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Abstract

We investigate the influence of the material inhomogeneities
that are generated by anisotropic growth on the source of mass
acting within a growing living tissue. In order to do that, we need
to study the interaction between these material inhomogeneities
and the chemical agents dissolved within the tissue. For this pur-
pose, we use some ideas and methods from Condensed Matter
Physics (e.g., the Path Integral technique employed in modelling
Brownian processes) and apply them to the Continuum Mechanics
description of volumetric Growth. We believe that this approach
may provide new physical insight into the interactions between the
macroscopic dynamics of living systems and the evolution of the
subsystems which activate biological processes.
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1 Introduction

A living tissue is said to experience growth when it undergoes a mass
variation process [1,2]. Although mass variations can be either positive
or negative, only mass production processes will be considered in this
paper. The production of mass is permitted by the availability of several
chemical substances, and is modulated by the environment [1]. Chemical
agents, such as nutrients and growth factors, ”feed” cells and take part
in chemical reactions, while the environmental factors, such as thermo-
mechanical stimuli, influence the macroscopic dynamics of the tissue [1],
and interact with chemical constituents. The availability of chemical
substances is related to their concentration, and availability varies as
they are carried by the interstitial fluid of the tissue [3].

The continuum mechanics description of growth is based on the ex-
istence of a source of mass within the tissue. When growth is viewed
as a merely thermo-mechanical phenomenon (i.e., chemical agents are
not explicitly considered), the mass source is assumed to be a smooth
field that can be determined by self-consistent equations involving me-
chanical factors [4,5]. On the other hand, when chemical agents are ex-
plicitly taken into account, the mass source is given as a functional of
mechanical variables, and the concentration of chemical substances [6-8].
For this case, the model of growth is formulated as a boundary-value-
problem in which the evolution of each chemical constituent is described
by a reaction-advection-diffusion equation [8]. In each equation of this
type, the interaction between the diffusive process and the motion of the
medium in which the constituent is dissolved is described by the drift
term, qvd, where q is the concentration of the substance, and vd is the
drift velocity.

In the biological context, the transport of chemical factors is expected
to be mainly due to diffusion rather than drift because the ratio between
‖ qvd ‖ and the amplitude of the Fickean-type current, ‖ D∇q ‖ (here,
D denotes the diffusion coefficient), is usually small in living tissues (the
ratio Pe =‖ qvd ‖ / ‖ D∇q ‖ is said to be the Peclét number). There-
fore, the drift term may be neglected without compromising the results.
However, the drift term should be considered when the model of growth
contains a continuum mechanics description of the tissue that is linked
with the study of the evolving subsystems within the whole tissue de-
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scription (i.e., chemical substances).
Following Epstein and Maugin [4], we would like to show how the ma-

terial inhomogeneities produced by growth influence the source of mass
through the action that they exert on the concentration of the chemi-
cal constituents. For this purpose, we investigate the case of anisotropic
growth, and consider only nutrient factors among the chemical constituents
[3,7]. Our approach is based on the theory reported in the article by Mof-
fatt [9] which we adapt to the current problem (cfr. Section 2). In Ref.[9],
the effect of vorticity on the diffusion of a generic physical quantity (e.g.,
a heat-spot) carried by a fluid in turbulent flow (Pe À 1) is presented.
Although we deal with the opposite physical situation (i.e., Pe ¿ 1), the
presence of a vorticity field in the tissue suggested us to undertake the
treatment of growth presented in this paper.

We base our work on the following two considerations:

(i) the mass source intensity increases in regions where the availability
of nutrients is high;

(ii) the nutrient concentration is given by the probability density distri-
bution for nutrient particles to occupy a certain point of the tissue
at a given instant of time.

Since we expect that cells can be ”fed” more easily when nutrients are
permitted to move within a confined region of the tissue, we associate the
concept of ”availability of nutrients” with the return probability, i.e. the
probability density distribution for a nutrient particle to return to the
point from which it originated at some previous instant in time.

If we apply the Path Integral method [10] to the formal calculation
of nutrient concentrations (cfr. Section 2), we notice that the return
probability is enhanced by the drift velocity if, and only if, vd is associated
with a vorticity, i.e. ωd = ∇ × vd 6= 0. If we invoke Stokes Theorem,
and apply the multiplicative decomposition of the deformation gradient
tensor [4] (cfr. Section 3), we can determine the vorticity flux caused
by the production of material inhomogeneities. Since the vorticity flux
can be viewed as the correction to the return probability of nutrients in
the absence of a material anisotropy source (i.e., anisotropic growth), we
interpret it as the ”modulation” exerted by material inhomogeneities on
the source of mass (cfr. Section 4).



24 A.Grillo, G.Zingali, S.Federico, W.Herzog, G.Giaquinta

The particular attention devoted to anisotropic growth is motivated by
the necessity of studying growth in anisotropic materials of biomechanical
interest (a general thermo-mechanical constitutive theory of growth for
anisotropic biomaterials has been presented by Lubarda and Hoger [11]).
On the basis of the works by Federico et al. [12,13], our long-term-goal is
to investigate the interaction of growth with the internal micro-structure
of anisotropic biological composites (such as articular cartilage), and to
test the possibility of modulating anisotropic growth with external elec-
tromagnetic fields.

2 The evolution of chemical substances

In this Section, all physical quantities are assumed to be described in the
Eulerian framework, i.e., current configuration of the tissue.

Nutrients can be modelled as a system with a large number of iden-
tical, non-interacting Brownian particles which diffuse throughout the
tissue [14]. Assuming a constant diffusivity, D, the evolution of these par-
ticles is described by the reaction-advection-diffusion equation [15,10,14]

∂tq +∇ · (qvd) = D∇2q − Aq, (2.1)

where, q(t, x) is the concentration of nutrients, vd(t, x) is the drift veloc-
ity, i.e. the velocity of the medium in which the Brownian particles are
dissolved, and A(t, x) is the annihilation rate [16,6], i.e. the probability
per unit time for the Brownian particle to be absorbed by the tissue.

When Eq.(2.1) is applied to particles evolving in a region sufficiently
far from boundaries, a formal solution can be found by using the Path
Integral method proposed by Wiener [10]. By applying the transformation
[17,10]

q = f exp(λ), λ(t, x) =
1

2D

∫

C(x0,x)

vd(t, ξ) · dξ, (2.2)

where C(x0, x) is an open line connecting points x0 and x, Eq.(2.2)
becomes

∂tf = D∇2f − (Ψ + ∂tλ)f, (2.3)

where

Ψ =
1

4D
‖ vd ‖2 +

1

2
∇ · vd + A. (2.4)
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By requiring f to satisfy the initial condition f(t0, x) = f0δ(x− x0)
(δ is the Dirac’s delta distribution centred at x0), the formal solution to
Eq.(2.3) is the path integral [10]

F(t, x, t0, x0) =

∫ (t,x)

(t0,x0)

Dz exp

{
− 1

4D

∫ t

t0

‖ ż(s) ‖2 ds−

∫ t

t0

[Ψ(s, z(s)) + ∂tλ(s, z(s))]ds

}
. (2.5)

This quantity coincides with the Green’s function associated with the
differential equation (2.3). The symbol Dz denotes the summation over
all possible paths according to Wiener’s measure [18,19], and z is the
parameterisation of the generic path followed by the Brownian particle.
By noting that λ(t0, x0) = 0, introducing the notation

H(s, z(s), ż(s)) =
1

4D
‖ ż(s) ‖2 +Ψ(s, z(s)), (2.6)

and

H(t, t0, z) =

∫ t

t0

H(s, z(s), ż(s))ds, (2.7)

and applying Eqs.(2.2) and (2.5), it can be shown that the concentration
of nutrients, q(t, x), coincides with Green’s function

Q(t, x, t0, x0) =

∫ (t,x)

(t0,x0)

Dz exp {−H(t, t0, z)+

1

2D

∫ t

t0

vd(s, z(s)) · ż(s)ds

}
. (2.8)

Here, z is such that x0 = z(t0) and x = z(t), and the quantity

W(t, t0, z) = exp{−H(t, t0, z) +
1

2D

∫ t

t0

vd(s, z(s)) · ż(s)ds} (2.9)

is the probability density functional for the particle to follow the specific
trajectory, z.
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If we postulate the existence of a characteristic time-scale such that
the drift velocity, vd, can be regarded as stationary with respect to the
evolution of the Brownian particle, Eq.(2.8) can be rewritten as

Q(t, x, t0, x0) =

∫ (t,x)

(t0,x0)

Dz exp{−H(t, t0, z) +
1

2D

∫

Γ(x0,x)

vd(y) · dy},
(2.10)

where Γ(x0, x) is the generic path parameterised by z. The quantity
Q(t, x, t0, x0) gives the probability density distribution for the Brownian
particle released from x0 at time t0 to be found at x at time t. The return
probability density distribution, i.e. the probability for the same particle
to return to x0 at a certain time t > t0, can be found by computing
Eq.(2.10) for x = x0, and summing over all closed paths, Ct, passing
through x, i.e.

Q(t, x, t0, x) =

∫ (t,x)

(t0,x)

Dz exp{−H(t, t0, z) +
1

2D

∫

Ct

vd(y) · dy}. (2.11)

In this equation, the line integral on the right-hand-side is nonzero
if, and only if, the drift velocity is such that ωd = ∇ × vd 6= 0. If we
assume that this is the case, then the drift velocity contributes to the
path integral (2.11) through the non-vanishing integral 1

2D

∫
Ct

vd(y) · dy,
and, consequently, affects the probability for the particle to be found at
the same place from which it was emitted.

3 Determination of the elastic and growth

vorticity fluxes in a growing elastic con-

tinuum

Although the Theory of Mixtures [20,21] has been adopted by some sci-
entists to model the mechanics of biological growth [22-25], for the sake of
simplicity we assume here that all nutrients evolve within a monophasic
continuum. For this specific case, the drift velocity, vd, coincides with the
velocity of the body, v [3,26].

We further assume that growth is isochoric, i.e. ∇ · v = 0 [11]. This
assumption enables us to rewrite Ψ, as Ψ = 1

4D
‖ v ‖2 +A.
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By denoting with χ(t, ·) : BR → B(t) the smooth motion which maps
the reference configuration of the body BR, onto the portion of the three-
dimensional Euclidean space E, occupied by the body at time t, B(t),
the velocity field is such that v(t, x) = (∂tχ)(t,X), ∀x ∈ B(t), and ∀X ∈
BR. If v is assumed to be stationary with respect to the characteristic
diffusion time-scale, the application of Stokes’ Theorem to the line integral
in Eq.(2.11) leads to the following expression

1

2D

∫

C(t)

v(x) · dx =
1

2D

∫

Σ(t)

(ω · n)(x)da =

1

2D

∫

ΣR

(Ω ·N)(t,X)dA, (3.1)

where Σ(t) is an open material surface contoured by the closed line C(t),
ΣR = χ−1(t, Σ(t)) is the corresponding surface in BR, n and N are the
unit vectors normal to Σ(t) and ΣR, respectively, the material vector
Ω = JF−1ω̂ is the Piola transformation of ω̂ = ω ◦ χ (from here on,
the symbol “∧” denotes the composition ϕ̂(t, ·) = ϕ(t, ·) ◦ χ(t, ·), for any
physical quantity ϕ), and J is the determinant of the deformation gradient
tensor, F = ∇Rχ (the symbol ∇R denotes differentiation with respect to
referential coordinates).

By denoting with L = ∇v, and W = skew(L) the velocity gradient
tensor, and the spin tensor, respectively, and using the linear application,
τ : skew(E) → E, from the space of skew-symmetric tensors onto E, such
that ω̂ = τ(Ŵ ) [27], Eq.(3.1) can be rearranged as

1

2D

∫

C(t)

v(x) · dx =
1

2D

∫

ΣR

[JF−1τ(Ŵ ) ·N ](t,X)dA. (3.2)

Hereafter, we assume that the multiplicative decomposition F = FelG
holds true. This decomposition is based on the introduction of an elasti-
cally released configuration, BG, which is obtained by applying the linear
map G, to the tangent space, TXBR, of BR, for any X ∈ BR [28]. In
BG, each material point of the elastic body is assumed to attain a stress-
free state (see Ref.[16], and references therein). Here, Fel and G are two
smooth, but not necessarily integrable, tensor fields which measure the
elastic deformation, and the anelastic effects related to growth, respec-
tively. In the following, G will represent the growth tensor. Basing on
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the introduced composition, the velocity gradient reads L̂ ≡ (∂tF )F−1 =
Lel + ΛG, where Lel = (∂tFel)F

−1
el , ΛG = FelLGF−1

el , and LG = (∂tG)G−1

(LG represents the growth velocity gradient). Accordingly, the global spin
tensor Ŵ writes as the sum of an elastic term and a term due to growth,
respectively. More specifically, Ŵ = Wel + WG, where Wel = skew(Lel)
and WG = skew(ΛG).

By taking into account the additive decomposition for Ŵ , Eq.(3.2)
becomes ∫

Ct

v(x) · dx =

∫

ΣR

[JF−1τ(Wel) ·N ](t,X)dA+

+

∫

ΣR

[J(F−1)τ(WG) ·N ](t,X)dA. (3.3)

Equation (3.3) states that the global vorticity flux of the system, Φ,
can be written as

Φ =

∫

Ct

v(x) · dx = Φel + ΦG, (3.4)

where the elastic and growth vorticity fluxes are defined by

Φel =

∫

ΣR

[JF−1τ(Wel) ·N ](t,X)dA,

ΦG =

∫

ΣR

[JF−1τ(WG) ·N ](t,X)dA, (3.5)

respectively. Note that the condition ΦG 6= 0 is satisfied if, and only if,
WG = skew(ΛG) 6= 0.

Remark
For biphasic mixtures, nutrients are carried by the fluid-phase. In

this case, the drift velocity, vf , coincides with the fluid-phase velocity
such that

vf (t, x) = vS(t, x) + FS(t,X)wf (t,X), (3.6)

where vS is the porous solid velocity, FS is the solid-phase deformation
gradient tensor, and wf is the filtration velocity [22]. By substituting
Eq.(3.6) into Eq.(3.3), we note that there might be another source of
vorticity due to wf . Since the filtration velocity can be expressed as the
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product of the fluid-phase permeability tensor P , and the thermodynamic
driving force = [23,25] (this is a generalization of Darcy’s law for a fluid
filtrating through a porous solid medium), the vorticity produced by wf

is essentially due to the form of the constitutive law, rather than the
generation of material inhomogeneities. For this reason, considering a
mono-phasic system is not associated with any loss of generality.

4 The role of vorticity on the source of

mass

In the presence of growth, the local form of the mass balance law in the
reference configuration of the body, BR, is given by [4]

∂tρR = ΓR −∇R ·M, (4.1)

where ρR = Jρ̂, ΓR = J Γ̂, and M = JF−1m̂ are the Piola transformations
of the mass density ρ̂, the mass source Γ̂, and the mass flux vector m̂,
respectively.

By virtue of the decomposition F = FelG, the determinant of the
deformation gradient tensor can be written as J = JelJG (where JG =
det(G)), and the referential mass density becomes ρR = JelJGρ̂. By
introducing the quantity ρG = Jelρ̂, we obtain that ρR = JGρG. Since the
process of growth is assumed to “bring” BR into BG, ρG cannot depend
on time [3,4]. Consequently, the time derivative of ρR must be entirely
compensated for by the time variation of JG. Since ∂tJG = JGtr(LG), we
find that [3,4]

∂tρR = tr(LG)ρR. (4.2)

If the mass flux vector, M , is assumed to be identically zero (this con-
dition is automatically satisfied within a first-order constitutive frame-
work [4]), the substitution of Eq.(4.2) into Eq.(4.1) yields [3,4]

ΓR = tr(LG)ρR. (4.3)

By denoting with L
(h)
G and L

(d)
G the hydrostatic and deviatoric part

of the growth velocity gradient, respectively, Eq.(4.3) can be rearranged

as ΓR = tr(L
(h)
G )ρR. This remark infers that, even though growth is
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anisotropic, only L
(h)
G contributes to Eq.(4.3), while L

(d)
G has no influ-

ence on the mass source, ΓR. This is consistent with the suggested as-
sumption on the mass source as long as the action of chemical agents is
disregarded. The growth tensor G can be then considered as an internal
variable [16] that depends on mechanical factors only similarly to the case
of the transplant operator K−1 introduced in Ref. [4,29]. For example,
within a first-order thermo-mechanical constitutive theory, Epstein and
Maugin [4] showed how uniformity and material invariance requirements
led to the evolution equation

R(LG, bG, Cel, ∂tCel) = 0, (4.4)

where Cel = F T
el Fel, bG = J−1

G GbG−1, and b is the Eshelby tensor, i.e., the
driving force acting on the material inhomogeneities generated by growth
[30].

However, when biochemical aspects of growth are included, the con-
centration of chemical substances must be given in Eq.(4.4). If we further
assume that the evolution law is given by a set of equations, which define
the components of the growth velocity gradient LG as functionals of the
mechanical and chemical variables, we may write

Lα
Gβ

= Lα
Gβ

(η, Cel, ∂tCel, bG, q̂), (4.5)

where Lα
Gβ

are the components of LG in BG, q̂(t,X) = q(t, x) is the
concentration of nutrients, and η : I ×BR → I ×BR is the identity map
(I is an interval of time), i.e. η(t,X) = (t,X).

By substituting Eq.(4.5) into Eq.(4.4), and introducing the functional
TG = tr(LG), Eqs.(4.2) and (4.3) become

∂tρR = ΓR = TG(η, Cel, ∂tCel, bG, q̂)ρR. (4.6)

Equation (4.6) prescribes that the mass source is determined by the
concentration of nutrients, q, and the mechanical variables, Cel and bG.
Moreover, since q is coupled with the body velocity, v, through the drift
term, qv, the source of mass is also influenced indirectly by the body
dynamics.

By virtue of Eqs.(2.11) and (3.5), and the identity q(t, x) = Q(t, x, t0, x),
we can rewrite Eq.(4.6) as

∂tρR = ΓR = TG(η, Cel, ∂tCel, bG, Q̂)ρR, (4.7)
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where

Q(t, x, t0, x) =

∫ (t,x)

(t0,x)

Dz

[
e−H0(t,t0,z)+

1
2D

ΦG

]
,

and

H0(t, t0, z) = H(t, t0, z)− 1

2D
Φel.

In order to estimate the effect of ΦG on ΓR, we write Q(t, x, t0, x) as

Q(t, x, t0, x) =

∫ (t,x)

(t0,x)

Dz

[
e−H0(t,t0,z)e

1
2D

ΦG

]
=

∫ (t,x)

(t0,x)

Dz e−H0(t,t0,z)+

∫ (t,x)

(t0,x)

Dz

{
e−H0(t,t0,z)

[
e

1
2D

ΦG − 1

]}
=

Q0(t, x, t0, x) +Q1(t, x, t0, x), (4.8)

where

Q0(t, x, t0, x) =

∫ (t,x)

(t0,x)

Dze−H0(t,t0,z),

and

Q1(t, x, t0, x) =

∫ (t,x)

(t0,x)

Dz{e−H0(t,t0,z)[e
1

2D
ΦG − 1]}.

By performing the Taylor expansion

TG(η, Cel, ∂tCel, bG, Q̂) = TG(η, Cel, ∂tCel, bG, Q̂0)+

+
∑∞

n=1

1

n!

[
∂nTG

∂Q̂n
(η, Cel, ∂tCel, bG, Q̂0)

]
(Q̂1)

n, (4.9)
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and introducing the notation

TG(η, Cel, ∂tCel, bG, Q̂) = TG, TG(η, Cel, ∂tCel, bG, Q̂0) = T
(0)
G ,

and ∑∞
n=1

1

n!
[
∂nTG

∂Q̂n
(η, Cel, ∂tCel, bG, Q̂0)](Q̂1)

n = T
(1)
G ,

Eq.(4.7) becomes

∂tρR = ΓR = [T
(0)
G + T

(1)
G ]ρR. (4.10)

The integration of Eq.(4.10) permits to express the source of mass as

ΓR(t,X) = [T
(0)
G (t, X) + T

(1)
G (t,X)]e

∫ t
0 T

(0)
G (s,X)dse

∫ t
0 T

(1)
G (s,X)dsρR(0, X) =

= T
(0)
G (t,X)e

∫ t
0 T

(0)
G (s,X)dsρR(0, X)

[
1 +

T
(1)
G (t,X)

T
(0)
G (t,X)

]
e

∫ t
0 T

(1)
G (s,X)ds. (4.11)

By denoting with Γ
(0)
R (t,X) the source of mass in the absence of the

inhomogeneity-vorticity-flux, we obtain

Γ
(0)
R (t,X) = T

(0)
G (t, X)e

∫ t
0 T

(0)
G (s,X)dsρR(0, X), (4.12)

and Eq.(4.11) can therefore be rewritten as

ΓR(t,X) = Γ
(0)
R (t,X)

[
1 +

T
(1)
G (t,X)

T
(0)
G (t,X)

]
e

∫ t
0 T

(1)
G (s,X)ds. (4.13)

This result can be manipulated to obtain the dimensionless expression

ΓR(t,X)− Γ
(0)
R (t,X)

Γ
(0)
R (t, X)

=

[
1 +

T
(1)
G (t,X)

T
(0)
G (t,X)

]
e

∫ t
0 T

(1)
G (s,X)ds − 1. (4.14)

This formula expresses the normalized variation of the mass source
in the presence of the inhomogeneity-vorticity-flux, i.e., it singles out the
contribution of the anisotropy of the growth tensor to ΓR(t,X).
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Although Eq.(4.14) shows how anisotropic growth may enhance the in-
tensity of the mass source acting within the body, it should be noted that
the kinematic constraint ΓR = tr(LG)ρR is not violated because the con-
straint derives from the general theory of growth kinematics which merely
requires that the mass source magnitude must be coherently varying with
the magnitude of ∂tJG = tr(LG). Therefore, we conclude that the mass
source is instantaneously rearranged as new inhomogeneities evolve in the
system.

We note that, in the limit 1
2D

ΦG << 1, Q(t, x, t0, x) (cfr. Eq.(4.8))
can be approximated by the first-order expression

Q(t, x, t0, x) ≈
∫ (t,x)

(t0,x)

Dz

[
e−H0(t,t0,z)(1 +

1

2D
ΦG)

]
=

=

∫ (t,x)

(t0,x)

Dz e−H0(t,t0,z)+

∫ (t,x)

(t0,x)

Dz

[
e−H0(t,t0,z) 1

2D
ΦG

]
. (4.15)

Since, in the absence of ΦG, W0(t, t0, z) = e−H0(t,t0,z) is the probability

density functional of nutrients, and Q0(t, x, t0, x) =
∫ (t,x)

(t0,x)
Dz W(t, t0, z)

is the corresponding return probability density distribution, the quantity

R(t, t0, x) =

〈
1

2D
ΦG(t, t0, x)

〉
=

1

2D

∫ (t,x)

(t0,x)

Dz [W(t, t0, z)ΦG] , (4.16)

can be taken as the average of ΦG (with respect to W0(t, t0, z)) over all
paths, and can be identified with the correlation function of the inhomoge-
neity–vorticity–flux. Therefore, we can give Q(t, x, t0, x) the approximate
expression

Q(t, x, t0, x) = Q0(t, x, t0, x) +R(t, t0, x), (4.17)

and Eq.(4.14) becomes

ΓR(t,X)− Γ
(0)
R (t,X)

Γ
(0)
R (t,X)

=

[
1 +

Ξ(t,X)R̂(t, t0, X)

T
(0)
G (t,X)

]
e

∫ t
0 Ξ(t,X)R̂(t,t0,X)ds − 1, (4.18)
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where ∂TG

∂Q̂ (η, Cel, ∂tCel, bG, Q̂0) = Ξ. By virtue of Eq.(4.18), we conclude

that, in the limit 1
2D

ΦG << 1, the first-order non-dimensional expression
of the inhomogeneity-induced mass source “modulation” is driven by the
time correlation function of the inhomogeneity-vorticity-flux.

5 Conclusions

We showed how, in the presence of anisotropic growth, the source of mass
acting within a tissue, ΓR, is “modulated” by ΦG: the vorticity flux due
to the production of material inhomogeneities (cfr. Eq.(4.14)). Such a
modulation occurs through the rearrangement of the source of mass as
new material is anisotropically inserted into the tissue. This result may be
interpreted as a “self-interaction” between material inhomogeneities and
the source that produced them. In order to observe this effect, we enlisted
the concentration of nutrients, q, among the variables which determine
ΓR (cfr. Eq.(4.6)), and showed how the availability of these substances
is enhanced by the presence of the non-vanishing spin tensor, Ŵ (cfr.
Section 2). Since Ŵ can be written as Ŵ = Wel + WG (cfr. Section 3),
the global vorticity of the system consists of an elastic contribution, Wel,
and a contribution due to growth, WG. The presence of the latter term
can be explained by realizing that the material inhomogeneities produced
by anisotropic growth act as a source of vorticity for the system.

We believe that the study of the interactions between the motion
of nutrients (modelled as Brownian particles) and the tissue dynamics
may lead to some interesting analogies with Solid State Physics (e.g., the
Theory of Berry’s phases as treated in [31,32]). For example, Brownian
particles “feel” the vorticity flux, ΦG, as a potential which tends to deflect
their trajectories by imprinting a rotational motion. This behaviour is
remnant of the effect exerted by defects on electronic dynamics in solids.
Moreover, the result reported in Eq.(4.14) seems to evoke the phenomenon
of “mass renormalization”, i.e. the effect which is encountered in Solid
State Physics when the “fully-dressed” Green’s function for a particle
propagating in a solid medium can be expressed in terms of a “self-energy”
part (e.g., cfr. [33]).
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The physical picture presented in this paper can also be described in
terms of material symmetries [34]. In particular, by interpreting growth
as the “breaking” of the body material symmetries [35], and retrieving
the material balance laws with a Noether-like approach [35,36], the pro-
duction of vorticity can be related to the unbalance of material angular
momentum due to the generation of anisotropy.

If the body is assumed to be isotropic prior to growth, then the
anisotropy of the growth tensor, G, breaks the body’s rotational sym-
metry and brings it into an anisotropic “state”. If, however, the body
is anisotropic at the start, then its “degree” of anisotropy is changed by
growth. In both cases, this process is reflected by the presence of the
flux ΦG, and implies a rearrangement of the mass source as shown in
Eq.(4.14).
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Uloga materijalnih nesavršenosti u biološkom rastu

UDK 531.01

Istražuje se uticaj materijalnih nesavršenosti usled anizotropnog rasta
na izvor mase koji deluje unutar rastućeg živog tkiva. Za ovo je potrebno
da proučimo medjudejstvo ovih materijalnih nesavršenosti i hemijskih
agenata rastvorenih unutar tkiva. U tu svrhu koristimo neke ideje i
metode iz fizike kondenzovane materije (recimo tehniku inegrala zavisnog
od puta koja se primenjuje u modeliranju Braunovskih procesa) te ih pri-
menjujemo na opis zapreminskog rasta koji se koristi u mehanici kontinu-
uma. Autori smatraju da ovakav pristup može ostvariti novo fizičko sagle-
davanje medjudejstava makroskopske dinamike živih sistema i razvoja
podsistema koji biološke procese aktiviraju.


