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SCALING GROUP ANALYSIS ON MHD EFFECTS ON
HEAT TRANSFER NEAR A STAGNATION POINT ON
A LINEARLY STRETCHING SHEET WITH VARIABLE

VISCOSITY AND THERMAL CONDUCTIVITY,
VISCOUS DISSIPATION AND HEAT SOURCE/SINK

Hunegnaw Dessie and Kishan Naikoti

Abstract. The effects of variable viscosity and thermal conductivity on MHD
heat transfer flow of viscous incompressible electrically conducting fluid near
stagnation point flow on non-conducting stretching sheet in presence of uni-
form transfer magnetic field with heat source/sink and viscous dissipation has
been analyzed. The governing partial differential equations are transformed

into ordinary differential equations using a special form of Lie group transfor-
mations and then solved using Fourth order Runge–Kutta Method. Effects of
different physical parameters on the flow and heat transfer characteristics are
analyzed. Variations of different parameters on skin fiction coefficient-f ′′(0)
and temperature gradient −θ′(0) are presented in tabular form.

1. Introduction

The flow due to stretching sheet is a vital problem in classical fluid mechanics
due to its applications in many manufacturing processes in industry, such as extrac-
tion of polymer sheet, wire drawing, paper production, glass-fiber production, and
hot rolling. Crane [1] first investigated the steady boundary layer flow of an incom-
pressible viscous fluid over a linearly stretching plate and gave an exact similarity
solution in closed analytical form. Numerous studies [2–10] have been conducted
later to extend the pioneering work of Crane [1]. The study of hydrodynamic stag-
nation point flow over a stretching surface has attracted much attention due to
their many practical applications such as MHD generators and cooling of infinite
metallic plates in a bath. Hiemenz [11] first studied two-dimensional stagnation
flow using similarity transformations to reduce the Navier–Stokes equations to non-
linear ordinary differential equations. Ramachandran et al. [12] studied laminar
mixed convection in two dimensional stagnation flows around heated surfaces by
considering both an arbitrary wall temperature and a varying arbitrary surface
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heat flux. Vajravelu and Hadyinicolaou [13] considered convection heat transfer in
an electrically conducting fluid near an isothermal stretching sheet and the effect
of internal heat generation or absorption. Hiemenz [14] first studied the steady
flow in the neighborhood of a stagnation point. Chiam [15] considered a problem
which is a combination of the works of Hiemenz [14] and Crane [1] i.e., the stag-
nation point flow towards a stretching sheet taking identical stretching rate of the
sheet and strain rate of the stagnation point flow and he found no boundary layer
structure near the sheet. Mahapatra et al. [16] reinvestigated the same stagnation
point flow towards a stretching sheet with different stretching and straining rates
and found two kinds of boundary layer near the sheet depending on the ratio of
the stretching and straining rates. The effects of thermal radiation and viscous
dissipation on MHD heat and mass diffusion flow past an oscillating vertical plate
embedded in a porous medium with variable surface condition is investigated by
Kishore et al. [17] In addition, some very important investigations in this direction
can be found in the articles [18–26]. Viscous dissipation changes the temperature
distributions by playing a role like an energy source, which leads to affected heat
transfer rates. The merit of the effect of viscous dissipation depends on whether
the plate is being cooled or heated. Heat transfer analysis over porous surface is of
much practical interest due to its abundant applications. All the above mentioned
investigations were carried out for fluids having constant viscosity and thermal con-
ductivity throughout the boundary-layer. However it is known that these physical
properties may change significantly with temperature. For instance, the viscosity of
water decreases about 240% when the temperature increases from 10◦C to 50◦C.
The viscosity of air is 0.6924×10−5, 1.3289, 2.286, and 3.625 at temperatures 1000,
2000, 4000, and 8000 K respectively. To predict accurately the flow behaviors, it is
necessary to take the variation of viscosity and thermal conductivity into account.
Chamkha [27] discussed the effect of thermal and concentration buoyancy on an
unsteady two-dimensional laminar MHD flow which is heat-absorbing over a mov-
ing vertical plate. So in order to predict accurately the flow behavior, it is necessary
to take into account this variation in viscosity since recent results on the flow due
to stretching surface with and without buoyancy force have shown that when this
effect is included, the flow characteristics may be substantially changed compared
to the constant viscosity case. Pop et al. [28] studied the effect of variable viscosity
on flow and heat transfer to a continuous moving flat plate using the similarity
solution with no buoyancy force. Mukhopadhyay et al. [29] studied the boundary
layer flow over a heated stretching sheet with variable viscosity in the presence of
magnetic field. Ali [30] studied the effect of temperature-dependent viscosity on
mixed convection heat transfer along a vertical moving surface taking into account
the effect of buoyancy force. Mohaimin et al. [31] studied variable viscosity and
thermophoresis effects on Darcy mixed convective heat and mass transfer past a
porous wedge in the presence of chemical reaction. Abd El-Aziz [32] studied the
problem of temperature-dependent viscosity and thermal conductivity effects on
combined heat and mass transfer in MHD three-dimensional flow over a stretching
surface with Ohmic heating. Salem [33] investigated variable viscosity and ther-
mal conductivity effects on MHD flow heat transfer in visco-elastic fluid over a
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stretching sheet. Hassanian et al. [34] investigated the steady non-Darcy mixed
convection flow near the stagnation point on a heated vertical surface embedded in
a porous medium with thermal radiation and variable viscosity. Sharidan et al. [35]
investigated the unsteady flow and heat transfer over a stretching sheet in viscous
and incompressible fluid. Pop et al. [36] studied unsteady flow past a stretching
sheet. Nazar et al. [37] have studied unsteady boundary layer flow in the region of
the stagnation point on a stretching sheet. Seddeek et al. [38] studied the effects of
variable viscosity and thermal conductivity on an unsteady two dimensional laminar
flow of a viscous incompressible conducting fluid past a semi-infinite vertical porous
moving plate taking into account the effect of a magnetic field in the presence of
variable suction. Odd et al. [39] have considered the effects of variable viscosity
and variable thermal conductivity on heat transfer from a stretching sheet. The
effects of MHD and thermal radiation on forced convective flow over a porous plate
embedded in porous medium is investigated by Shanmuga [40]. Olajuwon [41]
studied heat transfer in a power law with variable thermal conductivity. Hossain et
al. [42] considered a steady two-dimensional laminar forced flow and heat transfer
of a viscous incompressible fluid having temperature dependent viscosity and ther-
mal conductivity past a wedge with a uniform surface heat flux. In formulating
the equations governing the flow both the viscosity and the thermal conductivity
of the fluid are considered to be linear function of temperature. In the field of fluid
mechanics, most of the researchers try to obtain the similarity solutions in such
cases using the similarity variables. In case of scaling group of transformations, the
group-invariant solutions are nothing but the well known similarity transformation
(Boutros Y. Z et al. [43]). A special form of Lie-group of transformations known as
scaling is used in this paper to find out the full set of symmetries of the problem
and then to study which of them are appropriate to provide group invariant or more
specifically similarity solutions. This method reduces the system of non-linear cou-
pled partial differential equations governing the motion of the fluid into a system
of coupled non-linear ordinary differential equations. In this paper, by applying
Lie’s scaling group transformations to the problem of boundary layer flow and heat
transfer of a fluid with variable viscosity and variable thermal conductivity near
a stagnation point on a linearly stretching sheet by taking the effects of viscous
dissipation and heat source/sink in the presence of uniform magnetic field is ana-
lyzed. The system remains invariant due to some relations among the parameters
of the transformations. With this transformation, a third order and a second order
ordinary differential equations corresponding to momentum and energy equations
are derived. These equations are solved with the help of Runge–Kutta fourth order
method along with shooting technique. The effects of the fluid viscosity parameter,
Prandtl number, magnetic parameter, velocity ratio parameter, thermal conductiv-
ity, variable viscosity parameter, Eckert parameter and heat source/sink parameter
on velocity and temperature fields are investigated and analyzed with the help of
graphical representation.
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2. Formulation of the problem

Consider the steady MHD boundary layer flow of a viscous incompressible
electrically conducting fluid of variable viscosity and variable thermal conductivity
in the vicinity of a stagnation point on a non-conducting stretching sheet in the
presence of heat generation/absorption and viscous dissipation. The stretching
sheet has uniform temperature Tw, linear velocity uw(x). It is assumed that all
external force fields except magnetic field are zero. The stretching sheet coincides
with plane y = 0 and the flow is confined in the regiony > 0. The x and y axes are
taken along and perpendicular to the sheet, respectively. Uniform magnetic field
of strength B0 is imposed along the y-axis.

The governing equations of motion for the steady two dimensional flow under
the influence of externally imposed transverse magnetic field with variable thermal
conductivity and variable viscosity in the boundary layer are
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where u and v are components of velocity respectively in x and y directions, ν = µ
ρ ,

T is the temperature,T∞ is the free stream temperature is the fluid the thermal
conductivity, Q0 is the volumetric heat generation (Q0 > 0) or absorption (Q0 < 0)
coefficient, cp is the specific heat, ρ is the fluid density (assumed constant), µ is the
fluid viscosity. In the free stream u = U(x) = bx, the equation (2.1) reduces to
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∂x between the equations (2.1) and (2.3), we obtain
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2.1. Boundary conditions. The boundary conditions for the problem are
given by

u = uw(x) = cx, v = 0, T = Tw at y = 0,

u = U(x) = bx, T = T∞ at y → ∞

Here c > 0 is the stretching constant, Tw is the uniform wall temperature, T∞
is the temperature far away from the sheet. Following Ling et al. [44] and Lai and
kulacki et al. [45], we take the temperature-dependent viscosity of the form

(2.4) µ =
µ∞

[1 + a(T − T∞)]

where µ∞ is a constant value of the coefficient of viscosity far away from the sheet
and a > 0 is a constant. Note that the dimensionless temperature θ can also be
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written as

(2.5) θ =
T − Tr
Tw − T∞

+ θr, θr =
Tr − T∞
Tw − T∞

, Tr = T∞ −

1

a

Substituting (2.5) into (2.4), we immediately find

µ = µ∞

θr
θr − θ

The variation of the thermal conductivity k∗ is taken of form as

k∗ = k∞ (1 + εθ)

where k∞ is the value of the thermal diffusivity at the surface of temperature Tw
and ε is a parameter that depends on the nature of the fluid.

2.2. Method of Solution. Introducing the following relations for u, v, θ as
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where ψ is the stream function.
Using the relations (2.5) in the boundary layer equation (2.1) and in the energy

equation (2.2) we get the following equations
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The boundary conditions (2.3) then becomes

∂ψ

∂y
= cx,

∂ψ

∂x
= 0, θ = 1 as y = 0(2.8)

∂ψ

∂y
= U(x) = bx, θ = 0 as y → ∞.

2.3. Scaling group of transformations. Now introduce simplified form of
Lie-group transformations namely the scaling group of transformations (Mukhopad-
hyay et al. [29] and Dessie et al. [46]),

Γ : x∗ = xeεα1 , y∗ = yeεα2 , ψ∗ = ψeεα3 , u∗ = ueεα4(2.9)

v∗ = veεα5 , U∗ = Ueεα6 , θ∗ = θeεα7

Equation (2.9) may be considered as a point-transformation which transforms coor-
dinates (x, y, ψ, u, v, θ) to the coordinates (x∗, y∗, ψ∗, u∗, v∗, θ∗). Substituting (2.9)
in (2.6) and (2.7), we get,
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The system will remain invariant under the group of transformations Γ we would
have the following relations among the parameters, namely

α1 + 2α2 − 2α3 = α1 − 2α2 − 2α3 − α7 = α1 + 2α2 − 2α3 − 2α7q = α1 − 2α6

= α1 − 2α6 − α7 = α1 − 2α6 − 2α7 = 3α2 − α3 − α7

= 3α2 − α3 = α2 − α3 = −α6 = α2 − α3 − α7

= −α6 − α7α2 − α3 − 2α7 = −α6 − 2α7

and

α1 + α2 − α3 − α7 = α1 + α2 − α3 − 2α7 = 2α2 − 2α7 = 2α2 − 3α7

= 2α2 − α7 = −α7 = −2α7 = 4α2 − 2α3

Taking account into the boundary conditions and the above relations gives α1 =
α3 = α4 = α6 and α2 = α5 = α7 = 0. Thus the set reduces to a one parameter
group of transformations:

x∗ = xeεα1 , y∗ = y, u∗ = ueεα1 ,(2.12)

v∗ = v, U∗ = Ueεα1 , ψ∗ = ψeεα1 , θ∗ = θ

Expanding by Taylor’s series we get

x∗ − x = xεα1, y∗ − y = 0,(2.13)

u∗ − u = uεα1, ψ∗
− ψ = ψεα1
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v∗ − v = 0, U∗
− U = Uεα1, θ∗ − θ = 0

The characteristic equations are
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where F is an arbitrary function of η.
Thus from equations (2.14b)–(2.14d) we obtain,

y = η, ψ = xF (η), θ = θ(η)

Using these transformation equations (2.10) and (2.11) becomes
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The boundary conditions of equation (2.8) becomes

F ′ = c, F = 0, θ = 1, at η = 0

F ′ = b, θ = 0 at η → ∞

Introducing η = vαcβη∗, F = vα
′

cβ
′

F ∗, θ = vα
′′

cβ
′′

θ̄ in equations (2.15) and (2.16)
we get α′ = α = 1/2, α′′ = 0, β = −1/2, β′ = 1/2, β′′ = 0. The equations (2.15)
and (2.16) are transformed to
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is the Prandtl number and S = Q0
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the magnetic parameter, Ec = c2x2
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Taking F ∗ = f and θ̄ = θ the equations (2.17) and (2.18) finally takes the
following form
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(2.19) f ′′′
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The boundary conditions (2.13) also reduces

f ′ = 1, f = 0, θ = 1 at η = 0(2.21)

f ′ = λ =
b

c
, θ = 0 as η → ∞

3. Numerical Method for Solution

The set of coupled non-linear governing boundary layer equations (2.19) and
(2.20) together with boundary conditions equations (2.21) are solved numerically by
using Runge–Kutta fourth order technique along with shooting method. First of all,
the higher order non-linear differential equations (2.19) and (2.20) are converted
into simultaneous linear differential equation of first order and they are further
transformed into initial value problem by applying the shooting technique. Once
the problem is reduced to initial value problem, then it is solved by Runge-Kutta
fourth order technique.

Skin-friction. Skin-friction coefficient at the sheet is given by

Cf =
τw

ρ(cv)
1/2

= xf ′′(0) where τw = µ
(∂u

∂y
+
∂v

∂x

)

y=0

is the shear stress at the sheet.

Nusselt number. The rate of heat transfer in terms of the Nusselt number
at the sheet is given by

Nu =
(v

c

)1/2 qw
k∗(Tw − T∞)

= −θ′(0) where qw = −k∗
(∂T

∂y

)

y=0

4. Results and Discussion

The set of non-linear ordinary differential equations (2.19) and (2.20) with
boundary conditions of equations (2.21) have been solved by using the fourth-
order Runge–Kutta method with systematic estimates of f ′′(0) and-θ′(0) by the
shooting technique. In this calculation the step size ∆(η) = 0.001 and six decimal
accuracy as the criterion for convergence are used. In order to verify the validity
and accuracy of the present results, the values for the skin-friction f ′′(0) and heat
transfer rate-θ′(0) were compared with those reported by Pop and Grosan (2004)
and Mahapara and Gupta (2009). The comparison in the above cases is found
to be in excellent agreement as shown in the Table 1 and Table 2. The values of
Local skin-friction coefficient and temperature gradient are tabulated in Table 3
and Table 4. It is noted that from Table 3, both the values of the skin-friction
coefficient f ′′(0) and local Nusselt number-θ′(0) decrease with increasing of heat
source/sink parameter S.
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Table 1. Values of f ′′(0) for different values of λ are compared
with the results obtained by Pop, Grosan and Pop (2004), Sharma
PR and Sighh (2009)

f ′′(0)
Pop, Grosan Sharma P.R.

λ & Pop (2004) & Sighh (2009) Present paper

0.1 -0.9694 -0.969386 -0.969386
0.2 -0.9181 -0.9181069 -0.918107
0.5 -0.6673 -0.667263 -0.667363
2.0 2.0174 2.01749079 2.017504
3.0 4.7290 4.72922695 4.729282

Table 2. Values of −θ′(0) for different values of λ are compared
with the results obtained by Pop, Grosan and Pop (2004) and
Sharma P.R. and Sighh (2009).

−θ′(0)
Pop, Grosan Sharma P.R and

λ & Pop (2004) Sighh(2009) Present paper

0.1 0.081 0.0811245 0.080865
0.2 0.135 0.135571 0.135639
2.0 0.241 0.241025 0.248040

It is also pointed out from Table 3, as the velocity ratio parameter λ increases
the skin-friction coefficient f ′′(0) decreases whereas temperature gradient-θ′(0) in-
creases. From the same table it can be observed that the increase of thermal
conductivity parameter ε is to decrease the value of the skin-friction coefficient
f ′′(0) and the temperature gradient-θ′(0). When the magnetic parameter value
M increases skin-friction coefficient f ′′(0) increases but temperature gradient-θ′(0)
decreases. From Table 4, it can be seen that when the Eckert number Ec increases
both the skin-friction coefficient f ′′(0) and the temperature gradient-θ′(0) decrease.
It is observed that, the increase of variable viscosity θr is to increase the skin-friction
coefficient f ′′(0) and to decrease temperature gradient-θ′(0). The effects of Prandtl
number is to increase both the local skin-friction coefficient f ′′(0) and temperature
gradient-θ′(0) as it can be seen from Table 3 and Table 4.

The dimensionless velocity and temperature profiles are shown graphically in
Figures 1 to 7 for different flow parameters such as velocity ratio λ, thermal con-
ductivity ε, magnetic parameter M , heat source/sink parameter S, Eckert number
Ec, Prandtl number Pr and variable viscosity parameter θr. Figure 1a shows that
the boundary layer thickness decreases considerably as λ increases.
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The increase in the value of λ implies that free stream velocity increases in com-
parison to stretching velocity, which results in the increase in pressure and straining
motion near stagnation point and hence thinning of boundary layer takes place.
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Figure 1. Velocity and temperature profiles for different values
of velocity ratio parameter λ
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Figure 2. velocity and temperature profiles for different values
of thermal conductivity parameter ε

The phenomenon of thinning boundary layer thus implies increased shear stress
at the sheet. It is important to note for λ = 1, that there is no formation of
boundary layer because the sheet velocity is equal to free stream velocity. It is seen
from Figure 1b that the fluid temperature decreases due to increase of velocity
ratio λ. Figures 2a and 2b display the effects of thermal conductivity parameter



124 DESSIE AND NAIKOTI

0 1 2 3 4 5
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

η

f’

M=0, 0.5, 0.8, 1,1.5

λ=0.1,ε=0.1,θ
r
=1.2,Pr=0.71,Ec=0.03

(a)

0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

η

θ

λ=0.1,ε=0.1,θ
r
=1.2,Pr=0.71,S=0.1,Ec=0.03

M=0, 0.5, 0.8,1.0

(b)

Figure 3. velocity and temperature profiles for different values
of magnetic parameter M

ε on the velocity and temperature profiles respectively. Figure 2a shows with the
increase in the values of ε velocity profiles f ′ increases. Fluid temperature θ is also
found to increase with increasing values of ε which leads to a fall in the rate of heat
transfer from the flow to the surface. Therefore, the rate of cooling is much faster
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Figure 4. velocity and temperature profiles for different values
of heat source/sink parameter S

to the coolant material having small thermal conducting parameter. The effect
of transverse magnetic field on the velocity field and on temperature profiles are
depicted in Figures 3a and 3b respectively. From Figure 3b it is noticed that the
rate of transport is considerably reduced with the increase ofM . It clearly indicates
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Figure 5. velocity and temperature profiles for different values
of heat Eckert number Ec

that the transverse magnetic field opposes the transport phenomena. This is due
to the fact that the variation of the magnetic number leads to the variation of the
Lorentz force due to magnetic field and the Lorentz force produces more resistance
to the transport phenomena. In all cases the velocity vanishes at some stage large
distance from the sheet. The velocity decreases with increase of magnetic parameter
M . From the plots in Figure 3b, it is observed that the transverse magnetic field
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Figure 6. velocity and temperature profiles for different values
of Prandtl number Pr

contributes to the thickening of the thermal boundary layer. This is evident from
the fact that the applied transverse magnetic field produces a body force, to be
precise the Lorentz force, which opposes the motion. The resistance offered to the
flow is responsible in enhancing the temperature. Figures 4a and 4b display the
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Figure 7. velocity and temperature profiles for different values
of variable viscosity parameter θr

velocity and the temperature distributions for different values of the heat generation
parameter S. It is seen from Figure 4a that the velocity profiles is influenced
considerably and increases when the value of heat generation parameter increases.
It is evident from Figure 4b the value of heat generation parameter increases,
the temperature distribution also increases along the boundary. The influences of
Eckert number on the dimensionless velocity and temperature functions are shown
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in Figures 5a and 5b respectively. The Eckert number designates the ratio of the
kinetic energy of the flow to the boundary layer enthalpy differences. It embodies
the conversion of the kinetic energy into internal energy by work done against the
viscous fluid stresses. The positive Eckert number implies cooling of the plate
i.e., loss of heat from the plate to the fluid. Hence, greater viscous dissipative heat
causes a rise in the temperature as well as the velocity. It is also evident from figures
that the viscous dissipative effect is more in temperature and less in velocity field.
For different values of the Prandtl number Pr, the velocity and the temperature
profiles are plotted in Figures 6a and 6b respectively. The Prandtl number defines
the ratio of momentum diffusivity to the thermal diffusivity. From Figure 6a, it is
clear that an increase in the Prandtl number leads to a fall in the velocity. From
Figure 6b, it is observed that an increase in the Prandtl number results a decrease
of the thermal boundary layer thickness and in general lower average temperature
within the boundary layer.

The reason is that smaller values of Pr are equivalent to increasing the thermal
conductivities, and therefore heat is able to diffuse away from the heated surface
more rapidly than for higher values of Pr. Hence in the case of smaller Prandtl
numbers as the boundary layer is thicker and the rate of heat transfer is reduced.
Effects of Viscosity parameter θr on the velocity and temperature profiles are clearly
exhibited in Figures 7a and 7b respectively. Fluid velocity decreases with increasing
values of viscosity parameter is noticed form the Figure 7a. It is observed from
Figure 7b that the temperature profiles increases with increase of variable viscosity.
This is due to the fact that increasing the variable viscosity parameter leads to
increase in the skin-friction coefficient which causes a decrease in the velocity of
the fluid. Physically, the thermal viscosity cause a rise in friction, when friction
increases, the area of the stretching surface in contact with the flow increases,
therefore generated heat from the friction on the surface is transferred to the flow.
This leads to arise in the surface temperature and the floe is heated.

5. Conclusion

In this paper, we have studied the scaling group analysis of MHD effects on heat
transfer near stagnation-point on a linearly stretching sheet with variable viscosity
and thermal conductivity, viscous dissipation and heat source/sink. The viscosity
of the fluid is assumed to be an inverse linear function of temperature and the
thermal conductivity is assumed to vary linearly with temperature. The stretching
velocity and surface temperature are assumed to vary linearly with distance from
the stagnation point. The governing equations for the problem were changed to
dimensionless non-linear ordinary differential equations using a scaling group of
transformations. The scaling symmetry group is very essential procedure to com-
prehend the mathematical model and to find the similarity solutions for such type
of flow which have wider applications in the engineering disciplines related to fluid
mechanics. The transformed governing equations in the present study were solved
numerically by using the Runge-Kutta fourth order along with shooting methods.
The numerical results obtained agree very well with previously published data for



130 DESSIE AND NAIKOTI

some particular cases of the present study. From the present study the following
conclusions can be drawn:

• The magnetic field effects is to decelerate the velocity profiles whereas it
increases the temperature profiles

• The effects of variable thermal conductivity parameter and heat source/
sink parameters leads to increase in both temperature profiles and velocity
profiles.

• Fluid velocity decreases with increasing values of variable viscosity pa-
rameter and it increases the temperature.

• Increasing the velocity ratio parameter tends to increase the velocity but
decrease the temperature profiles.
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GRUPNA SKALIRANA ANALIZA ZA MHD EFEKTE NA
PRENOS TOPLOTE U BLIZINI TAQKE STAGNACIJE
USLED LINEARNOG ISTEZAǋE TANKOG SLOJA SA
PROMENǈIVOM VISKOZNOX�U I TOPLOTNOM
PROVODǈIVOX�U, VISKOZNA DISIPACIJA I

TOPLOTNI IZVOR/PONOR

Rezime. Analizirani su efekti promenǉive viskoznosti i toplotne
provodǉivosti za MHD prenos toplote toka viskoznog nestixǉivog elek-
triqno provodnog fluida u blizini taqke stagnacije toka na neprovodni
istegǉivi tanki sloj u prisustvu uniformnog magnetnog poǉa sa toplot-
nim izvorom/ponorom. Parcijalne diferencijalne jednaqine kretaǌa su
svedene na obiqne diferencijalne jednaqine koriste�i poseban oblik
Lijevih grupa transformacija, a zatim rexene pomo�u metode Runge–
Kuta qetvrtog reda. Analizirani su efekti razliqitih fiziqkih param-
etara na tok i karakteristike prenosa toplote. Varijacije razliqitih
parametara na koeficijent povrxinskog treǌa - f ′′(0) i temperaturni
gradijent θ′(0) predstavǉeni su u obliku tabele.
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