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THE EFFECT OF A HYPOCYCLOID
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Abstract. The present topic is devoted to investigating the effects of semi
four-cusped hypocycloid irregularity on torsional surface waves in an initially
stressed anisotropic porous medium situated between two anisotropic non-
homogeneous semi-infinite spaces. The irregularity manifests as a semi-four-
cusped hypocycloid at the interface where the layer and the lower semi-infinite
space are separated. It is assumed that the directional rigidities, density and
initial stress vary in the upper and lower semi-infinite spaces in an exponential
and hyperbolic manner, respectively. A closed form for the torsional wave
dispersion equation is presented. Additionally, the velocity equation is found
in the case of no irregularity. The study demonstrates that heterogeneity of
lower semi-infinite space, initial stress and directional rigidities of both semi-
infinite spaces, as well as of porosity of the layer have a favourable effect on
the phase velocity of torsional surface waves. However, the heterogeneity of
the upper semi-infinite space, ratio of directional rigidities and initial stress of
the layer and irregularity parameter have a negative impact. It has also been
observed that, in the case of a uniform media, the velocity equation reduces
to the conventional equation for the Love wave.

1. Introduction

Earthquakes are the result of the rapid motion along the faults in the Earth’s
crust, which is usually caused by the sudden breaking of underground rocks. The
seismic waves produced by this sudden change cause the Earth to quiver. Volcanic
eruptions, landslides, snowfalls and even rushing rivers can also cause earthquake
waves. The study of seismic waves is important in order to understand how hetero-
geneous and anisotropic the Earth’s inner core is. There are two types of seismic
waves: body waves and surface waves. The waves which originate at the epicentre
of an earthquake and travel through the Earth are body waves. The surface wave is
the wave that travels over the Earth’s surface. Most conjectures about the Earth’s
internal structure are made by studying seismic waves. Torsional waves are one
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of several types of surface waves. Their amplitude decreases exponentially as the
distance from the free surface increases.

In the crust of the Earth, heterogeneity occurs at all levels. Thus, surface
wave propagation in an inhomogeneous layer is very important for seismology and
earthquake engineering. The study of surface waves in layered and heterogeneous
media has become a major focus for theoretical seismologists in recent years. An
iconic and well-known aspect of wave theory is dealing with surface waves propa-
gating over the surface of homogeneous and heterogeneous elastic half-spaces. In a
well-known book by Ewing et al. [1], a significant quantity of information regard-
ing seismic wave propagation is documented. Love [2] and Gubbins [3] provided
details on the Earth’s plate tectonics. According to Gupta et al. [4], while the het-
erogeneity parameter related to rigidity has the opposite impact, the one related
to phase velocity decreases as the density of the crystal layer grows. Abd-Alla et
al. [5] analysed shear wave velocity of propagation depending on various factors.
In the framework of the three-phase-lag model of thermoelasticity, Kumar et al. [6]
investigated wave propagation in an anisotropic viscoelastic medium. According to
Kakar et al. [7], the shear wave velocity is directly impacted by parameter variations
related to the medium’s non-homogeneity. Manna et al. [8] noted how inhomogene-
ity and reinforcement affected the Love wave velocity. Alam et al. [9] observed the
influence hydrostatic stress, heterogeneity and magneto-elastic coupling parameter
on Love-type wave.

The solid portion of Earth’s crust can be regarded as somewhat anelastic in ac-
cordance with the tidal hypothesis (Lowrie [10]). Seabeds and intermediate strata
beneath the surface are exposed to initial stress, according to the seismic record.
There are numerous causes for the medium’s intial stresses to arise: the variations in
temperature, pressure because of the overloaded layer, quenching process, sluggish
creep process, and gravity. These stresses can have a big impact on elastic waves
that are created by impacts, explorations, or earthquakes. Dealing with wave prop-
agation problems under initial stress is therefore essential. Dey et al. [11] concluded
that when initial compressive stresses are present, the velocity of torsional surface
waves is reduced. Ozturk et al. [12] reported and discussed the effect of initial
stress on the phase velocity of a torsional wave. Ahmed et al. [13] determined the
dispersion equation using the Fourier transform technique to show the influence on
Love waves. The impact of initial stress, corrugation and porosity factor on velocity
profile of SH waves was analysed by Gupta et al. [14]. For electrically open and
electrically short circuits, Kumar et al. [15] showed the influence of initial stress on
Rayleigh wave.

Scientists studying seismology and physics have recently become interested in
the phenomenon of wave propagation in fluid-saturated porous media. The empty
spaces that exist inside the formation are referred to as pore space or void. When
the formation is water-saturated, these pore spaces are occasionally filled with for-
mation water. Otherwise, they are often filled with air. The production of porous
materials and the science of geophysics are two potential uses for this idea. Seismol-
ogists are interested in how porosity in a medium affects elastic wave propagation.
Wang et al. [16] used the Biot’s theory to obtain the Love wave dispersion equation.
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Son et al. [17] showed that the phase velocity increases with the growth of the pore
size. Shekhar et al. [18] investigated the impact of porosity on velocity profile of
torsional waves. Alam et al. [19] investigated the effects of initial stresses, hetero-
geneity, porosity and sandy characteristics on the propagation of torsional surface
waves. By using graphical representations and discussions supported by numerical
data, the significant impact of numerous influencing elements, such as gravity, ini-
tial stress, porosity and viscosity on Love waves has been thoroughly examined by
Kumhar et al. [20].

A composite structure in the real world may not always contain a layer with a
planar border alone. The surface of the earth is irregular in spite of millions of years
of gradation. Since the mass of the Earth is unevenly distributed, certain parts of
the world are subject to a stronger gravitational “pull” than others. The “height” of
various geoid components varies constantly, rising and falling in reaction to gravity
as a result of these fluctuations in gravitational force. So it is more realistic to
consider the irregularity effect on seismic waves. The possibility of irregularities
has led to an endeavor to investigate the impact of hypocycloid-type irregularities
on the torsional surface wave’s propagation behavior in order to gain a practical
understanding of the issue. The theoretical formulation of modes and surface waves
in multi-layered media with irregular interfaces has been successfully established
by Chen [21]. Chattaraj et al. [22] obtained the displacement field in the porous
layer using the perturbation method, with the assumption that the irregularity is
rectangular. The impact of shifting loads owing to irregularities in ice sheets floating
on water was investigated by Chatterjee et al. [23]. Using predetermined boundary
conditions, the internal deformations were analytically calculated by Chowdhury
et al. [24] to produce the wave frequency equation. In a prestressed irregular
composite layer, Singh et al. [25] examined the behavior of Love-type waves.

The purpose of the present manuscript is to investigate torsional surface waves
as they move through a porous medium that is positioned between two semi-infinite
spaces. A semi-infinite space is a mathematical model used to approximate the
Earth when performing some calculations in seismology and bounded in one direc-
tion and unbounded in another. In the present model, lower semi-infinite space is
taken beneath the layer where z varies from εG(r) to ∞ and upper semi-infinite
space is above the layer where z varies from −H to −∞. The initial stress, density
and directional rigidities vary in the upper and lower semi-infinite spaces in an expo-
nential and hyperbolic manner respectively and the irregularity appears as a semi
four-cusped hypocycloid at the interface where the layer and lower semi-infinite
space are separated. This study’s consideration of exponential and hyperbolic fluc-
tuations in density, directional rigidities and initial stress in upper and lower media
is motivated by the Earth’s crust’s numerous heterogeneous strata, each with its
own unique set of geological properties. We have employed the separation of vari-
ables method to get the dispersion equation. Thus the article addresses the applica-
bility of initial stress, irregularity, porosity, anisotropy and heterogeneity factor on
the velocity profile of torsional surface waves which are graphically illustrated. It
has also been noted that the velocity equation simplifies to the Love wave’s classical
solution for a uniform media.
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Lower semi-infinite space heterogeneity features have a positive impact on tor-
sional wave phase velocities, whereas upper semi-infinite space heterogeneity fea-
tures have a negative effect. Phase velocity is increasingly influenced by anisotropic
parameters of the upper and lower semi-infinite spaces; for porous layers, their im-
pacts are lessening. Porosity is found to have a significant increasing impact. The
phase velocity is affected more by initial stresses of the semi-infinite spaces than by
those of the porous layer. Distinct irregularity sizes have an impact on the phase
velocity of torsional surface waves as well. The present finding can be possibly seen
in various practical situations. There is a possibility of finding a geometrical model
beneath the Earth’s surface. The study of the propagation behaviour of torsional
wave through such a medium may help geophysicists and seismologists in the pre-
diction of earthquake and in understanding the damages caused by earthquakes.
We have considered a unique model that lies in the Earth’s crust.

2. Foundation of the problem

We consider a cylindrical coordinate system in order to explore torsional surface
waves. The model is an anisotropic porous layer of thicknessH that lies between two
anisotropic heterogeneous half-spaces, with one semi four-cusped type irregularity
at the lower interface under radially directed compressive initial stresses P1 = −χrr.
We take into account the semi-ellipse’s length h for the semi-minor axis and 2m for
the major axis.

The interface dividing the layer from the lower semi-infinite region is the origin
of the cylindrical coordinate system (r, θ, z), with z pointing downward. Rigidity,
density and initial stress variations as follows are taken into consideration:
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Figure 1. Problem’s geometric shape
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Regarding the upper semi-infinite space,

(2.1)
N = N0e

α1z, L = L0e
α1z,

ρ = ρ0e
α1z, P = P0e

α1z

For the porous layer,

N = N1, L = L1, ρ = ρ1, P = P1

For lower semi-infinite space,

(2.2)
N = N2 cosh

2(α2z), L = L2 cosh
2(α2z),

ρ = ρ2 cosh
2(α2z), P = P2 cosh

2(α2z)

P represents the initial stress at each location in the medium, the density is ρ, the
directional rigidities along radial and axial directions are N , L and constants α1,
α2 have inverse dimensions related to length.

The irregularity equation is thought to be

z = εG(r),

where

G(r) = b
3

√
1−

( r
a

) 2
3

; − a ⩽ r ⩽ a,

= 0; otherwise,

and

ε =
b

2a
, ε≪ 1.

3. Solution for semi-infinite spaces

The dynamical equation of motion (Biot [26]) of an initially stressed anisotropic
semi-infinite space can be written as follows if the wave only travels in a radial
direction

(3.1)
∂χrθ

∂r
+
∂χθz

∂z
+

2

r
χrθ −

∂

∂z

(P
2

∂v

∂z

)
= ρ

∂2v

∂t2

where displacement along azimuthal direction is v, the density is ρ, the radially
directed initial stress is P and the stress components are χrθ and χzθ. The torsional
wave is characterized by the displacements

u = 0, w = 0, v = v(r, z, t)

The strain-displacement relations are

err = 1
2
∂u
∂r , eθθ = 1

2

(
1
r
∂v
∂θ + u

r

)
, ezz = 1

2
∂w
∂z

erθ = 1
2

(
1
r
∂u
∂θ + ∂v

∂r − v
r

)
, eθz = 1

2

(
∂v
∂v + 1

r
∂w
∂θ

)
,

ezr = 1
2

(
∂w
∂r + ∂u

∂z

)

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The stress-strain relationships are now provided by

χrr = (A+ P )err + (A− 2N + P )eθθ + (F + P )ezz +Qε,

χθθ = (A− 2N)err +Aeθθ + Fezz +Qε,

χzz = Ferr + Feθθ + Cezz +Qε,

χrθ = 2Nerθ, χθz = 2Leθz, χrz = 2Lezr


where the medium’s elastic constants are A, F , and C. The coupling between the
change in the solid and liquid’s volumes is measured by Qε.

At this point, the displacement component and stress components for aniso-
tropic elastic semi-infinite space are connected by

(3.2) χrθ = N
(∂v
∂r

− v

r

)
, χzθ = L

∂v

∂z

By employing the relationships (3.2), the motion equation (3.1) is transformed into

(3.3) N
( ∂2

∂r2
+

1

r

∂

∂r
− 1

r2

)
v +

∂

∂z

(
M
∂v

∂z

)
= ρ(z)

∂2v

∂t2
,

where M = L − P
2 . We consider the following as the form of the solution to

equation (3.3):

(3.4) v = V (z)J1(kr)e
iwt

where J1(kr) represents the first order and first kind Bessel’s function, the spatial
frequency of wave is k and the angular rate is ω.

Equation (3.3) assumes the following form with the aid of equation (3.4)

(3.5) N
(k2r2J ′′

1 (kr) + krJ ′
1(kr)− J1(kr)

r2

)
V eiωt

+
(
M
d2V

dz2
+
dM

dz

dV

dz

)
J1(kr)e

iωt = −ρω2V J1(kr)e
iωt

or,

N
(
− k2r2J1(kr)

r2

)
V +

(
M
d2V

dz2
+
dM

dz

dV

dz

)
J1(kr) = −ρω2V J1(kr)

or,

d2V

dz2
+
( 1

M

dM

dz

)dV
dz

− k2N

M

(
1− ρc2

N

)
V = 0

The torsional wave velocity is represented by c = ω
k in the above equation. To

remove the expression dV
dz from the previous equation, substitute V (z) = ϕ(z)√

M
.

This yields

(3.6)
d2ϕ

dz2
+

1

4M2

(dM
dz

)2

ϕ− 1

2M

d2M

dz2
ϕ− k2N

M

(
1− ρc2

N

)
ϕ = 0.



THE EFFECT OF A HYPOCYCLOID IRREGULARITY ON TORSIONAL... 125

3.1. Solution for upper semi-infinite space. Using equation (2.1), equa-
tion (3.6) reduces to

(3.7)
d2ϕ

dz2
−m2

0ϕ = 0,

where m0 = k
√

1
4

(
α1

k

)2
+ N0/L0

1−ξ0

(
1− c2

c20

)
, c0 =

√
N0

ρ0
= shear wave velocity in this

half-space and ξ0 = P0

2L0
=dimensionless parameter due to initial stress P0. When

z → −∞, the solution to equation (3.7) disappears and can be expressed as

ϕ(z) = A1e
m0z

For the upper semi-infinite space, the displacement component becomes

(3.8) v = v0(say) = A1
em0zJ1(kr)e

iwt

e
α1z
2

3.2. Solution for lower semi-infinite space. Using equation (2.2), equa-
tion (3.6) reduces to

(3.9)
d2ϕ

dz2
−m2

2ϕ = 0,

where m2 = k
√(

α2

k

)2
+ N2/L2

1−ξ2

(
1− c2

c22

)
, c2 =

√
N2

ρ2
=the shear wave velocity in this

semi-infinite space and ξ2 = P2

2L2
=dimensionless parameter due to initial stress P2.

The solution of equation (3.9) vanishing at z → ∞ may be written as

ϕ(z) = C1e
−m2z

The displacement component in this space is so

(3.10) v = v2(say) = C1
e−m2zJ1(kr)e

iwt

cosh(α2z)

4. Solution for layer

An anisotropic porous medium’s dynamical equations of motion (Biot [26]) are
as follows when initial stress P is applied without body force:

∂χrr

∂r + 1
r
∂χrθ

∂θ + ∂χrz

∂z + χrr−χθθ

r − P1
∂w′

θ

∂z = ∂2

∂t2 (ρrru+ ρrθU),

∂χrθ

∂r + 1
r
∂χθθ

∂θ + ∂χθz

∂z + 2χrθ

r − P1
∂w′

z

∂r = ∂2

∂t2 (ρrrv + ρrθV ),

∂χrz

∂r + 1
r
∂χθz

∂θ + ∂χzz

∂z + χrz

r − P1
∂w′

θ

∂r = ∂2

∂t2 (ρrrw + ρrθW )


and

(4.1)

∂χ
∂r = ∂2

∂t2 (ρrθu+ ρθθU),

∂χ
∂θ = ∂2

∂t2 (ρrθv + ρθθV ),

∂χ
∂r = ∂2

∂t2 (ρrθw + ρθθW ),


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where the liquid’s stress is denoted by χ, the solid’s displacement components are
(u, v, w), the liquid’s displacement components are (U, V,W ), the respective stress
components are χrr, χθθ, χzz, χrz, χrθ, and χθz and

w′
r =

1

2r

(∂w
∂θ

− r
∂v

∂z

)
, w′

θ =
1

2

(∂u
∂z

− ∂w

∂r

)
, w′

z =
1

2r

(∂(rv)
∂r

− r
∂v

∂θ

)
are the components that make up the rotational vector w′. The porous layer’s
stress-strain relationships are now provided by

χrr = (A+ P1)err + (A− 2N1 + P1)eθθ + (F + P1)ezz +Qε,

χθθ = (A− 2N1)err +Aeθθ + Fezz +Qε,

χzz = Ferr + Feθθ + Cezz +Qε,

χrθ = 2N1erθ, χθz = 2L1eθz, χrz = 2L1ezr,


where the medium’s elastic constants are A, F , and C. The radial and axial shear
moduli are N1 and L1, respectively and the coupling between the change in the
solid and liquid’s volumes is measured by Qε. The strain-displacement relations
are

err = 1
2
∂u
∂r , eθθ = 1

2

(
1
r
∂v
∂θ + u

r

)
, ezz = 1

2
∂w
∂z

erθ = 1
2

(
1
r
∂u
∂θ + ∂v

∂r − v
r

)
, eθz = 1

2

(
∂v
∂v + 1

r
∂w
∂θ

)
,

ezr = 1
2

(
∂w
∂r + ∂u

∂z

)


The fluid pressure P1 and the stress vector χ have the following relationship:

−χ = fP1,

where f =porosity of medium. In relation to the layer density ρ, solid density ρs
and water density ρw, the mass coefficients ρrr, ρrθ, and ρθθ are

ρrr + ρrθ
ρs

= (1− f),
ρrθ + ρθθ

ρw
= f.

Therefore, the aggregate’s mass density is
ρ1 − ρs
ρw − ρs

= f.

According to Biot, the mass coefficients are positive and

ρrrρθθ − ρ2rθ > 0.

The torsional surface wave has the property that

u = 0, w = 0, v = v(r, z, t), U = 0, W = 0, V = V (r, z, t)

These provide two non-zero stress components as

(4.2) χθz = L1
∂v

∂z
, χrθ = N1

(∂v
∂r

− v

r

)
By substituting the relations (4.2) in equations (4) and (4.1) one obtains

(4.3)
(
N1 −

P1

2

)(∂2v
∂r2

+
1

r

∂v

∂r
− v

r2

)
+ L1

∂2v

∂z2
=

∂2

∂t2

(
ρrrv + ρrθV

)
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and
∂2

∂t2
(ρrθv + ρθθV ) = 0.

One way to express the final equation is as

(4.4) ρrθv + ρθθV = k1(say).

When V is removed from Equations (4.3) and (4.4), one obtains

(4.5)
(
N1 −

P1

2

)(∂2v
∂r2

+
1

r

∂v

∂r
− v

r2

)
+ L1

∂2v

∂z2
= d1

∂2v

∂t2

where

d1 = ρrr −
ρ2rθ
ρθθ

.

According to Equation (4.5), shear wave’s velocity in a radial direction is√
N1 − P1

2

d1
=

√
1− ξ1
d

c21,

where

c1 =

√
N1

ρ1
= the shear wave velocity in the medium,

ξ1 =
P1

2N1
= initial stress P1 related dimensionless parameter,

d =
d1
ρ1

= γ11 −
γ212
γ22

.

γ11 = ρrr

ρ1
, γ12 = ρrθ

ρ1
and γ22 = ρθθ

ρ1
are the parameters for the porous layer’s

material which are dimensionless. Once more, the solution to equation (4.5) is
considered as

(4.6) v = ψ(z)J1(kr)e
iwt,

Equation (4.5) assumes the following form with the aid of (4.6)

(4.7)
d2ψ

dz2
+m2

1ψ = 0,

where m1 = k
√

N1

L1
d
(
c2

c21
− 1−ξ1

d

)
. The solution to (4.7) is

ψ(z) = B1 cos(m1z) +B2 sin(m1z)

In the porous layer, the displacement component is hence

(4.8) v(z) = v1(say) = [B1 cos(m1z) +B2 sin(m1z)]J1(kr)e
iwt.
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5. Boundary conditions

The subsequent prerequisites for boundary conditions need to be fulfilled:
(1) At the point where the upper semi-infinite space and the layer meet, both

the displacement and stress components remain continuous, i.e.,
(i) v0 = v1 at z = −H.
(ii) L0

∂v0

∂z = L1
∂v1

∂z at z = −H.
(2) At the interface irregularity of the layer and lower semi-infinite space, the

displacement and the stress components stay continuous, i.e.,
(i) v1 = v2 at z = εG(r).
(ii) (χrθ)2 = (χrθ)3 at z = εG(r).

where (χrθ)2 = L1

(
∂v1

∂r − v1
r

)
(−ϵG′)+L1

∂v1

∂z , (χrθ)3 = L2

(
∂v2

∂r − v2
r

)
(−ϵG′)+L2

∂v2

∂z .
The following equations have been obtained by applying equations (3.8), (3.10), and
(4.8) to the aforementioned four boundary conditions.

A1e
−(m0−α1

2 )H −B1 cos(m1H) +B2 sin(m1H) = 0,

A1

(
m0 −

α1

2

)
e−

(
m0−α1

2

)
H −B1

(L1

L0
m1 sin(m1H)

)
−B2

(L1

L0
m1 cos(m1H)

)
= 0,

B1 cos(m1εG(r)) +B2 sin(m1εG(r))− C1
e−m2εG(r)

cosh(α2εG(r))
= 0,

B1Q1 +B2Q2 − C1

(L2

L1

e−m2εG(r)

cosh(α2εG(r))
Q3

)
= 0,

where

Q1 = εG′k cos(m1εG(r))Q−m1 sin(m1εG(r)),

Q2 = εG′k sin(m1εG(r))Q+m1 cos(m1εG(r)),

Q3 = εG′kQ− (m2 + tanh(α2εG(r))),

Q =
J2(kr)

J1(kr)
.

Removing the arbitrary constants A1, B1, B2, and C1 from the preceding four
equations, we obtain

tan(m1H) =
[L1

L0

m1

k

{L2

L1

Q3

k
cos(m1εG(r))−

Q1

k

}
(5.1)

+
(m0

k
− 1

2

α1

k

){L2

L1

Q3

k
sin(m1εG(r))−

Q2

k

}]
/
[L1

L0

m1

k

{L2

L1

Q3

k
sin(m1εG(r))−

Q2

k

}
−

(m0

k
− 1

2

α1

k

){L2

L1

Q3

k
cos(m1εG(r))−

Q1

k

}]
,
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The torsional surface wave velocity in an initially stressed anisotropic porous layer
situated between two anisotropic heterogeneous semi-infinite spaces can be found
in this dispersion equation.

6. Particular Cases

Case I: If ε → 0, i.e., if the lower interface is devoid of irregularities, the
dispersion equation (5.1) becomes

tan(m1H) =
−L1

L0

L2

L1

m1

k

m2

k
− m1

k

(m0

k
− 1

2

α1

k

)
−L1

L0

(m1

k

)2
+
L2

L1

m2

k

(m0

k
− 1

2

α1

k

)
The torsional surface waves in an initially stressed anisotropic porous layer posi-
tioned between two heterogeneous anisotropic semi-infinite spaces are represented
by this dispersion equation.

Case II: In the absence of irregularity if the semi-infinite spaces and layer
are homogenous, isotropic, non-porous and free from initial stress, i.e., If ε → 0,
α1 → 0, α2 → 0, N0 = L0 = µ0, N1 = L1 = µ1, N2 = L2 = µ2, d = 1, ξ0 → 0 ,
ξ1 → 0 and ξ2 → 0, the dispersion equation (6.1) becomes

(6.1) tan(m′
1H) =

−µ1

µ0

µ2

µ1

m′
1

k

m′
2

k
− m′

1

k

m′
0

k

−µ1

µ0

(m′
1

k

)2
+
µ2

µ1

m′
2

k

m′
0

k

where
m′

0

k
=

√
1− c2

c20
,

m′
1

k
=

√
c2

c21
− 1,

m′
2

k
=

√
1− c2

c22

Case III: The dispersion equation (6.1) now has the following form if we ignore
the upper half-space (i.e., µ0 = 0)

(6.2) tan

[
kH

√
c2

c21
− 1

]
=
µ2

µ1

√
1− c2

c22√
c2

c21
− 1

.

Since equation (6.2) is a well-known classical finding of Love waves, the solution to
the problem under discussion is validated.

7. Numerical results and discussion

Numerical calculations are executed to illustrate the impact of varying values
of α1

k , α2

k , N0

L0
, N1

L1
, N2

L2
, d, ξ0, ξ1, ξ2, ε and b

H on the propagation of torsional waves
in the porous layer situated between two heterogeneous anisotropic semi-infinite
spaces, utilizing the dispersion equation (5.1).The quantitative information was
obtained from (Gubbins [3]). c

c1
varies with kH for various values of those, as seen

in the figures. In all of the figures, the values of L1

L0
= 0.2, L2

L0
= 0.8064, c21

c20
= 4.032,



130 SAHA AND DAS

1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

2

2.5

3

3.5

4

kH

c/
c 1

 

 

1

2

3

1.  α
1
/k = 0.20

2.  α
1
/k = 0.50

3.  α
1
/k = 0.90

Figure 2. Phase velocity variations for the torsional surface wave
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Figure 3. Phase velocity variations for the torsional surface wave
for various values of α2

k .

c21
c22

= 0.004, kr = 0.01, r
a = 0.01 and b

a = 0.02 have been maintained fixed. All
of these figures demonstrate that under postulated condition, dimensionless wave
number kH drops with increasing phase velocity c

c1
.

For the fluctuations of heterogeneity parameters α1

k and
α2

k of the upper and
lower semi-infinite spaces, respectively, Figures 2 and 3 show the phase velocity
variations of torsional surface waves. Figure 2 delineates that when heterogeneity
increases, the phase velocity of torsional surface waves drops, but the increasing
effect in heterogeneity is found in Figure 3. The curves in this case, which accumu-
late at a single point, show that phase velocity stays constant for the same wave
number even when α1

k and α2

k varies.
The effects of ratios of directional rigidities, N0

L0
, N1

L1
and N2

L2
, on the phase

velocities of torsional surface waves are shown in Figures 4, 5 and 6. Figures 4 and
6 show an almost comparable increasing effect of N0

L0
and N2

L2
on the phase velocity.

However, Figure 5 shows a declining influence of N1

L1
.

The fluctuation of torsional surface wave velocity for the changing of porosity
d is shown in Figure 7. The value of d has been determined to be 0.50, 0.55, and
0.60 for curves no. 1, no. 2, and no. 3. It states that phase velocity increases as
porosity factor increases.
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The effects of initial stresses of upper semi-infinite space, layer and lower semi-
infinite space respectively on the phase velocities of torsional surface waves are
shown in Figures 8, 9, and 10. In Figures 8 and 10, the growing influence of ξ0
and ξ2 on the phase velocity is nearly the same„ but Figure 9 shows a decreasing
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Figure 9. Phase velocity variations for the torsional surface wave
for various values of ξ1.

effect of ξ1. Furthermore, the phase velocity is significantly impacted by ξ0 and ξ2
at lower frequencies, whereas ξ1 has a greater impact at higher frequencies.

The effect of various irregularity parameters ε size is discussed in Figure 11.
This figure shows that the irregularity parameter significantly affects the torsional
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wave’s ability to propagate. At a certain frequency, the phase velocity decreases as
ε grows.

The impact of the fraction b
H on the torsional wave’s propagation in a porous

medium is shown in Figure 12. This picture shows that the phase velocity falls at
the same frequency as the dimensionless ratio b

H increases.
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8. Conclusions

The dispersion equation is determined analytically through the study of
torsional surface wave propagation in an initially stressed porous layer sandwiched
between two heterogeneous anisotropic semi-infinite spaces. The dispersion equa-
tion for a homogeneous layer over a homogeneous half-space has been found to
accord with the classical conclusion of the Love wave when the upper semi-infinite
space is absent. A graphical representation of the impact of porosity, anisotropic
factor, irregularity, non-homogeneity and initial stress on the dimensionless phase
velocity has been provided.

Torsional wave phase velocities are positively impacted by the heterogeneity
features of the lower semi-infinite space, while they are negatively impacted by those
of the upper semi-infinite space. Anisotropic factors of the upper and lower semi-
infinite spaces have increasing effects on phase velocity; however, for porous layers,
their effects are diminishing. Porosity is observed to have a considerable increasing
influence. Phase velocity is affected more by initial stresses of the semi-infinite
spaces than those of the porous layer. The phase velocity of torsional surface waves
is also affected by different irregularity sizes. As there is no particular method, it
has become very difficult to examine the interior of the Earth. Therefore, more
research needs to be done about the structure of the earth. Until now, technologies
have not provided much vision to explore the interior structure properly. So, it is
of primary importance to study about different types of layers and characteristics
of the materials to understand the influence of those layers and materials inside
the Earth. In porous media, the energy of a seismic wave dissipates rapidly. In
this article, torsional surface wave propagation through a porous media situated
between two semi-infinite spaces under the effect of irregularity has been explored.
While most academics looked at irregularities at the lower interface as triangles
or rectangles, the irregularity is taken into account in the current study for the
first time as a semi-four-cusped hypocycloid. Additionally, fluctuations in density,
initial stress, and directional rigidities are taken into account in both half-spaces
and layers, whereas the majority of authors simply took these variations in rigidity
and density.
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ЕФЕКАТ ХИПОЦИКЛОИДНЕ НЕПРАВИЛНОСТИ
НА ТОРЗИОНЕ ПОВРШИНСКЕ ТАЛАСЕ У

ВИШСЛОJНОМ СИСТЕМУ

Резиме. Ова тема jе посвећена истраживању ефеката полу-четворокраке хи-
поциклоидне неправилности на торзионе површинске таласе у пошетно напрег-
нутом анизотропноj порозноj средини коjа се налази између два анизотропна
нехомогена полубесконачна простора. Неправилност се манифестуjе као полу-
четворокрак хипоциклоид на интерфеjсу где су слоj и доњи полубесконачни
простор раздвоjени. Претпоставља се да усмерена крутост, густина и почетни
напон варираjу у горњем и доњем полу-бесконачном простору експоненциjал-
но и хиперболички, редом. Дисперзиона jедначина торзионих таласа се даjе
у затвореном облику. Додатно, jедначина брзине се налази у случаjу да нема
неправилности. Студиjа показуjе да хетерогеност доњег полубесконачног про-
стора, почетна напрезања и усмерне крутости оба полубесконачна простора,
као и порозност слоjа имаjу повољан утицаj на фазну брзину торзионих по-
вршинских таласа. Међутим, хетерогеност горњег полубесконачног простора,
однос усмерених крутости и почетног напрезања слоjа и параметар неправил-
ности имаjу негативан утицаj. Такође jе примећено да се, у случаjу униформне
средине, jедначина брзине своди на конвенционалну jедначину за Ловов талас.
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