�nite sums and so we have to prove equality 

��
It is enough to prove slightly less�that the left�hand side of this equality does not
exceed the right�hand side� Let a� � a� � � � � � �� b� � b� � � � � � 
� Each �nite
sum on the left�hand side of equality 

� can be divided into the sum of numbers
a�� a�� � � � � an and numbers b�� b�� � � � � bm 
m � n or n�	� depending on whether
we stop the addition in an even or in an odd place�� But 
using rules for �nite
sums� this sum is equal to a� � � � �� an � b� � � � �� bm� Since a� � � � �� an � ��
b� � � � � � bm � 
� our whole �nite sum does not exceed � � 
� which means that
the in�nite sum on the left�hand side of 

� does not exceed �� 
�

Using induction� we conclude that the union of a �nite number of thin sets is
also a thin set� But a stronger assertion is valid� and it contains Theorem � as a
special case�

Theorem �� The union of a countable number of thin sets is also a thin set�

The proof is very similar to the proof of the previous Theorem� so we shall
present it more brie�y� Let M�� M�� � � � � Mn� � � � be a countable set of thin sets
and M their union� Let a positive number � be given� We shall construct a cover
of the set M by a countable number of segments� the sum of the lengths of which
does not exceed ��this will prove thatM is a thin set� Since each of the setsMn is
thin� by the de�nition it has a cover formed by a countable number of segments� the
sum of their lengths not exceeding ���n� Consider now all the segments contained
in any of these covers� Let the cover of the set M� be M� � I� � I� � � � � � of the
set M�� M� � J� � J� � � � � � of the set M�� M� � K� �K� � � � � � and so on for all
Mn� n � 	� �� �� � � � � We consider now the set of all segments Ir� all segments Js� all



Selected chapters from algebra ��

segments Kt and so on� The collection of segments that we obtain is a countable
union of countable sets 
since each set Mn is covered by a countable number of
intervals�� By Example � of Sec� 	� we obtain a countable set of segments� The

sum of their lengths does not exceed
�

�
�

�

��
� � � � � �� This proves the Theorem�

Note that here we encounter the same question as in the proof of Theorem
� in connection with equality 

�� only in a bit more complicated situation� We
have here a countable number of equalities� a� � a� � � � � � �� b� � b� � � � � � 
�
c� � c� � � � � � � and so on� Then we mix all the numbers ai� bj � ck and so on�
renumber them in certain way and consider their sum� It is enough to show that
the sum we obtain does not exceed � � 
 � � � � � � � The proof is the same as in
Theorem �� and so we shall skip it�

Finally� we consider a very important property of thin sets� Namely� we have
to convince ourselves that the hypotheses we made when de�ning this notion do not
contradict each other� We started from the fact that the length of a segment �a� b�
contained in the segment ��� 	� is equal to b� a� a thin set has �length ��� and the
�length� of a subset does not exceed the �length� of the set� If the segment �a� b�

with b �� a� turned out to be a thin set� then our theory would be contradictory�
We now prove that this is not the case� We will give the �rst example of a set which
is not thin�up to now we have just been proving that certain sets are thin� If in
our theory thin sets play the same role as countable sets played in Sec� �� then the
segment plays the role of the continuum� and the Theorem which we now prove is
analogous to the uncountability of the continuum 
Theorem ���

Theorem 	� No segment is a thin set�

Let a segment I � �a� b� be given� and assume that� contrary to the assertion
of the Theorem� for each � � � there is a cover by segments with the sum of the
lengths not exceeding �� Denote this cover by

I � I� � I� � � � �
and denote by �k the length of the segment Ik� so that the sum �� � �� � � � �
does not exceed �� In what follows we shall see that it is more convenient to deal
with intervals 
ak� bk� 
i�e�� with the sets of x for which ak � x � bk� instead
of segments �ak� bk�� Denote respective intervals by J�� J�� � � � � The length of
an interval J � 
c� d� is equal to d � c� Let us prove that the segment I has
a cover by intervals� the sum of whose lengths is arbitrarily small� Let 	 be an
arbitrarily small positive number and include the segment Ik � �ak� bk� into the

interval Jk �
�
ak � 	

�k��
� bk �

	

�k��

�
� Its length di�ers from the length of segment

Ik by 	��k� Therefore� the sum of their lengths does not exceed

�
a� �

	

�

�
�
�
�� �

	

�

�
� � � ��

�
�n �

	

�n

�
� � � � � �� 	

�
	

�
�

	

�
� � � �

�
� �� 	�

On the other hand� by the construction� Ik � Jk and therefore


�� I � I� � I� � � � � � J� � J� � � � � �
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since J�� J�� � � � is a cover of segment I � Since for � and 	 we could take arbitrarily
small numbers� intervals Jk can be chosen so that the sum of their lengths is
arbitrarily small�

Consider� �rst of all� an easy case when the number of intervals is �nite� Let
J� be an interval containing at least one number from segment I � If an interval Jk
intersects with it� they together form one interval J� � Jk whose length does not
exceed �� � �k� If there is an interval Jl intersecting the interval J� � Jk� consider
the interval J��Jk�Jl with the length not exceeding ����k��l� Continuing in this
way� we can collect together in an interval J � a group of intervals J�� Jk� Jl� � � � and
the remaining intervals will not intersect any of these� Interval J � has to contain the
segment I � Indeed� let J � � 
a�� b��� If� for example� b� � b� then b� cannot belong
to any of the intervals left out of J �� if b� � Jr� Jr � 
ar� br�� then by assumption
ar � b� 
here it is important that we deal with intervals without endpoints�� and
then intervals J � and Jr would intersect� any of the numbers between ar and b�

would belong to both of them� This contradicts the assumption� Hence� b� � b and
analogously a� � a� i�e�� I � J �� But� as we have seen� the length of the interval
J � does not exceed �� � �k � �l � � � � and� a fortiori� it does not exceed the sum
�� � �� � � � � of the lengths of all intervals J�� J�� � � � � This sum� however� does
not exceed �� 	� i�e�� b� � a� � � � 	� On the other hand� we can choose � and 	
arbitrarily small� and� in particular� such that ��	 � b��a�� This is a contradiction
and so it proves the Theorem in this case�

Now we come to the more subtle case when the number of intervals is in�nite�
Considering an interval Jk as a subset of the set of all real numbers� we denote by
Jk its complement and put I �k � Jk � I � In other words� I �k is the set of numbers
of the segment I � not belonging to the interval Jk� Relation 
�� which we are given
is equivalent to


�� I �� � I �� � I �� � � � � � ��
Really� relation 
�� is another way of saying that each number of the interval I
belongs to some interval Jk� as in relation 
���


a� 
b� 
c�

Fig� �

The set I �k is not necessarily a segment� it can be a segment� or two segments

here with endpoints included�� or a segment can reduce to a point� �a� a� � fag

Fig� ���
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Put An � I �� � I �� � � � � � I �n� Relation 
�� means that An 	 An�� and


	�� A� �A� � A� � � � � � ��
We obtain a picture very similar to the one we dealt with in the Axiom of embedded
segments� If the sets An were segments� we could apply this axiom and deduce that
there is a number x belonging to all of them� This would be a contradiction with
relation 
	�� and it would prove the Theorem� However� An are in general not
segments� but a bit more complicated sets�

We now turn to that problem� Since the union of two segments consists of
disjoint segments 
some of them can be just points�� so An itself consists of disjoint
segments 
some of them may be degenerated to points�� Denote these segments


or points� by A

��
n � A


��
n � � � � � A


k�
n � Take A� to be the whole segment I � This

system of segments is shown in Fig� 
� where each segment A

i�
n is represented by a

circle� arranged in the ascending order in

n� The circle representing segment A

i�
n is

connected to the circle representing A

j�
n��

if Ai
n 	 A


j�
n��� We say that circle A


j�
n

lies below circle Ai
m 
m � n� if one can

pass from A

i�
m to A


j�
n moving along these

connections� This simply means that seg�

ment A

j�
n is contained in segment A


i�
m �

There is no circle below circle A

i�
n if the

intersection of the segment A

i�
n with the

set I �n�� is empty� Fig� �

The picture in Fig� 
 reminds us of a branched root system� It can be of two
di�erent types� a� There is only a �nite number of circles in the system� If all of

them have the form A

i�
m with m � n� then there is no circle lying below any of the

circles A

i�
n � Hence� A


i�
n � I �n�� � �� and since An � I �� � � � � � I �n and An �

T
A

i�
n �

then I �� � � � � � I �n�� � �� This means that relation 
�� is valid for the system of
segments I ��� � � � � I

�

n��� and relation 
�� is valid for the system of intervals J�� � � � �
Jn��� But this is the case of a �nite number of intervals that we have discussed
already� b� The picture in Fig� 
 contains in�nitely many circles� If we can �nd

a line that goes down through it without stopping 
i�e�� a line A

i�
� � A


j�
� � A


k�
� �

� � � � where A

j�
� is below A


i�
� � A


k�
� is below A


j�
� � etc�� then we obtain a system of

embedded segments A

i�
� 	 A


j�
� 	 A


k�
� 	 � � � � According to Axiom of embedded

segments 
Axiom VII of Sec� 	� Ch� V�� this system of segments has to contain at

least one common point x 
here it is essential that segments A

i�
n are considered

together with their endpoints��

In fact� our situation is a bit more general� since among the segments A

i�
n there

may be some degenerate ones of the form �ak� bk� with bk � ak� i�e�� points� But in
this situation Axiom of embedded segments is also valid� if one segment from an
embedded system reduces to a point x� then all segments following it also have to
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coincide with x� Hence� there always exists a number x belonging to each set An�
and so x � A� � A� � A� � � � � � contradicting the condition 
	���

We shall check whether such in�nitely descending line can always be found�
By assumption� the set of all circles in Fig� 
 is in�nite� Thus� there are in�nitely
many circles lying below A�� It follows that for some i there are in�nitely many

circles lying below A

i�
� � It follows that for some circle A


j�
� � lying below A


i�
� � there

are in�nitely many circles lying below A

j�
� � etc� Continuing� we obtain an in�nite

descending line� A�� A

i�
� � A


j�
� � � � � � This completes the proof of Theorem 
�

Taking into account Theorem �� uncountability of the segment 
Theorem ��
follows from Theorem 
� Thus this gives us the third proof of Theorem ��

Now we are for the �rst time in the position to state that sets that are not
thin exist at all� The whole segment is one set of this kind� Moreover� each thin
set is so �small� that it cannot contain any segment� of however small length� This
justi�es our idea of thin sets as sets �in�nitely smaller� than intervals� We say that
some property is true for almost all numbers� if the set of numbers not having this
property is thin� For example� almost all numbers are irrational� and almost all
numbers are transcendental�

Up to now we have discussed only general properties of thin sets�we have not
looked at many examples of such sets� We only know that �nite and countable
sets are thin� We shall give now one of the most interesting examples of a thin set
which is not countable�

This set is connected with the representation of numbers of the segment ��� 	�
as decimal expansions� Choose a digit�for example� let it be digit �� Denote by
M the set of all numbers of the segment not containing our digit in their decimal
representations� We shall prove that the set M is uncountable and thin� That
the set M is uncountable is obvious� It contains the subset M �� containing all
expansions formed by just two digits� both of them di�erent from ��e�g�� � and 	�
The set of these expansions is� obviously� equivalent to the set of sequences a��
a�� a�� � � � � where ai are equal � or 	� We know that the set M � is uncountable

Problem � in Sec� ��� Since a subset of a countable set is countable� it follows
that the set M is uncountable� It is not hard to prove that the set M is continual

Problem ���

Let us prove now that the set M is thin� Denote by Mn the set of numbers of
the segment ��� 	� whose decimal representation does not contain the digit � among
the �rst n digits� Hence� decimal representation of an arbitrary number x � Mn

has the form


		� x � ��a�a� � � � an � � � �

where a� �� �� a� �� �� � � � � an �� �� and the following digits are arbitrary 
chosen
from the digits �� 	� � � � � ��� Obviously� Mn 	M � and we shall construct for each
n a cover of the set Mn by segments such that the sum of the lengths of these
segments approaches � when n increases� Since Mn 	M � the cover of the set Mn

will automatically be a cover of the set M and so it will be proved that M is also
a thin set�
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Fix arbitrary n digits a�� a�� � � � � an and look at the set of all numbers whose
decimal representations has these digits in the �rst n places� In other words� the
numbers from our set have decimal representations of the form 
		�� where a�� a��
� � � � an are �xed� and other digits are arbitrary� Put

� � ��a�a� � � � an�� � � � �� 
 � ���� � � � �an��an�� � � � �

where 
 has the �rst n digits 
after the decimal point� equal to �� and the rest of
the digits are the same as in x� Then x � � � 
� where � is the same for all the
numbers from our set� and 
 runs through all numbers having n zeros after the
decimal point� In other words


 �
an��

	�n��
� � � � � 	

	�n

�an��

	�
�
an��

	��
� � � �

�
�

Since the digits an��� an��� � � � are arbitrary� the expression in the parentheses
represents an arbitrary number y� � � y � 	 and 
 � �� �

��n y� i�e�� 
 
and so our

whole set� is contained in the segment ��� � � �
��n �� We have considered numbers

with the �rst n digits �xed� There are �n possible choices of these n digits a��
� � � � an� because ai �� � 
Theorem of Ch� III�� since the set of these choices is
equivalent to the product of n copies of the set f�� 	� �� �� �� �� 
� �� �g of � elements

� is skipped�� Hence� our setMn is covered by �n segments of the form ��� �� �

��n ��

and each of these segments has the length
	

	�n
� The sum of their lengths is equal to

�n

	�n
�
� �

	�

�n
� Since

�

	�
� 	� according to Lemma � of Sec� 	� Ch� V�

� �

	�

�n
� �

when n�
� This proves our assertion�

Fig� �

The cover of the set Mn by �n segments of the lengths 	�	�n is represented in
Fig� � for the cases n � 	 and n � �� In order to construct a cover of the set M� it
is enough to remove the interior of the segment ����� ���� marked by an arc� There
remains � segments� ��� ��	�� ���	� ����� ����� ����� � � � � ����� 	�� each having the length
	�	�� In order to construct a cover of the set M�� one has to remove from each of
these � segments the interior of one segment more of the length 	�	��� They are
noted by smaller arcs� For example� from the segment ��� ��	� one has to remove
the interior of the segment ������ ������ from ���	� ���� the interior of ���	�� ��	��� etc�
In each of the larger segments� there remain � segments of the lengths 	�	��� and
since there are � larger segments� there will remain �� of segments with the sum of

lengths equal to
��

	��
�
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Let g be one of the digits �� 	� � � � � �� Denote by Mg the set of numbers from
the segment ��� 	� whose decimal representations do not contain digit g� We have
proved that Mg is a thin set 
to be speci�c� we have considered the set M��� It
follows from Theorem � that their union M� �M� � � � � �M	 is also a thin set� In
other words� almost all decimal expansions 
in the segment ��� 	�� contain all of the
digits �� 	� � � � � ��

This assertion is just a special case of a much more general rule� It appears
that in almost all decimal expansions each digit appears �on average� the same
number of times� This has the following precise meaning� Choose an arbitrary
digit g� For a given number x from the segment ��� 	� denote by kn the number
of times digit g appears among its n �rst digits� For example� for the number
x � ��	���
	����
 and g � �� k� � �� k� � 	� k� � �� k� � �� k� � �� k� � ��
k� � �� k
 � �� k	 � �� k�� � �� k�� � �� The number kn depends on the choice of
the digit g� For example� for the same number x and g � 	 we have k� � 	� k� � 	�
k� � 	� k� � 	� k� � 	� k� � �� k� � �� k
 � �� k	 � �� k�� � �� k�� � �� If we add
up� for �xed n� all the numbers kn� calculated for all digits g � �� 	� �� � � � � �� the
result will be n�the total number of the �rst n digits� If among the �rst n digits
of number x each digit g appeared the same number of times� then for all the digits

the number kn would be the same� namely equal to
n

	�
� In other words� we would

have
kn
n

�
	

	�
� We shall say that all digits g appear in the decimal representation

on average the same number of times if this relation holds in the limit form� i�e��

if
kn
n
� 	

	�
when n � 
 and this is true for numbers kn evaluated for arbitrary

g � �� 	� �� � � � � �� Such numbers are called normal� A remarkable theorem states
that almost all numbers are normal� i�e�� the set of numbers that are not normal is
thin� This is obviously much more than we proved before� If a certain digit g does

not appear in the representation of a number� then all the kn � � and
kn
n
� �� so

the number is not normal�

The fact that almost all numbers are normal is very striking� It is very easy to
construct numbers which are far from being normal�e�g�� numbers such that for

the given digit g and the respective numbers kn� we have
kn
n
� p� where p is an

arbitrary number between � and 	� or such that for digit � the numbers kn satisfy
kn
n
� �� and for digit 	�

kn
n
� 	� or such that for the given digit g the numbers

kn
n

have no limit at all 
Problems �� 
 and ��� It would seem that there is complete
chaos in the possible distributions of digits of an arbitrary decimal expansion and
only in very special cases there is an easy regularity 
i�e�� the number is normal��
As a matter of fact� the regularity appears almost always� and �chaos� appears
only for numbers contained in a thin set�

Proof of the Theorem stating that almost all numbers are normal is based on
the same reasoning that we have already met in this Chapter and other parts of
the book� However� it is a bit more involved and we shall postpone it until the
Appendix�
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Problems

�� Prove that the set of irrational numbers does not contain any segment�

�� Prove that the set of irrational numbers is not thin�

�� Prove the equality

a� � b� � a� � b� � � � � � 
a� � a� � � � � � � 
b� � b� � � � � �
under the assumption that both sums inside parentheses on the right�hand side
exist 
it was only proved in the text that the left�hand side does not exceed the
right�hand side��

�� Prove that the set of numbers from the segment ��� 	� not containing digit
� in their decimal representation is continual� �Hint� Use Problem � of Sec� ���

�� It was proved in the text that the setMn of numbers from the segment ��� 	�
not containing digit � among the �rst n digits of the decimal representation� can
be covered by �n segments of lengths 	�	�n� Which numbers from these segments
are not contained in the set Mn�

�� For an arbitrary real number p� � � p � 	� construct a real number x
such that the sequence of corresponding numbers kn evaluated for digit � has the

property that
kn
n
� p when n�
�

�� Two nonnegative real numbers p and q are given� such that p � q � 	�
Construct a real number x such that the corresponding sequence kn evaluated for

digit � has the property that
kn
n
� p when n�
� and the sequence k�n� evaluated

for digit � has the property that
k�n
n
� q when n�
�

	� Construct a real number x such that the sequence kn evaluated for digit �

has the property that
kn
n

has no limit when n�
�

APPENDIX

Normal numbers

We shall consider real numbers x lying between � and 	� i�e�� belonging to the
segment ��� 	�� Write down such a number as an in�nite decimal expansion


	� x � ��a�a� � � � an � � �

Recall that number x is called normal if each digit r� � � r � � appears in x
�equally frequently�� The last expression has the following meaning� Denote by kn
the number of times that digit r appears among the �rst n digits a�� a�� � � � � an of
expansion 
	�� We require that the following relation holds


��
kn
n
� 	

	�
when n�
�
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The number x is called normal if condition 
�� holds for each r � �� 	� � � � � �� We
have to bear in mind that the sequence kn depends on r� For each r� we can denote
by Nr the set of numbers x satisfying condition 
�� for the given r 
sequence kn is
constructed for this r�� Then


�� N � N� �N� � � � � �N	�

where N is the set of normal numbers�

This Appendix is devoted to the proof of the following proposition�

Theorem� The set of numbers of the segment ��� 	� which are not normal is
thin�

Let us� �rst of all� analyse carefully what we have to prove� The set of numbers
which are not normal is� obviously� the set N � where N is considered as a subset of
the segment ��� 	� and N is its complement� It follows from 
�� that

N � N� �N� � � � � �N	�

Since the union of a �nite number of thin sets is a thin set� it is su�cient to prove
that each set Nr is thin 
for r � �� 	� � � � � ��� Therefore� digit r will in the sequel be
�xed and we shall consider the set Nr of those numbers of the segment ��� 	� that
do not satisfy condition 
��� assuming that the sequence kn of numbers has been
constructed for this particular value of r 
i�e�� it shows how often r appears among
the digits a�� a�� � � � � an��

Denote by U the set Nr� i�e�� the set of numbers x from the segment ��� 	�
which do not satisfy relation 
�� 
for the �xed value of r�� Recall the meaning of
relation 
��� for arbitrary � � �� there exists n
��� such that����knn � 	

	�

���� � � for n � n
���

If x does not possess this property� it means that there is a number �� such that

the inequality

����knn � 	

	�

���� � � does not hold for some value of n which exceeds an

arbitrary value given in advance� In other words� for this x�


��

����knn � 	

	�

���� � �

for an in�nite number of values of n� Denote the set of such values of x 
for the
given �� by U
��� Then� for each number x � U � there exists �� such that x � U
���
in other words� U is the union of all U
��� This description can be made a bit
simpler� Note that by the de�nition itself� U
��� 	 U
��� if �� � ��� Hence� each
set U
�� is contained in some U
 �

m
� for m su�ciently large 
such that � � �

m
�� so

that the union of all U
�� 
for all �� coincides with the union of all U
 �
m
�� i�e�� withS

U
 �
m
�� We could also use� instead of the sequence �

m
� an arbitrary sequence �m

tending to �� It is important only that the set U is the union of the sets U
�m�
for some countable sequence of numbers �m� U �

S
U
�m�� Since the union of a

countable number of thin sets is a thin set itself� we only need to prove that each
of the sets U
�m� is thin� We shall prove in fact that the set U
�� is thin for each
� � ��
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Denote by V 
n� �� the set of numbers satisfying inequality 
�� for the given
n and �� Then� x � U
�� means that x � V 
ni� �� for some in�nite sequence of
natural numbers n� � n� � n� � � � � � That is� however large we chose a natural
number N � x � V 
n� �� for some n � N �

Put
UN 
�� � V 
N� �� � V 
N � 	� �� � V 
N � �� �� � � � � �

This can be written as


�� UN
�� �
�
n�N

V 
n� ���

We can therefore say that x � UN 
�� means that


�� U
�� � UN
��

for all N � We shall prove that� for N su�ciently large� the set UN
�� can be covered
by segments whose sum of lengths is arbitrarily small� Taking into account relation

��� this will prove that the set U
�� is thin�

All this was in fact only an explanation of what the formulation of the Theorem
really means� Now we need to ask which numbers really belong to our sets� The
key to our question is the set V 
n� ��� and if we look at it more closely� we shall see
that each of these sets is a �nite union of segments� similarly to the situation we
had with the set of expansions with a missing digit in Sec� ��

To start with� assume that the �rst n decimal digits are �xed� Then

x � ��a�a� � � � ancn��cn�� � � � �

where a�� � � � � an are �xed� and ci are arbitrary 
of course� they have to be digits ��
	� � � � � ��� Put � � ��a�a� � � � an� � � ��� � � � �cn��cn�� � � � � where the �rst n digits
in � are zeros� Then x � ���� where � is �xed� and � runs through all numbers of

the form
cn��

	�n��
�

cn��

	�n��
� � � � � In other words� � �

	

	�n

� 
 � ��cn��cn�� � � � � i�e��


 is an in�nite decimal expansion� de�ning an arbitrary number from the segment

��� 	� di�erent from 	� Thus� x � ��
	

	�n

� � �xed� 
 arbitrary in ��� 	�� 
 �� 	�

It is clear that these numbers are contained in the segment

�
�� ��

	

	�n

�
of the

length 	�	�n� Hence� the set V 
n� �� can be divided into segments of length 	�	�n�
and the number of segments is equal to the number of sequences a�� a�� � � � � an

consisting of digits �� 	� � � � � ��� in which the �xed digit r appears k times� and k
satis�es relation 
���



�

����kn �
	

	�

���� � ��

Now we have to evaluate the number of sequences in which the digit r appears
k times� where k is a given number� If r stands in �xed k places� then the remaining
n� k places are occupied by arbitrary digits di�erent from r 
there are � of them��
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This means that there will be �n�k of such sequences� 
We have used Theorem 	
of Ch� III�� These k possible places among n places in the sequence can be chosen
in Ck

n ways 
where Ck
n is a binomial coe�cient� i�e�� the number of subsets of k

elements in the set of n elements� as it was shown in Theorem � of Ch� III�� Thus
the number of our sequences will be Ck

n � �n�k� The �nal answer is the following�
the number of sequences a�a� � � �an is equal to Tn
��� where


��
Tn
�� is the sum of expressions Ck

n � �n�k

for all numbers k satisfying inequality 

��

It is striking that we have come to almost the same sum which arose in connec�
tion with Chebyshev�s Theorem concerning the Bernoulli�s scheme in the Appendix
to Chapter III� To see this connection� divide the sum Tn
�� by 	�n� We obtain

that
	

	�n
Tn
�� is equal to the sum of expressions Ck

n

� 	

	�

�k� �

	�

�n�k

for all values

of k satisfying relation 

�� Putting here p �
	

	�
� q �

�

	�
� we obtain the sum S�

considered in the Appendix to Chapter III�

It is possible to understand why considering of� at the �rst sight� completely
di�erent topics led us to one and the same expression� Namely� the sequences a��
a�� � � � � an can be treated as a Bernoulli�s scheme In where the probability scheme
I is formed of two events� the digit � r with the probability 	�	� and the digit
�� r with the probability ��	�� But we will not try to make this connection more
precise� since we cannot apply the results proved in the Appendix of Chapter III
anyway� The reason is that we need here a more general inequality than the one
proved there� We shall formulate and prove it now for the situation considered in
Ch� III� when probability p was an arbitrary number between � and 	� We will only
apply it in the case p � 	�	�� but it is useful to know it in the more general case�

Strengthened inequality of Chebyshev� The sum S� of all expressions

Ck
np

kqn�k for all k satisfying � � k � n and inequality ���� does not exceed
	

���n�
�

We postpone the proof of this inequality for the moment� and we show �rst
of all how the Theorem follows from it� We have seen that the set V 
n� �� is
contained in the union of segments of length 	�	�n and the number of segments

is equal to Tn
��� On the other hand� we have just noted that
	

	�n
Tn
�� � S��

hence Tn
�� � 	�nS�� and since the length of each segment is 	�	�n� the sum of
their lengths is precisely equal to Sn
��� According to the strengthened inequality

of Chebyshev� S� �
	

���n�
� Thus the set V 
n� �� is the union of a �nite number of

segments whose sum of their lengths does not exceed
	

���n�
�

Recall now that according to relation 
��� UN
�� is the union of all Vn
�� for
n � N and hence the set UN 
�� is contained in the union of segments with the sum
of lengths not exceeding


��
	

���

� 	

N�
�

	


N � 	��
� � � �

�
�
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We met this sum in Sec� �� Ch� V 
see the Lemma�� We saw there that the

boundedness of the sums
	

	�
�

	

��
� � � �� 	

n�
for all natural n implies that the sum

	

N�
�

	


N � 	��
� � � � is smaller than an arbitrary positive number� if one chooses

N large enough� Therefore we can choose N large enough so that the sum 
�� will
be less than an arbitrary given number � � �� It follows that for N large enough
the set UN 
�� is contained in the union of a countable number of segments with the
sum of lengths being less than �� Finally� recall that according to relation 
��� the
set U
�� is contained in arbitrary UN 
��� Therefore� the set U
�� has the property
that� for arbitrary small number � � �� it is contained in the union of a countable
number of segments with the sum of lengths smaller than � � In other words� the
set U
�� is thin� We showed earlier that the assertion of the Theorem follows from
this� the complement N of the set of all normal numbers is a thin set�

It remains to prove the strengthened inequality of Chebyshev� For those who
solved Problem � in the Appendix to Chapter III there is nothing to do�the
problem was precisely to prove this inequality� For those who did not solve that
Problem� we give here the proof� It might frighten the reader� since it takes more
than three pages and there are a lot of long formulae in it� but the idea is very close
to the idea of proving the basic Chebyshev�s inequality in the mentioned Appendix�
It is just the question of removing the parentheses and collecting similar terms�

Consider the sum S�� having the summands Ck
np

kqn�k for which � � k � n

and

����kn � p

���� � �� Following the proof of the Chebyshev�s inequality 
Appendix

to Ch� III� multiply each term Ck
np

kqn�k in the sum by

�
k � np

n�

��

� This will

not decrease the sum� since we consider only summands with values of k satis�

fying

����kn � p

���� � �� i�e��

����k � np

n�

���� � 	� Consider after that the sum of all terms

�
k � np

n�

��

Ck
np

kqn�k for all k � �� 	� � � � � n� Since in this manner we include new

terms in the sum� the sum itself gets even larger� Denote the obtained sum by

S�� As we have seen� S� � S�� We shall see that the sum S� may be evaluated
explicitly� which will give us the required inequality�

In the sum S� we can take out of the brackets the common denominator of all

terms� n���� i�e�� S� �
	

n���
P � where P is the sum of all terms 
k�np��Ck

np
kqn�k

for k � �� 	� � � � � n� Now we expand the expression 
k � np�� using the binomial
formula for exponent ��


k � np�� � k� � �k�np� �k�n�p� � �kn�p� � n�p��

We obtain that


	�� P � 
� � �np
� � �n�p�
� � �n�p�
� � n�p�
��

where for each r � �� 
r denotes the sum of all terms krCk
np

kqn�k for k � �� 	� � � � � n�
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As in the proof of Chebyshev�s inequality� we have to �nd explicit expressions for

�� 
�� 
�� 
� and 
��

Lemma� Let 
r denote the sum of terms krCk
np

kqn�k for k � �� 	� � � � � n� Then


� � 	�
		�


� � kp�
	��


� � n�p� � npq�
	��


� � n�p� � �n�p�q � npq
�p� 	��
	��


� � n�p� � �n�p�q � n�p�q
		p� 
� � npq
	� �pq��
	��

The proof consists of several iterations of the steps by which we proved the
Lemma in the Appendix to Chapter III�

We introduced there the sums 
r� formed from terms krCk
np

kqn�k for k �
�� � � � � n and we found for them the expression 
r � qnfr


p

q
� 
formula 
�� of the

Appendix to Ch� III�� where fr
t� is the polynomial which is the sum of terms
krCk

nt
k for k � �� 	� � � � � n� Hence our problem reduces to the problem of �nding

the polynomials fr
t�� They can be found recursively starting from f�
t� � 
	� t�n

and


	�� fr��
t� � f �r
t�t


see formula 
	�� of the Appendix to Ch� III�� We already found in Ch� III poly�
nomials f�
t� and f�
t� 
see formulas 
	�� and 
	�� of the Appendix to Ch� III��
Thus�

f�
t� � 
	�t�n� f�
t� � n
	�t�n��t� f�
t� � n
n�	�
	�t�n��t��n
	�t�n��t�

Using the last formula and formula 
	�� we can now �nd the polynomial f�
t��
Write down f�
t� in the form g
t� � h
t�� where g
t� � n
n � 	�
	 � t�n��t��
h
t� � n
	 � t�n��t and apply the derivation rule for sums from Sec� � of Ch� II�
We obtain


	
� f ��
t� � g�
t� � h�
t��

In order to �nd derivatives of polynomials g
t� and h
t� we have to apply derivation
rule for powers from Sec� � of Ch� II 
we already did this when �nding polynomial
f�
t� in the Appendix to Ch� III�� We obtain

g�
t� � n
n� 	�
n� ��
	 � t�n��t� � �n
n� 	�
	 � t�n��t�

h�
t� � n
n� 	�
	 � t�n��t� n
	 � t�n���

Substituting these into relation 
	
�� and the result into formula 
	�� for r � � and
reducing similar terms� we obtain


	�� f�
t� � n
n� 	�
n� ��
	 � t�n��t� � �n
n� 	�
	 � t�n��t� � n
	 � t�n��t�
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We pass now to the evaluation of the polynomial f�
t�� using formula 
	�� for
r � �� We put again f�
t� � u
t� � v
t� � w
t�� where u
t� � n
n � 	�
n � ���

	 � t�n��t�� v
t� � �n
n� 	�
	 � t�n��t�� w
t� � n
	 � t�n��t� Then


	�� f ��
t� � u�
t� � v�
t� � w�
t��

In order to evaluate derivatives u�
t�� v�
t� and w�
t�� represent each of the polyno�
mials u
t�� v
t� and w
t� as the product of a power of 	 � t and a power of t� and
apply then the derivation rule for powers from Sec� � of Ch� II and formula 
	��
from Ch� II� We obtain in this way

u�
t� � n
n� 	�
n� ��
n� ��
	 � t�n��t� � �n
n� 	�
n� ��
	 � t�n��t��

v�
t� � �n
n� 	�
n� ��
	 � t�n��t� � �n
n� 	�
	 � t�n��t�

w�
t� � n
n� 	�
	 � t�n��t� n
	 � t�n���

It remains to substitute these expression into formula 
	�� and then use formula

	�� for r � �� After reducing similar terms we obtain

f�
t� � n
n� 	�
n� ��
n� ��
	 � t�n��t� � �n
n� 	�
n� ��
	 � t�n��t�

���

� 
n
n� 	�
	 � t�n��t� � n
	 � t�n��t�

We can now substitute in the expressions 
	�� and 
��� for f�
t� and f�
t� the

value t �
p

q
� We have to bare in mind that 	 �

p

q
�

p� q

q
�

	

q
� since p � q � 	�

Using the relation 
r � qnfr

p

q
�� we obtain expressions for 
� and 
�� For 
� we

obtain

� � n
n� 	�
n� ��p� � �n
n� 	�p� � np�

Here we have to substitute n
n� 	�
n� �� � n�� �n���n and n
n� 	� � n��n�
Reducing similar terms� we obtain


� � n�p� � �n�p�
	� p� � n
�p� � �p� � p��

Finally� since �p� � �p� � p � p
p� 	�
�p� 	�� relation 
	�� follows�

Let us evaluate now the expression for 
�� Starting from relation 
���� in the
same way as for 
�� we obtain


� � n
n� 	�
n� ��
n� ��p� � �n
n� 	�
n� ��p� � 
n
n� 	�p� � np�

Here we have again to remove brackets in the product n
n� 	�
n� ��
n� ���

n
n� 	�
n� ��
n� �� � n� � �n� � 		n� � �n


one can also use Viet�s formula from Ch� III�� The expressions n
n�	�
n��� and
n
n� 	� were evaluated earlier� Grouping together terms with the same power of
n� we obtain


� � n�p� � 
��p� � �p��n� � 
		p� � 	�p� � 
p��n� � 
��p� � 	�p� � 
p� � p�n�
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It remains to note that

��p� � �p� � �p�
	� p� � �p�q�

		p� � 	�p� � 
p� � �p�
	� p�
		p� 
� � �p�q
		p� 
��

��p� � 	�p� � 
p� � p � p
	� p�
�p� � �p� 	� � pq
	� �pq��

and we obtain formula 
	��� Hence� the Lemma is proved�

We are now ready to complete the proof of the strengthened inequality of
Chebyshev� To do this� it remains to substitute expressions 
		�� 
	��� 
	��� 
	��
and 
	�� for 
�� 
�� 
�� 
� and 
� into formula 
	�� and to reduce similar terms�
Let us write down the coe�cients of various powers of n�

of n�� p� � �p� � �p� � �p� � p� � ��

of n�� �p�q � 	�p�q � �p�q � ��

of n� 
only terms from 
� and 
� contribute��

�p�q
		p� 
� � �p�q
�p� 	� � p�q
�		p� 
 � �p� �� � �p�q��

of n� 
only terms from 
� contribute�� pq
	� �pq��

As a result we obtain that P � �p�q�n� � pq
	� �pq�n� Since S� �
	

n���
P �

S� �
	

n���

�p�q�n� � pq
	� �pq�n��

For the sum S� that we are interested in� we showed that S� � S� and hence


�	� S� �
	

n���

�p�q�n� pq
	� �pq���

The expression in the brackets can be estimated as

pq
	 � �
n� ��pq� �
	

�

�
	 �

�
n� ��

�

�
�

	

�
n�

since we already noted in the Appendix to Ch� III that pq � 	��� Thus� inequality


�	� implies that S� �
	

���n�
� as we needed to prove�

Therefore the proof of the strengthened inequality of Chebyshev� and so also
our Theorem� is complete�

Remark �� We have proved the strengthened inequality of Chebyshev� where
instead of denominator ��n 
from the basic inequality� there is the denominator

��n��� The proof was completely parallel to the proof of the basic inequality� only

instead of the factor

�
k � np

�n

��

we used the factor

�
k � np

�n

��

� It is natural to

ask whether one can make Chebyshev�s inequality even stronger by taking factors�
k � np

�n

��r

for some natural exponent r� This is in fact the case� For each speci�c
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value of r 
e�g�� r � ��� one would have to make the same transformations as in
our proof� But these transformations for higher values of r will be more and more
complicated�for example� one has to evaluate �r�	 sums 
k� 
�� 
�� � � � � 
�r� As
a result� it is possible obtain an inequality with 
��n�r as the denominator� We do
not need these variants of Chebyshev�s inequality� and so we restricted ourselves to
the case r � ��

Remark �� Our calculations are by no means restricted speci�cally to the
decimal number system� In a number system with base g� we call a number x

normal if
kn
n
� 	

g
when n�
� where kn shows how many� among the �rst n digits

of the representation of x in g�number system� are equal to a given digit r� When
considering the set of numbers which are not normal� we encounter sums of terms

Ck
n

�	
g

�n�k�g � 	

g

�k
� where k satis�es the inequality

����kn �
	

g

���� � �� We considered

sums of this kind with p �
	

g
� q �

g � 	

g
� Thus� the proof can be completed without

any modi�cations for numbers written in a number system with base g�

There is an interesting application if g � 	��� A �digit� in the 	���digit
system is an arbitrary two�digit number� i�e�� an arbitrary combination of two
decimal digits� Thus� if kn counts how many times a given group of two digits

e�g�� 	� or �
� appears among the �rst �n decimal digits of the number x� then
kn
n
� 	

	��
for all x� except for the numbers from a certain thin set� That is� for

�almost all� numbers arbitrary combinations of two digits appear equally often�
with the �frequency� 	�	��� Similarly� we can take g � 	�l for any natural number
l and obtain that arbitrary combinations of l decimal digits appear with the equal
�frequency� 	�	�l�for �almost all� numbers x�

Remark �� We showed that �almost all� numbers x are normal� But prov�
ing that a certain particular number x is normal is� usually� a very hard prob�
lem� Of course� the number ��	�����
�� � � � � where the digits 	� � � � � � repeat
periodically� is normal 
Problem 	�� It is much harder to prove that the number
��	�� � � � �	�			� � � � � where all natural numbers are written in order� is normal�
This was proved only in the nineteen thirties� Finally� it has not yet been shown
whether numbers like

p
� and � are normal 
when we talk about numbers larger

than 	� we eliminate the integer part and consider its mantissa�� There are� for the
time being� no ideas how such problems can be solved�

Problems

�� Consider the number x � ��	�����
�� � � � � where the digits 	� � � � � � repeat
periodically� Find for each digit r � �� 	� � � � � � the corresponding number kn and
prove that number x is normal�

�� Prove that for an arbitrary rational number x and a given digit r �

�� 	� � � � � � the sequence
kn
n

tends to a limit� �Hint� Recall that the in�nite decimal
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expansion corresponding to a rational number is periodic�Problem � of Sec� ��
Ch� V��

�� What condition does the period of a periodic decimal expansion have to
satisfy in order that the corresponding number be normal�
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