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GLOBAL COMPACT ATTRACTORS AND
COMPLETE BOUNDED TRAJECTORIES FOR
COMPRESSIBLE MAGNETOHYDRODYNAMIC

SYSTEM OF EQUATIONS

Jan Muhammad

Abstract. In this article, we investigate the global behavior of magnetohy-
drodynamic (MHD) fluid’s weak solutions in three-dimensional bounded do-
main with a compact Lipschitz boundary driven by arbitrary forces. We show
that global compact attractors exist under specific limitations on the adiabatic
constant γ.

1. Introduction

The study of compressible MHD fluids is crucial because the equations that
describe the motion of conducting fluids in the presence of an electromagnetic field
have numerous applications ranging from fluid metals to cosmic plasmas, as well as
in areas such as geophysics, astrophysics, plasma physics and high-speed aerody-
namics. MHD fluids are also related to plenty of engineering challenges, including
sustained plasma confined in controlled thermonuclear fusion reaction, liquid-metal
cooling processes in nuclear nuclear power plants, magnetohydrodynamic energy
production, electro-magnetic manufacturing of metals and the plasma stimulants
for ions thrusters as well. In fact, MHD equations are a combination of fluid dy-
namics’ Navier–Stokes equations as well as electromagnetism’ Maxwell equations.
Here, we consider the compressible MHD fluid to study the problem of the global
existence of weak solutions with bounded domain by considering the system of
equations, such as

(1.1)


∂tρ+ div(ρv) = 0,

∂t(ρv) + div(ρv ⊗ v)− divT+∇p(ρ) = rotH×H+ ρF,

Ht − rot(v ×H) = υ∆H, divH = 0,

T(∇v) = µ(∇v +∇Tv − 2
3 divvI) + ℸdivvI
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where v = (v1,v2,v3) symbolizes the velocity vector while the pressure is denoted
by p(ρ) = aργ , such that γ being the adiabatic constant and H = (H1,H2,H3)
representing the magnetic field. Here the operators used such as ∇ and div act in
term of the variable x ∈ R3. Here, we consider the isentropic fluid by taking the
letters ℸ, µ, γ as constants that satisfy the relation

µ > 0, ℸ ⩾ 0, γ >
3

2
, a > 0, with divT = µ∆v + (µ+ λ)∇ divv,

where ℸ is the viscosity constant such that ℸ + µ ⩾ 0. The initial and boundary
data are specified by

(1.2) ρ(0, x) = ρ0 ⩾ 0, ρv(0, x) = m0(x), H(0, x) = H0,

and

(1.3) H|∂Ω = 0, v|∂Ω = 0.

MHD equations demonstrate the flow of electric-conducting fluids within the exis-
tence of a magnetic field, that must take into account the complicated relationship
among the fluid’s velocity and the magnetic field. Before describing and proving
our desirable results of this work, let us first review some relevant literature results.
Incompressible MHD flow is determined by the Navier–Stokes equation along with
Maxwell’s equation. The mathematical analysis of incompressible MHD equations
is investigated in detail in [1–3] and the references therein. With regard to its
physical significance, diverse phenomena, complexity and challenges in mathemat-
ics, mathematicians and physicists have carried out numerous research on MHD
such as; [4–11] and in the citation therein. In [12,13] the authors presented favor-
able results regarding the weak solutions’ existence with discontinuous large data for
compressible MHD equations. It is noteworthy that Feireisl and Ducomet [8] inves-
tigated MHD compressible equations along with Poisson’s equation with assuming
that coefficient of viscosity depending on the magnetic field and the temperature
where the pressure term ργ , (γ = 5

3 ) with large density behave like power law.
In addition, for compressible fluids the global existence behavior was investi-

gated by Feireisl and his collaborators in [14], where they studied global behavior
of weak solution in bounded absorbing sets under some additional restriction on
the adiabatic constant γ > 5

3 . Similarly, they proved in [15] the asymptotic com-
pactness result for global trajectories generated compressible fluid. Moreover, for
compressible fluids, Feireisl [16] proved the results of weak solutions compactness
result while the density does not require to be square integrable. In [17], Feireisl
proved the qualitative behaviors of compressible flows such as long time behaviour,
global compact attractors and stabilization. In [18], Wang described global be-
havior of weak solutions of a specific class known as nematic liquid crystals of
compressible flows.

Moreover, Lions [19] and Novotny [20] made contributions and modifications
to ease the restrictions to the theory of compressible viscous fluids. By considering
an isentropic fluid, they proved a well-known result concerning weak solutions’
global existence under an additional condition that γ ⩾ 3

2 and γ > 9
5 in 2D and

3D respectively. Feireisl [21] modified for γ > 3
2 the result of Lions for global
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existence to three dimensions. Jiang and Zhang [22] investigated the result for
weak solutions’ global existence regarding the compressible fluids of isentropic type
for γ > 1, under some additional hypothesis related to symmetries on the initial
datum. We refer [23–31] for more results related to attractors and global existence
of weak solutions of compressible fluids.

We study the behavior of such a fluid that is compressible as well as MHD
in a bounded domain motivated by the importance of these types of fluids hav-
ing numerous applications in engineering, geophysics and applied mathematics. In
recent years, mathematicians have focused intensively on studying non-linear flu-
ids, mostly from the perspective of differential equation theory. In view of their
practical significance, for decades, MHD fluid problems have been the center of
extensive multidisciplinary research. Therefore, in order to gain a comprehensive
understanding and improve applications across different manufacturers, it is essen-
tial to examine the flow behavior of MHD fluids. Nevertheless, aside from a few
straightforward special cases, many problems still remain as open challenges.

In this research work, we investigate the result of global behavior of MHD
fluids by considering the weak solution of a compressible MHD fluid with a compact
Lipschitz boundary in a bounded three-dimensional domain, by following the same
approach as in [15] where the global existence of these weak solutions is proved
in [12], without external force.

The remaining article is organized as follows: in Section 2, we define a weak
solution of the problem (1.1)–(1.3) and state the main results in the form of Theo-
rems 2.1–2.4. In Section 3, we prove Theorem 2.1 along with the necessary results
required to prove the main result. In Section 4, the proof of Theorem 2.2 and some
key results related to density are presented. In Section 5, we describe the effective
viscous flux of the considered model, by following the same approach as in [15],
with some modification as required for MHD fluids. Furthermore, Section 6 con-
tains the results related to density and momenta compactness. Finally, Section 7,
outlines the proof of Theorems 2.3–2.4.

2. Main Results

The current section aims to state the main result of this work and define the
weak solution of the problem (1.1)–(1.3). Before we state our main result, it is
important to note that our weak solution will satisfy the natural energy estimates.
In terms of physics, a suitable weak solution must fulfill the conservation law of
mass, energy and momentum in terms of distributions. Keeping these fundamental
requirements in mind, we characterize our weak solution such as:

Definition 2.1. For T > 0, the functions (ρ,v,H) are said to be the globally
finite energy weak solution of (1.1)–1.3 on the interval of time O ⊂ R, such that

ρ ∈
(
L∞(O;Lγ(Ω)

)
∩
(
C(O;L1(Ω))

)
,(2.1)

√
ϱv ∈ L∞(

O;L2(Ω)
)
, v ∈ L2

(
O;W 1,2

0 (Ω)
)
,

H ∈ L2
(
O;W 1,2

0 (Ω)
)
,

|m0|2

ρ0
∈ L1(Ω).
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Continuity equation (1.1)1 holds in a distributive sense

(2.2) ∂tρ+ div(ρv) = 0 in D′(O ×R3).

Total mass is invariable, such that

(2.3)
∫
Ω

ρ(t)dx = m ∀t ∈ O.

The renormalized form of (1.1)1 holds in D′(O × Ω). In addition, for any
ξ ∈ C1(R),

(2.4) (ξ(ρ))t + div[ξ(ρ)v] + (ξ
′
(ρ)ρ− ξ(ρ)) divv = 0,

where (ρ,v) are assumed to zero outside the domain Ω.
Any weak solution provided in Definition 2.1 will be in the class

ρ ∈ C(O;Lγ
w(Ω)), ρv ∈ C

(
O;L

2γ
γ+1
w (Ω)

)
.

The functions ρ and ρv satisfy

ess lim
t→0+

∫
Ω

(ρ, ρv)ω(x)dx =

∫
Ω

(ρ0,m0)ω dx,

for any ω ∈ C∞
0 (Ω).

Moreover, the weak solutions (ρ,v,H) are constructed to satisfy the integral
form of energy inequality, such that

(2.5)
d

dt
E(t) +

∫
Ω

(µ|∇v|2 + (µ+ λ)|divv|2 + υ|∇H|2)dx ⩽
∫
Ω

ρ(t)F (t) · v(t)dx,

with

(2.6) E(t) =
∫
Ω

(1
2
ρ|v|2(t) + 1

2
|H|2 + a

ργ(t)

γ − 1

)
dx.

Next, it is assumed that

(2.7) ρ ∈ L2
loc(O;L2(Ω)).

We emphasize that every classical solution described in the problem (1.1)–(1.3)
can be a weak solution and that any weak solution can solve the problem (1.1)–(1.3)
with sufficient regularity in the classical sense. This is done to ensure that our de-
fined weak solution given in Definition 2.1 is accurate. Next, the following theorem
outlines the result of absorbing bounded sets.

Theorem 2.1. Assuming that Ω ⊂ R3 is a bounded domain of Lipschitz bound-
ary, let (ρ0,v0,H0) being the initial datum satisfying (1.1) and γ > 5

3 . Moreover,
let a measurable bounded function

(2.8) F = (f j(t, x)), j = 1, 2, 3

satisfying the condition

(2.9) max
(
ess sup

x∈Ω,t∈R
|f j(t, x)|

)
⩽ K1,
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and O = (l,∞) ⊂ R with l > −∞. Then, for E∞ with given E0 the time T =
T (E∞, l,m) depending on mass m, K1 and γ, such that

(2.10) E(ρ,v,H)(t) ⩽ E∞ for a.e. t > T.

Furthermore, the weak solution (ρ,v,H) satisfies

(2.11) ess lim
t→l

sup E(ρ,v,H)(t) ⩽ E0.

According to the aforementioned Theorem 2.1, the family of trajectories pro-
duced by the finite-energy weak solutions of (1.1)–(1.3) defined on interval O, is
dissipative in the terms of Levinson, such that it possesses an absorbing bounded
set in the energy “norm”. In addition, take into consideration the term known as
“short trajectory” as defined in [32], such as:

(2.12) ŨS [E0, F̃ , M̃ ](t0, t) =
{
(ρ(t̂), (ρmvm)(t̂)), t̂ ∈ [0, 1] | ρ(t̂) = ρ(t+ t̂),

(ρv)(t̂) = (ρv)(t+ t̂),H(t̂) = H(t+ t̂) with (ρ,v,H)

be the weak solutions of (1.1)–(1.3) on interval O, (t0, t0 + 1) ⊂ O

with F ∈ F̃and ess lim
t→t0

sup E(ρ,v,H)(t) ⩽ E0,
∫
Ω

ρ(t)dx ⩽ m
}
.

Next, the theorem given below describes the finite energy weak solution trajectories’
asymptotic behavior.

Theorem 2.2. Assume that γ > 5
3 and bounded subset F̃ ∈ L∞(Ω × R)3

such that

(ρm(tm + t, x), (ρmvm)(tm + t, x),Hm(tm + t, x)) ∈ ŨS [E0, F̃ , M̃ ](l, t), (l ∈ R),

for some tm → ∞. Then, we can find a subsequence (without relabeling) such that

(2.13) ρm(tm + t) → ρ̄(t) in Lγ(Ω× (0, 1)) and in Lζ([0, 1]; Ω) for any ζ ∈ [1, γ),

(2.14) Hm(tm + t) → H̄(t) in Lζ(Ω),

(ρmvm)(tm + t) → (ρ̄v̄)(t) in Lp(Ω× (0, 1)) ∩ C
(
[0, 1]; (Lp1

weak(Ω))
3
)
,(2.15)

with p1 =
2γ

γ + 1
, and p ∈

[
1,

2γ

γ + 1

)
.

and

(2.16) E
[
ρm(tm + t, x),vm(tm + t, x),Hm(tm + t, x)

]
→ E

[
ρ̄(t, x), v̄(t, x), H̄(t, x)

]
in L1(0, 1),

with (ρ̄, v̄, H̄) being the weak solution of (1.1)–(1.3) defined on O = R where E ∈
L∞(R) and F ∈ F̃+ with

(2.17) F̃+ =
{
F | F = lim

t̂m→∞
ℏm(t+ t̂m, x) weakly star in L∞(Ω×R)

for some ℏm ∈ F̃ as t̂m → ∞
}
.
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Theorem 2.2 highlights the significance of complete bounded trajectories such
that the energy E is bounded uniformly on R for weak solutions on O = R. Next,
define

ÃS [F̃ ]=
{
(ρ(t̂), (ρv)(t̂),H(t̂)) | (ρ,v,H) is a weak solution of (1.1)–(1.3)(2.18)

on interval O = R with F ∈ F̃+ and E [ρ,v,H] ∈ L∞(R)
}
,

Ũ [E0, F̃ , M̃ ](t0, t) =
{
(ρ,v,H)(t)

∣∣(ρ,v,H) is a weak solution of(2.19)

(1.1)–(1.3) on interval O, (t, t0) ⊂ O with F ∈ F̃ and

ess lim
t→t0

sup E(ρ,v,H)(t) ⩽ E0,
∫
Ω

ρ(t)dx ⩽ m
}
.

Moreover, ÃS [F̃ ], the characteristics as given in the following theorem, the so-called
short trajectories of global attractors.

Theorem 2.3. Assume that γ > 5
3 with bounded subset F̃ ∈ L∞(Ω×R). Then

the compact set ÃS [F̃ ] is in (Lp((0, 1)× Ω))× (Lγ((0, 1)× Ω)) and

(2.20) sup
(ρ,v)∈Ũ [E0,F̃,M̃ ](t0,t)

[
inf

(ρ̄,v̄)∈ÃS [F̃ ]
(∥ρ− ρ̄∥(Lγ((0,1)×Ω)) + ∥(ρv)− (ρv)∥(Lγ(0,1)×Ω))

]
→ 0,

as t → ∞ with p ∈
[
1, 2γ

γ−1

)
.

The set ÃS [F̃ ] is naturally referred as a short trajectories’ global attractor
based on Theorem 2.3. For a nonempty set F̃ , the set ÃS [F̃ ] is nonempty and
compact. If set Ã is compact, it is referred to as a global attractor for a general
dynamical system that attracts every trajectory and is minimal for a compact set
Ã1 such that it attracts all the trajectories, then Ã1 ⊂ Ã. Regardless of the non-
uniqueness of the finite energy weak solution for given initial data, it might make
sense to study the global attractor and outline its significant characteristics briefly
here. For this, let

ÃS [F̃ ] =
{
(ρ,v,H) | (ρ = ρ(0), (ρv) = (ρv)(0),H = H(0)),(2.21)
where (ρ,v,H) is a weak solution of (1.1)–1.3

on interval O = R with F ∈ F̃+ and E [ρ,v,H] ∈ L∞(R)
}
,

Next, we describe the result of attractors such that:

Theorem 2.4. Assume that γ > 5
3 with bounded subset F̃ ∈ L∞(Ω×R). Then

the compact set Ã[F̃ ] is in (Lζ(Ω))× (Lp1(Ω))3 and

(2.22) sup
(ρ,v)∈Ũ [E0,F̃,M̃ ](t0,t)

[
inf

(ρ̄,v̄)∈Ã[F̃ ]

(
∥ρ− ρ̄∥Lζ(Ω) + ∥H − H̄∥Lζ(Ω)

+

∣∣∣∣ ∫
Ω

(ρv)− (ρv) · φdx

∣∣∣∣)] → 0,
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as t → ∞ with ζ ∈ [1, γ), φ ∈
(
L

2γ
γ−1 (Ω)

)3 and the energy E is given such as:

(2.23) E(t) =
∫
ρ(x,t)>0

(1
2
ρ|v|2 + 1

2
|H|2 + a

ργ

γ − 1

)
dx.

Remark 2.1. In Theorems 2.1–2.3 the energy E(t) as defined by (2.23) is
lower semicontinuous and thus (2.23) implies (2.6) a.e. in O as in [20] and thus the
condition ess lim supt→l E(t) → E0 being equivalent to that of lim supt→l E(t) → E0
and hence in the conclusion Theorems 2.1–2.3 hold. In addition, in Theorem 2.1

E(t) ⩽ E∞ when T < t.

Lemma 2.1. Let (1.1) be satisfied in D′(0,∞; Ω) and allowing that ρ,v be zero
on R3\Ω, such that

(2.24) ∂tρm + div(ρmvm) = 0 in D′(O ×R3).

Next, taking Sϵ = ϑϵ ∗ νm with ϑϵ = ϑϵ(x) is a regularizing sequence in (2.4),
we have

(2.25) ∂tSϵ[ξ(ρ)] + div(Sϵ[ξ(ρ)v]) + Sϵ((ξ
′
(ρ)ρ− ξ(ρ)) divv) = rmϵ ,

with

(2.26) rmϵ → 0 in the space L2(O;Lᾰ(Ω)) as ϵ → 0 for any prechosen m,

where

(2.27) ᾰ =
2β

2 + β
,

and ξ(ρ) ∈ L∞(0, T ;Lβ(Ω)) provided that β ⩾ 2.

Proof. Regarding the proof, we refer [33, Corollary 2.4]. □

Lemma 2.2. In accordance with all the presumptions of Theorem 2.1, on R+

the energy E exhibits a local bounded variation, if required, being modified on a
zero-measure set, and

(2.28) E(t+) = lim
s→t+

E(s) = E(t−), t ∈ R+.

In addition,

(2.29) (1 + E(t1+))e
√
2mK1(t2−t1) − 1 ⩾ E(t2−), t2 > t1 > 0.

Proof. To prove the required result, let

(2.30) d

dt
E1(ρ,v)(t) +

∫
Ω

(µ|∇v|2 + (µ+ λ)|divv|2 + υ|∇H|2)dx =

∫
Ω

ρ(t)F (t) · v(t)dx,

then E2 := (E − E1) ∈ L1
loc(Ω). In view of (2.5), we have

(2.31)
d

dt
E2(t) ⩽ 0, holds in D′(Ω).

Next, since E is regarded as a sum of absolute as well as the sum of nonincreasing
functions, this implies the continuity of E such that (2.28) holds true except for
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a countable set of points. In addition, by using (2.9), the right side of (2.5),
implies that

(2.32)
∫
Ω

ρF · v dx ⩽ K1

(∫
Ω

ρ dx

) 1
2
(∫

Ω

ρ|v|2dx
) 1

2

⩽
√
2mK1

(
1 +

∫
Ω

ρ|v|2dx
)

⩽
√
2mK1(1 + E(t)),

by applying Gronwall lemma, we get the required result. □

3. Proof of Theorem 2.1

This part focuses on the proof of Theorem 2.1, and the required proof will be
completed on the basis of the following results.

Proposition 3.1. In accordance with all the presumptions of Theorem 2.1,
one can find the constant L depending on the parameters K1, γ and m satisfying
the property, that

(3.1) E(T+)− 1 < E((T + 1)−), for some specific T ∈ R+.

Then
sup

t∈(T,T+1)

E(t+) ⩽ L.

The required result will be proved by using some auxiliary results, as described
below.

Lemma 3.1. In accordance with all the presumptions of Theorem 2.1, and (3.1),
one can find a constant c̀ depending only on the parameters K1 and m, such that

(3.2)
∫ T+1

T

||v||2
W 1,2

0 (Ω)
dt ⩽ c̀

(
1 +

∫ T+1

T

||ρ||
L

3
2 (Ω)

dt

)
.

Moreover,

(3.3) E(t+) ⩽ c̀

(
1 +

∫ T+1

T

||ρ(ẑ)||γLγdẑ

)
.

Proof. Applying, the energy inequality (2.5), (3.1), Poincare’s inequality with
the standard embedding theorem, ensure that

(3.4)
∫
Ω

|∇v(t)|2dx ⩽ c̃1

(
1 +

∫ T+1

T

∫
Ω

ρ|v|dx dt
)
.

Similarly, thanking to Hölder inequality, we have

(3.5)
∫
Ω

ρ|v|dx ⩽
√
m

(∫
Ω

ρ|v|2dx
) 1

2

⩽
√
m||ρ||

1
2

L
3
2 (Ω)

||v||L6(Ω)

again by using the embedding theorem, implies (3.2). Next, the integration of
(2.29) along t1 and taking T + 1 = t2, yields that

E(T + 1)−) ⩽ c̃2

(
1 +

∫ T+1

T

E(ẑ)dẑ
)
.
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Also, we have

(3.6) E(T+) < E((T + 1)−) ⩽ c̃3

(
1 +

∫ T+1

T

E(ẑ)dẑ
)
.

In a similar way, the integration of (2.29) by taking T = t1 and using (3.6), ensures
that

(3.7) E(T+) ⩽ c̃4

(
1 +

∫ T+1

T

E(ẑ)dẑ
)
.

Furthermore, applying H’́older inequality along with (3.2), infers that∫ T+1

T

∫
Ω

ρ|v|2dx dt ⩽ sup
t∈[T,T+1]

||ρ||
L

3
2 (Ω)

∫ T+1

T

||v||2
W 1,2

0 (Ω)
dŝ(3.8)

⩽ c̃5 sup
t∈[T,T+1]

||ρ||
L

3
2

(
1 +

∫ T+1

T

||ρ||
L

3
2 (Ω)

dt

)
.

By applying interpolation inequality ∥ρ∥
L

3
2 (Ω)

⩽ ∥ρ∥1−ς
L1(Ω)∥ρ∥

ς
Lγ(Ω), with ς = γ

3γ−3 ,
we have

(3.9)
∫ T+1

T

∫
Ω

ρ|v|2dxdt ⩽ c̃6 sup
t∈[T,T+1]

E(t+)
1

3γ−3

(
1 +

∫ T+1

T

∥ρ(ẑ)∥ςLγ(Ω)dẑ

)
.

This further implies that

sup
t∈[T,T+1]

E(t+) ⩽ c̃7

(
1 +

∫ T+1

T

∥ρ∥γLγ(Ω)dŝ

+ sup
t∈[T,T+1]

E(t+)
1

3γ−3

(
1 +

∫ T+1

T

∥ρ(ŝ)∥ςLγ(Ω)dt

))
.

By using the condition that γ > 5
3 , infers that 1

3γ−3 < 1
2 and hence the required

result follows. □

A Linear Bounded Operator B. Here, some characteristics of operator B,
introduced by Bogovskiî [34], may be listed as follows. The operator B is regarded
as the problem’s solution

(3.10)

{
div g = k

k ∈ Lx(S), with S ⊂ R3 is a Lipschitz bounded domain.

Lemma 3.2. [20,34]. Let B be a bounded linear operator of the problem (3.7),
such that:

B = [B1,B2,B3] :

{
k ∈ Lx(S) |

∫
S

k dx = 0

}
→ W 1,x

0 (S),

and its boundedness is given by ∥B{k}∥W 1,x
0 (S) ⩽ C1(x, S)∥k∥Lx(S), with x ∈ (1,∞).

Also, g = B{k} satisfy div g = k a.e. in S, and ∥B(k)∥Ly(S) ⩽ C2(y, S)∥(k)∥Ly(S)

with y ∈ (1,∞).
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Keeping all these results in mind, we can prove Proposition 3.1. To do this, let
a test function be such that

ϕj(t, x) = Ψ(t)Bj

(
Sϵ(ξ(ρ))−

1

|Ω|

∫
Ω

Sϵ(ξ(ρ))dx

)
,

here Ψ ∈ D(T, T +1), Ψ ∈ [0, 1] and the operator Sϵ is defined in Lemma 2.1 where
ξ ∈ C1(R), for z > 1, ξ(z) = zΘ with

(3.11) Θ = min
{1

4
,
(2
3
− 1

γ

)}
.

Moreover, by using ϕj(t, x) as a test function in (1.1)2 and Lemma 2.1 and 3.2,
may be used to get

a

∫ T+1

T

∫
Ω

ΨργSϵ(ξ(ρ))dx dt =

∫ T+1

T

Ψ

(∫
Ω

ργdx

)(
1

|Ω|

∫
Ω

Sϵ(ξ(ρ))dx

)
dt(3.12)

+(µ+ λ)

∫ T+1

T

Ψ

∫
Ω

Sϵ(ξ(ρ)) divv dx dt

−
∫ T+1

T

Ψt

∫
Ω

ρvB
(
Sϵ(ξ(ρ))−

1

|Ω|

∫
Ω

Sϵ(ξ(ρ))dx

)
dx dt

+µ

∫ T+1

T

Ψ

∫
Ω

∇v : ∇B
(
Sϵ(ξ(ρ))−

1

|Ω|

∫
Ω

Sϵ(ξ(ρ))dx

)
dx dt

−
∫ T+1

T

Ψ

∫
Ω

ρv ⊗ v : ∇B
(
Sϵ(ξ(ρ))−

1

|Ω|

∫
Ω

Sϵ(ξ(ρ))dx

)
dx dt

+

∫ T+1

T

Ψ

∫
Ω

ρvB
{
Sϵ(ξ(ρ)− ξ′(ρ)ρdivv)− 1

|Ω|

∫
Ω

Sϵ(ξ(ρ)− ξ′(ρ)ρ divv)dx

}
dx dt

+

∫ T+1

T

Ψ

∫
Ω

ρvB
(
rmϵ − 1

|Ω|

∫
Ω

rmϵ dx

)
dx dt−

∫ T+1

T

Ψ

∫
Ω

ρvB(div(Sϵ(ξ(ρ)))v)dx dt

−
∫ T+1

T

Ψ

∫
Ω

ρFB
(
Sϵ(ξ(ρ))−

1

|Ω|

∫
Ω

Sϵ(ξ(ρ))dx

)
dx dt

+

∫ T+1

T

Ψ

∫
Ω

(
H⊗H− 1

2
H2I

)
B
(
Sϵ(ξ(ρ))−

1

|Ω|

∫
Ω

Sϵ(ξ(ρ))dx

)
dx dt =

10∑
j=1

Jj .

Furthermore, we have to evaluate each integral to the respective norms in terms of
ρ, v and H by using the Sobolev embedding results along with H’́older inequality
and using the properties of the operator B. For some omitted details one can refer
to [14] and [15]. Thus, we get

|J1| =
∣∣∣∣ ∫ T+1

T

Ψ

(∫
Ω

ργdx

)(
1

|Ω|

∫
Ω

Sϵ(ξ(ρ))dx

)∣∣∣∣dt ⩽ k1(m)

∫ T+1

T

∫
Ω

ργdx dt,(3.13)

|J2| =
∣∣∣∣ ∫ T+1

T

Ψ

∫
Ω

Sϵ(ξ(ρ))ℸ(divv) divv dx dt

∣∣∣∣ ⩽ k2(m)

∫ T+1

T

∥v∥W 1,2(Ω)dt.(3.14)
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Next, for J3, we have

|J3| =
∣∣∣∣ ∫ T+1

T

Ψt

∫
Ω

ρvB
(
Sϵ(ξ(ρ))−

1

|Ω|

∫
Ω

Sϵ(ξ(ρ))dx

)
dx dt

∣∣∣∣(3.15)

⩽ k3

∫ T+1

T

∥√ρv∥L2(Ω)|Ψt|dt,

and

|J4| =
∣∣∣∣ ∫ T+1

T

Ψ

∫
Ω

∇v : ∇B
(
Sϵ(ξ(ρ))−

1

|Ω|

∫
Ω

Sϵ(ξ(ρ))dx

)
dx dt

∣∣∣∣(3.16)

⩽ (m)

∫ T+1

T

∥v∥W 1,2
0

dt.

Similarly, J5 can be calculated as

|J5| =
∣∣∣∣ ∫ T+1

T

Ψ

∫
Ω

ρv ⊗ v : ∇B
(
Sϵ(ξ(ρ))−

1

|Ω|

∫
Ω

Sϵ(ξ(ρ))dx

)
dx dt

∣∣∣∣(3.17)

⩽ k5 sup ∥ρ∥Lγ(Ω) sup ∥ξ(ρ)∥Lq1 (Ω)

∫ T+1

T

∥v(t)∥2
W 1,2

0 (Ω)
dt,

with q1 = 2
3 − 1

γ . Similarly by using (3.11), supt∈[T,T+1] ∥ξ(ρ)∥ ⩽ k6(m). Further-
more, we get

|J6| =
∣∣∣∣ ∫ T+1

T

Ψ

∫
Ω

ρvB
{
Sϵ(ξ(ρ)− ξ′(ρ)ρdivv)(3.18)

− 1

|Ω|

∫
Ω

Sϵ(ξ(ρ)− ξ′(ρ)ρ divv)dx

}
dx dt

∣∣∣∣
⩽ k7 sup ∥ρ∥Lγ(Ω)

∫ T+1

T

∥v∥W 1,2
0 (Ω)∥B[. . .]∥Lq2 (Ω),

with∥∥∥∥B{Sϵ(ξ(ρ)− ξ′(ρ)ρdivv)− 1

|Ω|

∫
Ω

Sϵ(ξ(ρ)− ξ′(ρ)ρdivv)dx

}∥∥∥∥
Lq2 (Ω)

⩽ ∥ξ(ρ) divv∥Lq3 (Ω) ⩽ ∥ξ(ρ)∥
L

1
q1 (Ω)

∥v∥W 1,2
0 (Ω)

where
1

q2
=

5γ − 6

6γ
and q3 = max

{
1,

6γ

7γ − 6

}
.

Hence, by using (3.11), we have

(3.19)
∣∣∣∣ ∫ T+1

T

Ψ

∫
Ω

ρvB
{
Sϵ(ξ(ρ)− ξ′(ρ)ρdivv)

− 1

|Ω|

∫
Ω

Sϵ(ξ(ρ)− ξ′(ρ)ρdivv)dx

}
dx dt

∣∣∣∣
⩽ k8∥ρ∥Lγ

∫ T+1

T

∥v∥W 1,2
0 (Ω)dt.
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Similarly, for J7, we get

|J7| =
∣∣∣∣ ∫ T+1

T

Ψ

∫
Ω

ρvB
(
rmϵ − 1

|Ω|

∫
Ω

rmϵ dx

)
dx dt

∣∣∣∣(3.20)

⩽ k9

∫ T+1

T

∥ρ∥Lγ(Ω)∥v∥W 1,2
0 (Ω)∥r

m
ϵ ∥Lq3 (Ω)dt.

Next, applying (2.26), implies that

(3.21)
∣∣∣∣ ∫ T+1

T

Ψ

∫
Ω

ρvB
(
rmϵ − 1

|Ω|

∫
Ω

rmϵ dx

)
dx dt

∣∣∣∣ → 0 as ϵ → 0.

Furthermore, for J8, using the properties of operator B and applying the same
arguments as in (3.17), ensure that

|J8| =
∣∣∣∣ ∫ T+1

T

Ψ

∫
Ω

ρvB(div(Sϵ(ξ(ρ)))v)dx dt

∣∣∣∣(3.22)

⩽ k10(m) sup
t∈[T,T+1]

∥ρ∥Lγ(Ω)

∫ T+1

T

∥v∥2
W 1,2

0 (Ω)
dt,

and

(3.23) |J9| =
∣∣∣∣ ∫ T+1

T

Ψ

∫
Ω

ρFB
(
Sϵ(ξ(ρ))−

1

|Ω|

∫
Ω

Sϵ(ξ(ρ))dx

)
dx dt

∣∣∣∣ ⩽ k11(K1,m),

|J10| =
∣∣∣∣ ∫ T+1

T

Ψ

∫
Ω

(
H⊗H− 1

2
H2I

)
B(Sϵ(ξ(ρ))−

1

|Ω|

∫
Ω

Sϵ(ξ(ρ))dx
)
dx dt

∣∣∣∣(3.24)

⩽ k12(K1,m).

Furthermore, calculating characteristic function on [T, T + 1] for a sequence of
functions Ψϵ as ϵ → 0 in the integrals J1 − J10, we have∫ T+1

T

ργ+Θdx dt(3.25)

⩽ k12(K1,m)

{
(1 + sup ∥ρ∥Lγ(Ω))

∫ T+1

T

∥v∥2
W 1,2

0
dt+ sup

t∈[T,T+1]

∥√ρv∥L2(Ω)

}
.

Next, the interpolation of spaces Lγ+Θ, L1(Ω), implies that

(3.26)
∫ T+1

T

∥ρ∥γLγdt ⩽ k13

(∫ T+1

T

∫
Ω

ργ+Θdx dt

)q4

,

where q4 = γ−1
γ+Θ−1 . Taking into account (3.2), we have∣∣∣∣∥ρ∥Lγ(Ω)

∫ T+1

T

∥v∥κ
W 1,κ

0 (Ω)

∣∣∣∣q4 ⩽ k14(K1,m)(1 + ∥ρ∥Lγ(Ω)∥ρ∥L 3
2 (Ω)

)q4(3.27)

⩽ k15(K1,m)(1 + ∥ρ∥Lγ(Ω))
q5 ,

where q5 = 4γ−3
3γ+3Θ−3 . Finally, we have

(3.28) ess sup
t∈[T,T+1]

∥√ρv∥L2(Ω) ⩽ sup
t∈[T,T+1]

√
2E(t+).
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Combining the estimation obtained in (3.3) and (3.25)–(3.28), we have

(3.29) sup E(t+) ⩽ k16(K1,m)
(
1 + sup

√
E(t+) + sup ∥ρ∥q5Lγ

)
.

Referring to predefined Θ, we have q5 < γ and (3.29) indicates the existence L
described in Proposition 3.1.

Based on Propositions 3.1, we prove Theorem 2.1. It is easy to verify that
T (E0) = T satisfies E(t0+) ⩽ L for some t0 < T . In fact, if this mentioned condition
is not satisfied, then for a sufficiently large t the energy will be negative. Hence, it
contradicts that therefore energy is not negative for E(t0+) ⩽ L. Furthermore, for
any µ ⩾ 0, let

(3.30) E((t0 + µ)+) ⩽ L.

Next, we assume by induction that E(t0+) ⩽ L. Next, by applying Proposition 3.1,
either one can get

sup
t∈[t0+µ,t0+µ+1]

E(t+) ⩽ L,

therefore, E((t0 + µ+ 1)−) ⩽ L, or

E((t0 + µ+ 1)+) ⩽ E((t0 + µ+ 1)−) ⩽ E((t0 + µ)+)− 1 ⩽ L − 1.

Hence, by using (3.30) and Lemma 2.2, we have

E∞ = (1 + L)e
√
2mK1 − 1.

This completes the proof of Theorem 2.1.

4. Proof of Theorem

The remaining part of this work is devoted to proving Theorem 2.2. The re-
quired result will be proved by applying the analysis of the so-called defect measure

(4.1) ϑ = log(ρ)ρ− log(ρ̄)ρ̄.

where ρ̄ is used to denote the weak limit of time shifts’ sequence

ρm,tm(t, x) =

{
ρm(tm + t, x), when tm + t ∈ Om,

0 when tm + t ∈ R∖Om,

where (l, l + 1) ⊂ Om.
Starting with a simple implication of Theorem 2.1, we state the following result:

Proposition 4.1. In accordance with all the presumptions of Theorem 2.2, the
time T = T (E0,m, l) > l with the constant L depending on the parameters m, K1,
E0 and F ∈ F̃ satisfy the estimations:

sup
T⩽t

∥ρm(t)∥Lγ ⩽ L,(4.2)

ess sup
T⩽tm+t

∥∥√ρm(t)vm(t)
∥∥
L2 ⩽ L,(4.3)

sup
T⩽tm+t

∥Hm∥L2 ⩽ L,(4.4)
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K

∥v(t)∥2
W 1,2

0
⩽ L,(4.5)

and ∫
K

∫
Ω

|ρm|γ+Θdx dt ⩽ L, with Θ =
2γ

3
− 1,(4.6) ∫

K

∫
Ω

(|∇vm|2 + |∇ ×Hm|2)dx dt ⩽ L,(4.7)

for |K| ⩽ 1 with K ⊂ (T,∞), independent of the parameter m = 1, 2, . . . .

Proof. The estimations (4.2), (4.3) and (4.7) can easily be obtained by apply-
ing the energy inequality and assumptions of Theorem 2.1 (for more details about
(4.7), see [35]). While (4.6) can be obtained by a similar way as in (3.25). For this,
it is required to take γ > 5

3 and one only needs to know that the boundedness of E
is controlled by E∞. □

With the application of the estimation obtained in Proposition 4.1, we are able
to pass the sequences without relabeling so that

ρm,tm → ρ̄ weakly ⋆ in L∞(R;Lγ(Ω)), ρ ⩾ 0, ρ = 0 in R3 ∖ Ω,

vm,tm → v̄ weakly in L2(K; (W 1,2
0 (Ω))3), v = 0 in R3 ∖ Ω,

Hm,tm → H̄ weakly in L2(K; (W 1,2
0 (Ω))), H = 0 in R3 ∖ Ω,(4.8)

with K ⊂ R and v̄ ∈ L2
loc(R; (W 1,2

0 (Ω)3)) such that

(4.9)
∫
K

∥v̄∥2
W 1,2

0 (Ω)
dt ⩽ L with |K| ⩽ 1, K ⊂ R,

and

Fm,tm → F weakly ⋆ in L∞(R; Ω),

ρm,tmFm,tm → ρF weakly ⋆ in L∞(R;Lγ(Ω)).

Furthermore, by applying the fact that ρm,tm solves the continuity equation (1.1)1
along with estimations obtained in (4.2), (4.5) and using the Arzela–Ascoli Theo-
rem, we have

(4.10) ρm,tm → ρ̄,

converges in C(K;Lγ
weak(Ω)) for the compact interval K ⊂ R with

(4.11) ρ̄ ∈ BC(R;Lγ
weak),

for more details about (4.11) see [16].
Next, by applying (4.10) results in the strong convergency of the term ρm,tm

in the space C
(
K;W−1,2(Ω)

)
and its combination with (4.8) gives that

(4.12) ρm,tmvm,tm → ρ̄v̄ weakly in L2
(
K;

(
L

6γ
6+γ (Ω)

)3)
.

As a result, we get

(4.13) ∂tρ̄+ div(ρ̄v̄) = 0,
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in the distributional sense in D′ (O ×R3
)
. By applying the same approach as

above, the time derivative of the term ρm,tmvm,tm with the help of (1.1)2 and
taking into account (4.2)–(4.4) implies that

(4.14) ρm,tmvm,tm → ρ̄v̄ in C(K;Lp1

weak(Ω)), (p1 =
2γ

1 + γ
)

where its details can be found in [20, Section 7.10], and

(4.15) ρ̄v̄ ∈ BC(R;Lp1

weak(Ω).

Here, the estimations obtained in (4.14) result in the strong convergence of the
term ρm,tmvm,tm in C(K;W−1,2(Ω)), exactly the same as in (4.12), we have

(4.16) ρm,tmvm,tm ⊗vm,tm → ρ̄v̄⊗ v̄ weakly in L2(K;Lp2(Ω)),
(
p2 =

6γ

4γ + 3

)
.

Moreover, the estimations obtained in (4.6) imply that

(4.17) ρm,tm → ρ̄ weakly in LΘ+γ(K ×R3)

with

(4.18) p(ρm,tm) → p(ρ) weakly in the space L
Θ+γ

γ (K × Ω).

Next, we have

(4.19) Hm,tm → H̄ weakly ⋆ in L2(R;W 1,2
0 (Ω)), divH = 0,

in distributional sense D′(R × R3), by using (4.8), (4.19) and the compactness
result of W 1,2

0 ↪→ L2, we have

(4.20) rot(vm,tm ×Hm,tm) → rot(v ×H) in D′(R×R3),

and

(4.21) rotHm,tm ×Hm,tm → rotH×H in D′(R×R3).

Taking into account the estimations obtained in (4.14)–(4.21), we can conclude that
the weak limits of (ρ,v,H) satisfy the momentum equation (1.1)2 in distributional
sense such that

∂t(ρ̄v̄) + div(ρ̄v̄ ⊗ v̄)− divT+∇p(ρ) = rotH×H+ ρF,

H̄t − rot(v ×H) = υ∆H̄, div H̄ = 0,

T̄(∇v̄) = µ
(
∇v̄ +∇T v̄ − 2

3
div v̄I

)
+ ℸdiv v̄I in D′(O × Ω).(4.22)

4.1. Some key results related to density. By using the assumptions (2.4),
ρm,tm are said to be the renormalized solution of (2.2) such that

(4.23) (ξ(ρm,tm))t + div[ξ(ρm,tm)vm,tm ] + (ξ
′
(ρm,tm)ρm,tm − ξ(ρm,tm)) divvm,tm = 0,

holds for any global Lipschitz function ξ ∈ C1(R) in D′(Om,tm×R3), with Om,tm =
{x | x+ tm ∈ Om}. In addition, for a compact set K ⊂ (−tm,∞)

(4.24) ρm,tm ∈ C(K;Lζ), ζ ∈ [1, γ),
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where its proof is given in [27, Lemma 2.3]. Similarly, this result is true for ρ̄, such
that

(4.25) (ξ(ρ̄))t +div[ξ(ρ̄)v̄] + (ξ
′
(ρ̄)ρ̄− ξ(ρ̄)) div v̄ = 0, ρ̄ ∈ C(K;Lζ), ζ ∈ [1, γ).

Particularly, we have

(4.26) log(ρ̄)ρ̄ ∈ BC(O;Lζ(Ω)), ζ ∈ [1, γ).

Here, we define some functions

Mκ(z̀) =

{
z̀ log(z̀) when z̀ ∈ [0, κ),

κ log(κ) + (log(κ) + 1)(z̀ − κ) when z̀ ⩾ κ

with
Tκ(z̀) = min{z̀, κ}, z̀ ⩾ 0, when κ > 1.

Moreover, Mκ(z̀) may be defined as:

Mκ(z̀) = (log κ+ 1)z̀ + Lκ(z̀), Lκ(z̀) = z̀(log z̀ − log κ)1{z̀⩽κ} − z̀1{z̀⩽κ} − κ1{z̀⩽κ}.

Furthermore, by using Lebesgue convergence theorem the approximation of Mκ(z̀)
by smooth function’s sequences along with the use of (4.23) and (4.24), implies that

(4.27) (M(ρm,tm))t + div[M(ρm,tm)vm,tm ] + Tκ(ρm,tm) divvm,tm = 0,

in D′((Om,tm ,∞)×R3)

and

(4.28) (M(ρ̄))t + div[M(ρ̄)v̄] + Tκ(ρ̄) div v̄ = 0, in D′(R×R3)

Next, by the same way as in (4.10), we get

(4.29) Mκ(ρm,tm) → Mκ(ρ) in C(K;Lγ
weak(Ω)), with Mκ(ρ) ∈ BC(R;Lζ

weak(Ω)),

where the boundedness of (4.29) is independent of the parameter κ and only de-
pends on ζ.

Lemma 4.1. [14] In accordance with all the presumptions of Theorem 2.2, we
state that

sup
T−tm<t

sup
m

∫
Ω

ρm,tm(t) log(ρm,tm(t))−Mκ(ρm,tm(t))dx ⩽ r̃1(κ),

where
r̃1(κ) → 0 as κ → ∞.

Corollary 4.1. In accordance with all the presumptions of Theorem 2.2, we
state that

ρm,tm(t) log(ρm,tm) → ρ log(ρ) in C(K;Lζ
weak(Ω))

for any fixed ζ ∈ [1, γ) and each compact interval K ⊂ R. In addition,

sup
t∈R

∫
Ω

ρ log(ρ)(t)−Mκ(ρ)(t)dx ⩽ r̃1(κ), r̃1(κ) → 0 as κ → ∞.
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Next, by applying (4.23), one can obtain

(4.30) ∂tTκ(ρm,tm) + div(Tκ(ρm,tm)vm,tm) + κ sgn+(ρm,tm − κ) divvm,tm = 0

in D′((Om,tm ,∞)×R3).

By passing the limit m → ∞, in a similar way as in (4.10)–4.12, we get

Tκ(ρm,tm) → Tκ(ρ) in C(K;Lϖ(Ω)), with ϖ ∈ [1,∞),

Tκ(ρ) ∈ BC(Lζ(Ω)) with ζ ∈ [1, γ) independent of κ,(4.31)

κ sgn+(ρm,tm − κ) divvm,tm → χκ weakly in L2(K × Ω)(4.32)
for each bounded K ⊂ R, with

∂tTκ(ρ) + div (Tκ(ρ)v̄) + χκ = 0 in D′(R×R3)(4.33)

here Tκ is used to denote the cut-off function as already defined.

5. Effective viscous flux and its properties

In this section, we are going to examine the properties of the quantity

p(ρ)− (2µ+ λ) divv

known as effective viscous flux, studied in detail in [19,21].

Lemma 5.1. In accordance with all the presumptions of Theorem 2.2, we state
that

(5.1) lim
m→∞

∫
K

∫
Ω

(p(ρm,tm)− (2µ+ λ) divvm,tm)Tκ(ρm,tm)dx dt

=

∫
K

∫
Ω

(p(ρ)− (2µ+ λ) div v̄)Tκ(ρ)dx dt

for all κ = 1, 2, . . . and bounded interval K ⊂ R.

Proof. Taking the operators as in [21], we have Λi[ν] = ∆−1∂xi(ν), with
i, j = 1, 2, 3, in particular,

Λi[ς] = F−1
{−jςi

|ς|2
F{ν}(ς)

}
,

here F is used to denote the Fourier transformation. Furthermore, Mikhlin multi-
plier theorem implies that ∥∂xj

Λi[ν]∥Lq(Ω) ⩽ k(q)∥ν∥Lq(R3), q ∈ (1,∞) and

∥Λi[ν]∥Ls(Ω) ⩽ k(a, s)∥ν∥La(R3)

with s ∈
[
a, 3γ

3−γ

]
when a ∈ (1, 3), for a = 3, s is arbitrary finite and s = ∞ for

a > 3.
Next, using the quantities as test functions

Φi(x, t) = φ(x)Ψ(t)Λi[T(ρm,tm)], Φ ∈ D(Ω), Ψ ∈ D(K),

in the momentum equation (1.1)2 (by prolonging ρm,tm outside the domain Ω is
zero, as always):
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(5.2)
∫
K

∫
Ω

φΨ[p(ρm,tm)− (2µ+ λ) divvm,tm ]T(ρm,tm)dx dt

=

∫
K

∫
Ω

Ψ[(µ+ λ) divvm,tm − p(ρm,tm)]∂xiφΛi[Tκ(ρm,tm)]dx dt

+µ

∫
K

∫
Ω

Ψ

{
∇φ∇vm,tmΛi[Tκ(ρm,tm)]− vm,tm∂xjφ∂xjΛi[Tκ(ρm,tm)]dx dt

+µ

∫
K

∫
Ω

Ψvm,tm∇φT(ρm,tm)

}
dx dt

−
∫
K

∫
Ω

φρm,tmvm,tm

{
∂tΨΛi[Tκ(ρm,tm)]+κΨΛi[sgn

+(ρm,tm −κ) divvm,tm ]

}
dx dt

−
∫
K

∫
Ω

Ψ

{
ρm,tmvm,tm ⊗ vm,tm∂xj

φΛi[Tκ(ρm,tm)] + φρm,tmFm,tmΛi[Tκ(ρm,tm)]

}
dx dt

+

∫
k

∫
Ω

Ψvm,tm

{
Tκ(ρm,tm)ℜi,j [φρm,tmvm,tm ]−φρm,tmvm,tℜi,j [Tκ(ρm,tm)]

}
dx dt

−
∫
K

∫
Ω

Ψφ rotHm,tm ×Hm,tmΛi[Tκ(ρm,tm)]dx dt =

6∑
j=1

Jj,m

here by using (4.30), the operator ℜi,j is defined by

ℜi,j [ν] = F−1
{ ςiςj
|ς|2

F{ν}(ς)
}
.

Consequently, repeating the same process as above, taking into account (4.22),
(4.33) together with the testing function Φi(x, t) = ΨφΛi[Tκ(ρ)], we conclude∫

K

∫
Ω

φΨ[p(ρ)− (2µ+ λ) div v̄]T(ρ)dx dt(5.3)

=

∫
K

∫
Ω

Ψ[(µ+ λ) div v̄ − p(ρ)]∂xi
φΛi[Tκ(ρ)]dx dt

+ µ

∫
K

∫
Ω

Ψ
{
∇φ∇v̄Λi[Tκ(ρ)]− v̄∂xj

φ∂xj
Λi[Tκ(ρ)] + v̄ · ∇φT(ρ)

}
dx dt

−
∫
K

∫
Ω

φρ̄v̄
{
∂tΨΛi[Tκ(ρ)] + ΨΛi[χκ]

}
dx dt

−
∫
K

∫
Ω

Ψ
{
ρ̄v̄ ⊗ v̄∂xj

φΛi[Tκ(ρ)] + φρFΛi[Tκ(ρ)]
}
dx dt

+

∫
k

∫
Ω

Ψv̄
{
Tκ(ρ)ℜi,j [φρ̄v̄]− φρ̄v̄ℜi,j [Tκ(ρ)]

}
dx dt

−
∫
K

∫
Ω

ΨφrotH×HΛi[Tκ(ρ)]dx dt =

6∑
j=1

Jj,m.

Furthermore, by using (4.31), we have Λi[Tκ(ρm,tm)] → Λi[Tκ(ρ)] in C(K × Ω̄)
and thus, by using (4.8) and (4.18), J2,m → J2 as m → ∞. In addition, again
by applying (4.8) and (4.31), we get ∂jΛi[Tκ(ρm,tm)] → ∂jΛi[Tκ(ρ)] in the space
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C(K;W−1,2) and thus, J1,m → J1 as m → ∞. In a similar way, by using (4.14)
for the first term in J3,m, converging to its counterpart in J3 and similarly as in
(4.32), we get Λi[sgn

+(ρm,tm − κ) divvm,tm ] → Λi[χκ] in L2(Ω×K), by using the
compactness of W 1,2 ↪→↪→ L2 along with the continuity of Ai : L

2 → W 1,2 along
with the estimation obtained in (4.8), the second term in J3,m converging to its
counterpart J3 and we get J3,m → J3. Furthermore, the convergence of J4,m can
be obtained by using (4.14), (4.16), (4.31) and Lemma 3.4 in [21]. Hence, we get

Tκ(ρm,tm)ℜi,jmφρm,tmvm,tm ]− φρm,tmvm,tℜi,j [Tκ(ρm,tm)]

−→ Tκ(ρ)ℜi,j [φρv]− φρvℜi,j [Tκ(ρ)].

Similarly, the convergence of J5,m → J5 can be obtained by using (4.8). Finally,
J6,m → J6 is obtained by applying the estimation obtained in (4.19)–(4.21). □

6. Density and momenta compactness

The aim of this section is to obtain the propagation of oscillations. The re-
quired results can be obtained using the same approach as in [21]. For the reader’s
convenience, we provide an outline of the proof here. For more details, please refer
to [21, Sections 5–7].

Next, take any fixed arbitrary t̃1 < t̃2, then by using (4.24) and (4.27), we have∫
Ω

Mκ(ρm,tm)(t̃2)dx−
∫
Ω

Mκ(ρm,tm)(t̃1)dx(6.1)

+

∫ t̃2

t̃1

∫
Ω

1

2µ+ λ
p(ρm,tm)Tκ(ρm,tm)dx dt

=

∫ t̃2

t̃1

∫
Ω

1

2µ+ λ
p(ρm,tm)Tκ(ρm,tm)− divvm,tmTκ(ρm,tm)dx dt.

Furthermore, applying the same approach for (4.28) and using (4.25), yields

(6.2)
∫
Ω

Mκ(ρ̄)(t̃2)dx−
∫
Ω

Mκ(ρ̄)(t̃1)dx+

∫ t̃2

t̃1

∫
Ω

1

2µ+ λ
p(ρ)Tκ(ρ)dx dt

=

∫ t̃2

t̃1

∫
Ω

1

2µ+ λ
p(ρ)Tκ(ρ)− div v̄Tκ(ρ)dx dt.

Furthermore, by taking the difference of (6.1), (6.2) and using Lemma 5.1 along
with (4.29), we obtain

(6.3)
∫
Ω

(
Mκ(ρ)−Mκ(ρ̄)(t̃2)

)
dx−

∫
Ω

(
Mκ(ρ)−Mκ(ρ̄)(t̃1)

)
dx

+
1

2µ+ λ
lim

m→∞
sup

∫ t̃2

t̃1

∫
Ω

p(ρm,tm)Tκ(ρm,tm)− p(ρ)Tκ(ρ)dx dt

⩽
∫ t̃2

t̃1

∫
Ω

Tκ(ρ)− Tκ(ρ̄) div v̄ dx dt.

To proceed further, we need the following essential lemmas:
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Lemma 6.1. [15] For any ℏ > 0, we have

lim
m→∞

sup

∫ t̃2

t̃1

∫
Ω

p(ρm,tm)Tκ(ρm,tm)− p(ρ)Tκ(ρ)dx dt+ r̃2(κ)(t̃2 − t̃1)

⩾ ℏ
∫ t̃2

t̃1

Ψ

(∫
Ω

(Mκ(ρ)−Mκ(ρ̄))dx

)
dt,

where r̃2(κ) → 0 as κ → ∞ and Ψ is used to represent the convex function as given
in [15, Lemma 5.3].

Lemma 6.2. [20] In accordance with all the presumptions of Theorem 2.2, we
state that

sup
κ>1

lim
m→∞

sup

∫ t̃2

t̃1

∫
Ω

|Tκ(ρm,tm)− Tκ(ρ̄)|1+γdx dt ⩽ L(t̃1, t̃2).

In order to continue with the remaining computations, we apply Lemma 6.1
and Corollary 4.1 for passing the limit as κ → ∞ in (6.3), and obtain

(6.4)
∫
Ω

ϑ(t̃2, x)dx−
∫
Ω

ϑ(t̃1, x)dx+
ℏ

2µ+ λ

∫ t̃2

t̃1

Ψ

(∫
Ω

ϑ(t, x)dx

)
dt

⩽ lim sup
κ→∞

∣∣∣∣ ∫ t̃2

t̃1

∫
Ω

(Tκ(ρ)− Tκ(ρ̄)) div v̄ dx dt

∣∣∣∣,
where ϑ is used to denote the “defect measure” as defined in (4.1). Further, from
(6.4), we get∣∣∣∣ ∫ t̃2

t̃1

∫
Ω

(Tκ(ρ)− Tκ(ρ̄)) div v̄ dx dt

∣∣∣∣,
⩽

∣∣∣∣ ∫ t̃2

t̃1

∫
Ω

(Tκ(ρ)− Tκ(ρ̄))
2dx dt

∣∣∣∣ 1
2
∣∣∣∣ ∫ t̃2

t̃1

∫
Ω

|div v̄|2dx dt
∣∣∣∣ 1
2

⩽

(∫ t̃2

t̃1

∫
Ω

|Tκ(ρ)− Tκ(ρ̄)|dx dt
) γ−1

2γ
(∫ t̃2

t̃1

∫
Ω

|Tκ(ρ)− Tκ(ρ̄)|1+γdx dt

) 1
2γ

×
(∫ t̃2

t̃1

∫
Ω

|div v̄|2dx dt
) 1

2

.

Now, by applying (4.9), (4.18) and Lemma 6.2 along with the inequality(∫ t̃2

t̃1

∫
Ω

∣∣Tκ(ρ)− Tκ(ρ̄)
∣∣qdx dt) 1

q

⩽ L(t̃1, t̃2)κ( 1
Θ(γ)+γ

− 1
q )(Θ(γ)+γ),

with κ > 0, q ∈ [1,Θ(γ)+γ) and hence it is proved that as κ → ∞, the right-hand-
side term of (6.4) tends to zero.

Furthermore, taking into account the estimations stated in (4.26), (4.29) and
Corollary 4.1, it is implied that

Ξ(t) =

∫
Ω

ϑ(t, x)dx
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is globally bounded and continuous throughout the entire real line R. Next, by
applying (6.4), the following inequality holds such that

(6.5) Ξ(t̃2)− Ξ(t̃1) +
ℏ

2µ+ λ

∫ t̃2

t̃1

Ψ(Ξ(t))dt ⩽ 0.

The continuity of Ξ on O and (6.5) implies that

(6.6) Ξ(t̃2) ⩽ χ(t̃2 − t̃1),

where χ is referred to as a unique solution to the problem χ′(t)+ ℏ
2µ+λΨ(χ(t)) = 0,

χ(0) = Ξ(t̃1). Subsequently, the function χ indicates the uniform rate at which
the amplitude of possible oscillations declines over time that is independent of the
forcing term’s norm and the energy’s upper bound.

Hence, it shows that Ξ ≡ 0 and thus (2.13) is proved. Moreover, using the
strong convergence of ρm,tm , it implies that

ρF = ρ̄F̄ , and p(ρ) = p(ρ̄).

Thus taking into account (4.22), ρ̄, v̄, H̄ is said to be the globally defined weak
solutions of the problem (1.1)–(1.3).

Furthermore, with the use of the estimations obtained in (2.13), (4.10) and
(4.16), we obtain∫

O

E(ρ̄, v̄, H̄)(t)dt =

∫
O

(1
2

∥∥√ρ̄v̄
∥∥2

L2(Ω)
+

a

γ − 1
∥ρ̄∥2Lγ(Ω) +

1

2
∥H∥2L2(Ω)

)
dt

⩽ lim
m→∞

inf

∫
O

(1
2

∥∥√ρm,tmvm,tm

∥∥2

L2(Ω)
+

a

γ − 1
∥ρm,tm∥2Lγ(Ω) +

1

2
∥Hm,tm∥2L2(Ω)

)
dt

⩽ |O|E∞

for any arbitrary O. Hence, ess supt∈R E(t) ⩽ E∞ .
Next, to prove the required result, it is necessary to obtain the compactness of

the momenta as given in the relation (2.15). For this, write that

ρm,tmvm,tm = (ρm,tm)
1
2 (ρm,tm)

1
2vm,tm ,

further, by using (2.13), we get

(6.7) (ρm,tm)
1
2 → (ρ̄)

1
2 strongly converges in the space L2((0, 1)× Ω)

whereby applying (4.3), it is shown that

(6.8) (ρm,tm)
1
2vm,tm → (ρ̄)

1
2 (v̄) weakly in (L2((0, 1)× Ω))3.

Next, applying (4.16) implies that

∥(ρm,tm

) 1
2vm,tm∥2L2(K×Ω) =

∫
K

∫
Ω

|(ρm,tm)
1
2vm,tm |2dx dt

−→
∫
K

∫
Ω

ρ̄|v̄|2dx dt = ∥(ρ̄) 1
2 v̄∥2L2((0,1)×Ω).

By applying the strong convergence of (6.8), we get (2.15) and (2.16). This further
implies that ρm,tmFm,tm · vm,tm −→ ρ̄F̄ · v̄ in D(K × Ω). As a result, the energy
inequality (2.5) follows for ρ̄, v̄, H̄. Thus, it completes the proof of Theorem 2.2.
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7. Proof of Theorems 2.3–2.4

It can be seen Theorem 2.3 can be immediately derived from Theorem 2.2 by
contradiction. Additionally, we recognize that the proof of Theorem 2.4 follows
directly from Theorems 2.1 and 2.2 in accordance with Remark 2.1. Here, we
outline the proof of Theorem 2.4.

E(t) ⩽ E∞, ∀T (E0,m, t0) ⩽ t,

and

∥ρm(tm)− ρ̄∥Lζ(Ω) + ∥Hm(tm)− H̄∥Lζ(Ω)(7.1)

+

∣∣∣∣ ∫
Ω

[(ρv)(tm)− (ρv)] · φdx

∣∣∣∣ ⩾ k, ∀(ρ̄, v̄, H̄) ∈ Ã[F̃ ].

Next, by using Theorem 2.2, we may assume a global trajectory
(
ρ̄, v̄, H̄

)
such that

(7.2) sup
t∈[0,1]

∥ρm(tm)− ρ̄∥Lζ(Ω) → 0, as tm → ∞,

(7.3) sup
t∈[0,1]

∥Hm(tm)− H̄∥Lζ(Ω) → 0, as tm → ∞,

and

(7.4) sup
t∈[0,1]

∣∣∣∣ ∫
Ω

[
(ρv)(tm)− (ρv)

]
· φq dx

∣∣∣∣ → 0, as tm → ∞.

Thus, in contrast to (7.1), we have (7.2), (7.3) and (7.4). Hence, it completes the
proof of Theorem 2.4.
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ГЛОБАЛНИ КОМПАКТНИ АТРАКТОРИ И
КОМПЛЕТНЕ ОГРАНИЧЕНЕ ТРАJЕКТОРИJЕ

ЗА СТИШЉИВИ МАГНЕТОХИДРОДИНАМИЧКИ
СИСТЕМ JЕДНАЧИНА

Резиме. У овом чланку истражуjемо глобално понашање слабих решења маг-
нетохидродинамичког (МХД) флуида у тродимензионалном ограниченом до-
мену са компактном Липшицовом границом на кога делуjу произвољне силе.
Показали смо постоjање глобалних компактних атрактора под специфичним
ограничењима на адиjабатску константу γ.
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