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Abstract

One proves that the Newtonian force acting on the parti-
cle, if it is derivable from the corresponding Mayer's potential,
has, in the most general case, the form of the Lorentz force.
The necessary and sufficient conditions providing the existence
of the mentioned Mayer's potential, obtained in the case of the
holonomic rheonomic dynamical system by the authors in [2],
reduce, in the case of the system consisting of a free particle,
which is considered in this paper, to the equations having the
form of the Maxwell's equations. One further proves that the
Coriolis force, which can be considered as the Newtonian force
in the dynamics of relative motion, is derivable from the corre-
sponding Mayer’s potential, which one determines, only in the
case of a constant angular velocity of the moving frame. Finally,
the obtained result is illustrated by an example.

1 Introduction

Starting from the fact that the only generalized Newtonian forces which
can aspire to be derivable from the corresponding Mayer’s potential are
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the forces linear with respect to the generalized velocities, i.e. the forces
having the form

Q: = bij¢’ + by,
(1)
bij = b;; (q". i) b0 = big (f}k, f-) 1

and that the potential itself, if it exists, must also be linear with respect
to the generalized velocities (see [1])

Wzondaf® oAby

(2)
A = A (qksf) , Ao= Ay (t}ki) :

in our paper (2] we proved that, besides (1), the following necessary
and sufficient conditions have to be satisfied

bij = —bjs, (3)
= e 0
bij  Obj  Oby e U S
g:’Laﬁ:a? i (4)
q 7 1 k=ji+1,..,n,

and

31‘5,;' 3673(] - Bbm H— 1,2, A 1,
ot i o¢ g’ J=i+1,..,n, (5)

to provide that the generalized forces (; are derivable from the potential
(2).

In the above relations the indices take the values from 1 to n, n
being the number of the system’s degrees of freedom. By ¢* we denote
the Lagrangian coordinates of the system, by ¢ - the corresponding
generalized velocities, and by ¢ - time. The repeated indices mean
summation.

It should be noticed that in the case of the system consisting of a
free particle acted on by the Newtonian force, the conditions (1), (3),
(4) and (5) present also the conditions which provide the conservativity
in the sense of Santilli of this force [2-4].
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2 General case of the Newtonian force
which is derivable from the Mayer’s
potential

Let us consider the Newtonian force

F=T1{v1i, (6)

acting on the particle whose radius vector and velocity are denoted
by r and v respectively. We begin by proving the following theorem
concerning the force (6):

Theorem 1 Newtonian force given by (6) can be derwed from the cor-
responding Mayer’s potential if, and only if, it can be presented in the
form

F=1.af><mtA—%L;L + grad Ay, (7)

where
A={A(d.¢ ¢}, i=123,

Ao = A (q". 4%, % 1),
with the functions A;, Ay, as well as their first and second partial deriva-
tives, defined and continuous in some domain of q¢',q%, ¢, t.

Remark 1 The form (7) has, e.g., the Lorentz force, for which, if we
take for simplicity that the speed of light ¢ =1,

A=eB, A= -eyp, (8)
where e denotes the charge of the particle, and where B and ¢ are
the potentials of the electromagnetic field in which the charged particle
Mmoves.

To prove the theorem, let us suppose that for the generalized forces

Qi=F'___:-7 “.i:1,2,3., (g)
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which correspond to the Newtonian force (6), the necessary and suf-
ficient conditions for the existence of Mayer’s potential, given by (1),
(3); (4) and (5), are satisfied. Then we have the relations (see [1,2])

daovV ov
Q=58 ~ 5 (10)
which, using (2), lead to
gA; OA\ .. 8A 84
= e e e e o 11
? (Bq‘ aq:f)qj % " ag g
wherefrom, by comparing with (1), we obtain
0A; O0A;
VEop (12)
0Ay OA;
bip = — — : 1

Having now in mind that in the case considered the indices i, 1
just like all the other indices which will be used throughout the paper,
take the values 1,2, 3, we can write

0A; _OAi _ 5, 04,

Aty O B

Further, as the Kronecker’s delta symbol of the fourth order, cfi;f’;-"7
can be expressed, using the Ricci’s skewsymmetric tensors 5™ and Edias
in the form

kr _ _krs
61-_}' = £ E-j_j‘q,

we have

da; da G

where we put

A,
oq*

hs e Eakr

(15)
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Using (14), for the force (11) we obtain

" Y 0
Qi = €ijs@ ° — ot > 3¢

or, expressed in vector notation,

szxhr%—?+gmd}lo, (16)

where, in accordance with (15),
8 raAr 1
h={5j= aqk}::-“ﬂt A, (15)

so that (16) gets the form (7), and the Theorem 1 is proved.

The condition (4), in the case considered, i.e. for n = 3, gets the

form
by s Obgys  Obys
o miagt O
which, in virtue of (15) and (12), leads to

div h =0. (17)

Similarly, for n = 3, (5) reduces to the relations

[ 3512 + abzﬂ. = Sbm

ot oq! g2’
8513 s 8!’3‘31} | abm
ot 8" ¢’

8('3‘-33 n ab;m ! abm
ot 0¢2  O¢3’

which, introducing the vector

JA
G = i + grad Ay, (18)
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and having in mind (12),(13) and (15), can be written as

- th
ot G = ——, 19
¥ ot ( )

We notice that the relations (17) and (19), in the case of Lorentz
force, which can be written in the form

F,=e(vxH+E),

obtained from (7) using (8) and introducing the vectors

JB
H =rot B, E T grad @,
represent the well-known Maxwell's equations
divH=0 r(J.tE:—a—Hu.
ot

Finally, Mayer’s potential (2), from which the force (7) can be de-
rived, expressed using vectorial notation, reads

Vs = Auviesdy, (20)

wherefrom, having in mind (8), we obtain the well-known potential
corresponding to the Lorentz force

Ve = —eB - v+ep.

The Theorem 1 states that the relation (7) gives the most general
form of the Newtonian force which can be derived from the correspond-
ing Mayer's potential. But reducing the given Newtonian force to this
form, which is possible only in the case if the conditions (1), (3), (4)
and (5) are satisfied, needs that both the vector and scalar potentials,
A and Ay, i.e. the corresponding Mayer’s potential (20), must be deter-
mined first. That is why we shall now establish one another formulation
of the Theorem 1, the formulation which may appear more convenient
in some cases when we have to examine whether the conditions pro-
viding the existence of the Mayer’s potential are satisfied for the given
Newtonian force. This formulation we give in the form of the following
theorem:
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Theorem 2 Newtonian force, given by (6), can be derived from the
corresponding Mayer’s potential if, and only if, it can be presented in
the form

F=vxh+G, (21)

where the vectors h and G satisfy the relations (17) and (19), i.e., the
relations

div h =0,
and
Jdh
rot G = ——.
ot

The proof of the Theorem 2 becomes evident if we remember that,
as a consequence of the conditions (1) and (3), the force (6) must have
the form (21), where

h = {be3, b31,b12},

and
G = {b10, b20,b30} ,

and that the conditions (4) and (5), as it was already demonstrated,
lead to the equations (17) and (19).

If the conditions from the Theorem 2 are satisfied, Mayer’s potential
is given, as it was proved in [2], by

q' q’ q .
= —@’2 [f blqu]] = @3 [f bladﬁ'] + [ by (qlzﬂl,qz$q3)dq2} =
c1 €1 c2

q' q° q
[f biodg" + [ bao (G’l=ﬂhf?21q3) dg® + [ bas (Q‘lzﬂ’l,quﬂm 93) d‘f’] ;
(] cg €3

(22)
where ¢;, ¢, and c3 are any constant values of ¢', ¢* and ¢ respectively,
belonging to the relevant domain of ¢', ¢*, ¢°.
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3 The case of Coriolis force

We further consider the Coriolis force

in

Cor = —2Miw X U, (23)

where m is the mass of the particle M which moves with respect to the
frame of reference A¢n¢ whose motion relative to the Newtonian base
1s prescribed by the velocity v4 = v, (t) of the origin A and by the
angular velocity w = w (t), while u denotes the relative velocity of M
with respect to the moving frame Aén(.

Remembering that
U=V-—vVy—wXp, (24)

where v denotes the absolute velocity of M, and where p = AM , the
force (23) can be written in the form

o = VX2mw + 2mw X V4 + 2m (w - p) w — 2mw?p, (25)
or, in tensor notation,

Ci = 2meijw* @ + 2merw v’ + 2mwiptw; — 2mw?p;, (257)
where we introduced the denotations for the covariant and contravari-
ant coordinates of the vectors appearing in (25) as follows

Ci=F¢, g, wi=w-g; pi= P-8Bi Vai =Va'E;,
W' =gYw;, p'=g"p;, vl = guy,

where g; = Ar/dq’ are the basis vectors in the system of coordinates ¢*,
while g* are the contravariant coordinates of the fundamental tensor
G9ij = Bi* Bj-

By comparing (25’) with (1), we find that, in the case of Coriolis
force, -

k & k :
bij = 2me;jw"”, bio = 2me;jpw’ vy + 2mwgwp” — 2mw?p;,
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wherefrom we obtain

ab;;
-(—9—-? = 2an‘:k£rjaws + Q'MF;;;E,;HUJS,
q
% = 2me;; y
61 = tik (‘,}t 1
db;o o e 2 2T
9 = 2mI € pow"v S H2mww;+2mIwep” we-2mw 9ij-2mw”L3;pr,

where I'j; are the Christoffel symbols with respect to the metric g;;. It
is now easy to verify that the conditions (3) and (4) are always satisfied,
while the condition (5) leads to

k
QTHEI;J;;; T {],

ot

le. .

A — {]?

ot

wherefrom, remembering that we start with w = w (t), we conclude
that the Coriolis force can be obtained from the corresponding Mayer’s
potential if, and only if, :

w =const. (26)

In order to determine this potential, we shall first seek, supposing
that (26) holds, what are, in the case considered, the vector A = {A;}
and the scalar function Ap.

We begin by the fact, which is not difficult to verify, that 2mw*,
which appears in the first member on the right-hand side of the equation
(25’), can be written in the form

2mw® = e*Pejmu’ 8], (27)

where 67 is the Kronecker delta symbol.

Introducing further the vector

K,= Ejfpﬂuujp’, (28)
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and having in mind that
"i?sf(p = sjf.p?mvjé:,

where V denotes covariant differentiation with respect to ¢°, for (27)
we obtain

2mw* = Ge*PV K, = ehoP (;;{;p, (29)
or, expressed in vector notation,
2mw = rot K, (30)
where, according to (28),
K = mw x p. (31)
Now, using (29) and introducing the vector
D; = mepw’ vy + 2muww,p® — 2muw?p;, (32)
which obviously can be expressed as the partial derivative
d
D; = g—(fa
where
b = me, jpuw’vhip” +m (wkp"’)z — mw?p?, (33)
for (25’) we obtain
Cpi= Eijkfkspi—?éj + mepw’ vy + gj:
or, in vector notation,
tor = vXrot K + mw X v4 + grad ®. (34)

If we now remember that

p=r—r(t), ra=0A4,
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wherefrom
ey
Bt o A
we obtain
W X vV mw X oy
o Ly o
A o
i.e., in virtue of (31),
5 K
m =——,
et X V47 ot
and the force (34) finally gets the form
; IK >
Fs,. = vxrot K—— + grad P, (35)

ot

from which, after comparing with (7), we conclude that in the case of
Coriolis force, under the condition (26), we have

A=K=mwxp, Ay=07. (36)

The potential which corresponds to the force (35), in virtue of (20)
and (36), has the form

cor = — (T X p) - v—2,
i.e., using (33),
Veor = — (mw x p) - v— (mw X v4) - p—m (w X p) +muw?p?. (37)
It is now of interest to find the form of the potential (37) in which

the relative velocity of the particle, u, will appear instead of its absolute
velocity, v. If we take into account that

V=1u+Vat+w X 0,

and that

(wx p) (wx p)=wp’—(w-p),

from (37) we easily obtain the potential in the form
Veor = — (mw X p) - u, (38)

which is appropriate if the Coriolis force is, as usually, given by (23).
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4 An Example

Determine the Mayer’s potential in the case of Coriolis force acting on
the particle M having mass m, which moves relative to the Earth.

We consider the Earth as a sphere which rotates with the constant
angular velocity w about its axis, which, in this problem, we can take
as being at rest.

The origin of the Cartesian frame A¢n¢, which moves together with
Earth, we choose at the point A on the Earth northern hemispheres’s
surface, the point near which we take that the particle M moves. We
denote the latitude of this point by p, the axis AC we take upwards
along the line of apparent gravity in A (Fig. 1). The axis A€ is tangent
to the meridian and directed to the south, while the axis An is tangent
to the parallel and directed to the east. The plane £ = 0 is not strictly
the tangent plane to the sphere, but the deviation is slight for points
near to A.

S

Fig. 1. System under consideration.

Having now in mind that the coordinates of the vectors w and u
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with respect to the frame A£n( are

w = {—wcosp,0,wsinp},
96 &
u={£9,(}

from (23) we easily determine the coordinates of the Coriolis force in
this case

3

Ce = C) = 2mwrisin g,

T

C,=0Cy= —2mwé sin @ — 2mw( cos @, (40)

Ce = C3 = 2mwn) cos p,

wherefrom, using the denotations
E=q', n=¢, ¢=¢,
and then comparing (40) with (1), we find
bis = 2mwsing, bz =0, by = —2mwcosy }
(41)

bio = bap = b3 = 0.

The relation (22), in which we take ¢; = ¢ = 0, leads now to the
Mayer’s potential

Veor = —2mwénsing + 2mwn( cos . (42)

The Mayer’s potential corresponding to the Coriolis force (40) can
also be obtained, of course, directly from (38). In this case, using (39)
and having in mind that the coordinates of the vector p are

p={&n(},

we find the expression

VY = mwnsing — mw (Esinp + Ccosp) 1 + mwnl cosp,  (43)



74 M. LUKACEVIC and V. COVIC
which differs from (42) by the term

y (mwné sin p — mwn( cos ) .

This term, being a total derivative with respect to time of a function

depending on the coordinates &, 7)., has no effect, as it is well-known,
in the forces (40).

Finally, it is worthy to notice that the condition (26), which holds in
this example, presents one of the two mutually independent conditions
under which, in the case of a system of particles, the Mayer’s potential
corresponding to the Coriolis forces of the system, exists [2]. In the case
of the system consisting of a free particle, the sole condition providing
the existence of the Mayer’s potential from which the Coriolis force
acting on the particle can be derived is given by (26).
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O njutnovskim silama koje imaju Majerov potencijal

Dokazuje se da njutnovska sila koja dejstvuje na materijalnu tacku,
ukoliko moze biti izvedena iz odgovarajuéeg Majerovog potencijala,
ima, u najopstijem sluéaju, oblik Lorencove sile. Pri tome se potrebni i
dovoljni uslovi koji obezbedjuju egzistenciju pomenutog Majerovog po-
tencijala, a koje su autori za slu¢aj holonomnog reonomnog dinamickog
sistema dobili n svome radu [2], svode u slucaju sistema koji se sastoji
od jedne slobodne materijalne tacke, koji se u ovom radu razmatra, na
jednacine koje imaju oblik Maksvelovih jednacina.

Dalje se dokazuje da Koriolisova sila, koja se u dinamici relativnog
kretanja formalno razmatra kao njutnovska, moze biti izvedena iz odgo-
varajuceg Majerovog potencijala, koji se pri tome i odredjuje, samo
u sluéaju da je ugaona brzina pokretnog koordinatnog sistema kon-
stantna. Dobijeni rezultat je ilustrovan jednim primerom.



